org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of vaadin-client-compiler-deps Show documentation
Show all versions of vaadin-client-compiler-deps Show documentation
Vaadin is a web application framework for Rich Internet Applications (RIA).
Vaadin enables easy development and maintenance of fast and
secure rich web
applications with a stunning look and feel and a wide browser support.
It features a server-side architecture with the majority of the logic
running
on the server. Ajax technology is used at the browser-side to ensure a
rich
and interactive user experience.
/*******************************************************************************
* Copyright (c) 2000, 2008 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.jdt.internal.compiler.lookup;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import org.eclipse.jdt.core.compiler.CharOperation;
import org.eclipse.jdt.internal.compiler.ClassFilePool;
import org.eclipse.jdt.internal.compiler.ast.CompilationUnitDeclaration;
import org.eclipse.jdt.internal.compiler.ast.Wildcard;
import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants;
import org.eclipse.jdt.internal.compiler.env.*;
import org.eclipse.jdt.internal.compiler.impl.CompilerOptions;
import org.eclipse.jdt.internal.compiler.impl.ITypeRequestor;
import org.eclipse.jdt.internal.compiler.problem.ProblemReporter;
import org.eclipse.jdt.internal.compiler.util.HashtableOfPackage;
import org.eclipse.jdt.internal.compiler.util.SimpleLookupTable;
public class LookupEnvironment implements ProblemReasons, TypeConstants {
/**
* Map from typeBinding -> accessRestriction rule
*/
private Map accessRestrictions;
ImportBinding[] defaultImports;
public PackageBinding defaultPackage;
HashtableOfPackage knownPackages;
private int lastCompletedUnitIndex = -1;
private int lastUnitIndex = -1;
public INameEnvironment nameEnvironment;
public CompilerOptions globalOptions;
public ProblemReporter problemReporter;
public ClassFilePool classFilePool;
// indicate in which step on the compilation we are.
// step 1 : build the reference binding
// step 2 : conect the hierarchy (connect bindings)
// step 3 : build fields and method bindings.
private int stepCompleted;
public ITypeRequestor typeRequestor;
private ArrayBinding[][] uniqueArrayBindings;
private SimpleLookupTable uniqueParameterizedTypeBindings;
private SimpleLookupTable uniqueRawTypeBindings;
private SimpleLookupTable uniqueWildcardBindings;
private SimpleLookupTable uniqueParameterizedGenericMethodBindings;
public CompilationUnitDeclaration unitBeingCompleted = null; // only set while completing units
public Object missingClassFileLocation = null; // only set when resolving certain references, to help locating problems
private CompilationUnitDeclaration[] units = new CompilationUnitDeclaration[4];
private MethodVerifier verifier;
final static int BUILD_FIELDS_AND_METHODS = 4;
final static int BUILD_TYPE_HIERARCHY = 1;
final static int CHECK_AND_SET_IMPORTS = 2;
final static int CONNECT_TYPE_HIERARCHY = 3;
static final ProblemPackageBinding TheNotFoundPackage = new ProblemPackageBinding(CharOperation.NO_CHAR, NotFound);
static final ProblemReferenceBinding TheNotFoundType = new ProblemReferenceBinding(CharOperation.NO_CHAR_CHAR, null, NotFound);
public LookupEnvironment(ITypeRequestor typeRequestor, CompilerOptions globalOptions, ProblemReporter problemReporter, INameEnvironment nameEnvironment) {
this.typeRequestor = typeRequestor;
this.globalOptions = globalOptions;
this.problemReporter = problemReporter;
this.defaultPackage = new PackageBinding(this); // assume the default package always exists
this.defaultImports = null;
this.nameEnvironment = nameEnvironment;
this.knownPackages = new HashtableOfPackage();
this.uniqueArrayBindings = new ArrayBinding[5][];
this.uniqueArrayBindings[0] = new ArrayBinding[50]; // start off the most common 1 dimension array @ 50
this.uniqueParameterizedTypeBindings = new SimpleLookupTable(3);
this.uniqueRawTypeBindings = new SimpleLookupTable(3);
this.uniqueWildcardBindings = new SimpleLookupTable(3);
this.uniqueParameterizedGenericMethodBindings = new SimpleLookupTable(3);
this.accessRestrictions = new HashMap(3);
this.classFilePool = ClassFilePool.newInstance();
}
/**
* Ask the name environment for a type which corresponds to the compoundName.
* Answer null if the name cannot be found.
*/
public ReferenceBinding askForType(char[][] compoundName) {
NameEnvironmentAnswer answer = nameEnvironment.findType(compoundName);
if (answer == null) return null;
if (answer.isBinaryType()) {
// the type was found as a .class file
typeRequestor.accept(answer.getBinaryType(), computePackageFrom(compoundName, false /* valid pkg */), answer.getAccessRestriction());
} else if (answer.isCompilationUnit()) {
// the type was found as a .java file, try to build it then search the cache
typeRequestor.accept(answer.getCompilationUnit(), answer.getAccessRestriction());
} else if (answer.isSourceType()) {
// the type was found as a source model
typeRequestor.accept(answer.getSourceTypes(), computePackageFrom(compoundName, false /* valid pkg */), answer.getAccessRestriction());
}
return getCachedType(compoundName);
}
/* Ask the oracle for a type named name in the packageBinding.
* Answer null if the name cannot be found.
*/
ReferenceBinding askForType(PackageBinding packageBinding, char[] name) {
if (packageBinding == null) {
if (defaultPackage == null)
return null;
packageBinding = defaultPackage;
}
NameEnvironmentAnswer answer = nameEnvironment.findType(name, packageBinding.compoundName);
if (answer == null)
return null;
if (answer.isBinaryType()) {
// the type was found as a .class file
typeRequestor.accept(answer.getBinaryType(), packageBinding, answer.getAccessRestriction());
} else if (answer.isCompilationUnit()) {
// the type was found as a .java file, try to build it then search the cache
typeRequestor.accept(answer.getCompilationUnit(), answer.getAccessRestriction());
} else if (answer.isSourceType()) {
// the type was found as a source model
typeRequestor.accept(answer.getSourceTypes(), packageBinding, answer.getAccessRestriction());
}
return packageBinding.getType0(name);
}
/* Create the initial type bindings for the compilation unit.
*
* See completeTypeBindings() for a description of the remaining steps
*
* NOTE: This method can be called multiple times as additional source files are needed
*/
public void buildTypeBindings(CompilationUnitDeclaration unit, