com.ibm.icu.text.CjkBreakEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of vaadin-client-compiler-deps Show documentation
Show all versions of vaadin-client-compiler-deps Show documentation
Vaadin is a web application framework for Rich Internet Applications (RIA).
Vaadin enables easy development and maintenance of fast and
secure rich web
applications with a stunning look and feel and a wide browser support.
It features a server-side architecture with the majority of the logic
running
on the server. Ajax technology is used at the browser-side to ensure a
rich
and interactive user experience.
/*
*******************************************************************************
* Copyright (C) 2012, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
package com.ibm.icu.text;
import static com.ibm.icu.impl.CharacterIteration.DONE32;
import static com.ibm.icu.impl.CharacterIteration.current32;
import static com.ibm.icu.impl.CharacterIteration.next32;
import java.io.IOException;
import java.text.CharacterIterator;
import java.util.Stack;
import com.ibm.icu.impl.Assert;
class CjkBreakEngine implements LanguageBreakEngine {
private static final UnicodeSet fHangulWordSet = new UnicodeSet();
private static final UnicodeSet fHanWordSet = new UnicodeSet();
private static final UnicodeSet fKatakanaWordSet = new UnicodeSet();
private static final UnicodeSet fHiraganaWordSet = new UnicodeSet();
static {
fHangulWordSet.applyPattern("[\\uac00-\\ud7a3]");
fHanWordSet.applyPattern("[:Han:]");
fKatakanaWordSet.applyPattern("[[:Katakana:]\\uff9e\\uff9f]");
fHiraganaWordSet.applyPattern("[:Hiragana:]");
// freeze them all
fHangulWordSet.freeze();
fHanWordSet.freeze();
fKatakanaWordSet.freeze();
fHiraganaWordSet.freeze();
}
private final UnicodeSet fWordSet;
private DictionaryMatcher fDictionary = null;
public CjkBreakEngine(boolean korean) throws IOException {
fDictionary = DictionaryData.loadDictionaryFor("Hira");
if (korean) {
fWordSet = fHangulWordSet;
} else {
fWordSet = new UnicodeSet();
fWordSet.addAll(fHanWordSet);
fWordSet.addAll(fKatakanaWordSet);
fWordSet.addAll(fHiraganaWordSet);
fWordSet.add("\\uff70\\u30fc");
}
}
public boolean handles(int c, int breakType) {
return (breakType == BreakIterator.KIND_WORD) &&
(fWordSet.contains(c));
}
private static final int kMaxKatakanaLength = 8;
private static final int kMaxKatakanaGroupLength = 20;
private static final int maxSnlp = 255;
private static final int kint32max = Integer.MAX_VALUE;
private static int getKatakanaCost(int wordlength) {
int katakanaCost[] = new int[] { 8192, 984, 408, 240, 204, 252, 300, 372, 480 };
return (wordlength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordlength];
}
private static boolean isKatakana(int value) {
return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) ||
(value >= 0xFF66 && value <= 0xFF9F);
}
public int findBreaks(CharacterIterator inText, int startPos, int endPos,
boolean reverse, int breakType, Stack foundBreaks) {
if (startPos >= endPos) {
return 0;
}
inText.setIndex(startPos);
int inputLength = endPos - startPos;
int[] charPositions = new int[inputLength + 1];
StringBuffer s = new StringBuffer("");
inText.setIndex(startPos);
while (inText.getIndex() < endPos) {
s.append(inText.current());
inText.next();
}
String prenormstr = s.toString();
boolean isNormalized = Normalizer.quickCheck(prenormstr, Normalizer.NFKC) == Normalizer.YES ||
Normalizer.isNormalized(prenormstr, Normalizer.NFKC, 0);
CharacterIterator text = inText;
int numChars = 0;
if (isNormalized) {
int index = 0;
charPositions[0] = 0;
while (index < prenormstr.length()) {
int codepoint = prenormstr.codePointAt(index);
index += Character.charCount(codepoint);
numChars++;
charPositions[numChars] = index;
}
} else {
String normStr = Normalizer.normalize(prenormstr, Normalizer.NFKC);
text = new java.text.StringCharacterIterator(normStr);
charPositions = new int[normStr.length() + 1];
Normalizer normalizer = new Normalizer(prenormstr, Normalizer.NFKC, 0);
int index = 0;
charPositions[0] = 0;
while (index < normalizer.endIndex()) {
normalizer.next();
numChars++;
index = normalizer.getIndex();
charPositions[numChars] = index;
}
}
// From here on out, do the algorithm. Note that our indices
// refer to indices within the normalized string.
int[] bestSnlp = new int[numChars + 1];
bestSnlp[0] = 0;
for (int i = 1; i <= numChars; i++) {
bestSnlp[i] = kint32max;
}
int[] prev = new int[numChars + 1];
for (int i = 0; i <= numChars; i++) {
prev[i] = -1;
}
final int maxWordSize = 20;
int values[] = new int[numChars];
int lengths[] = new int[numChars];
// dynamic programming to find the best segmentation
boolean is_prev_katakana = false;
for (int i = 0; i < numChars; i++) {
text.setIndex(i);
if (bestSnlp[i] == kint32max) {
continue;
}
int maxSearchLength = (i + maxWordSize < numChars) ? maxWordSize : (numChars - i);
int[] count_ = new int[1];
fDictionary.matches(text, maxSearchLength, lengths, count_, maxSearchLength, values);
int count = count_[0];
// if there are no single character matches found in the dictionary
// starting with this character, treat character as a 1-character word
// with the highest value possible (i.e. the least likely to occur).
// Exclude Korean characters from this treatment, as they should be
// left together by default.
if ((count == 0 || lengths[0] != 1) && current32(text) != DONE32 && !fHangulWordSet.contains(current32(text))) {
values[count] = maxSnlp;
lengths[count] = 1;
count++;
}
for (int j = 0; j < count; j++) {
int newSnlp = bestSnlp[i] + values[j];
if (newSnlp < bestSnlp[lengths[j] + i]) {
bestSnlp[lengths[j] + i] = newSnlp;
prev[lengths[j] + i] = i;
}
}
// In Japanese, single-character Katakana words are pretty rare.
// So we apply the following heuristic to Katakana: any continuous
// run of Katakana characters is considered a candidate word with
// a default cost specified in the katakanaCost table according
// to its length.
text.setIndex(i);
boolean is_katakana = isKatakana(current32(text));
if (!is_prev_katakana && is_katakana) {
int j = i + 1;
next32(text);
while (j < numChars && (j - i) < kMaxKatakanaGroupLength && isKatakana(current32(text))) {
next32(text);
++j;
}
if ((j - i) < kMaxKatakanaGroupLength) {
int newSnlp = bestSnlp[i] + getKatakanaCost(j - i);
if (newSnlp < bestSnlp[j]) {
bestSnlp[j] = newSnlp;
prev[j] = i;
}
}
}
is_prev_katakana = is_katakana;
}
int t_boundary[] = new int[numChars + 1];
int numBreaks = 0;
if (bestSnlp[numChars] == kint32max) {
t_boundary[numBreaks] = numChars;
numBreaks++;
} else {
for (int i = numChars; i > 0; i = prev[i]) {
t_boundary[numBreaks] = i;
numBreaks++;
}
Assert.assrt(prev[t_boundary[numBreaks - 1]] == 0);
}
if (foundBreaks.size() == 0 || foundBreaks.peek() < startPos) {
t_boundary[numBreaks++] = 0;
}
for (int i = numBreaks - 1; i >= 0; i--) {
int pos = charPositions[t_boundary[i]] + startPos;
if (!(foundBreaks.contains(pos) || pos == startPos))
foundBreaks.push(charPositions[t_boundary[i]] + startPos);
}
if (!foundBreaks.empty() && foundBreaks.peek() == endPos)
foundBreaks.pop();
if (!foundBreaks.empty())
inText.setIndex(foundBreaks.peek());
return 0;
}
}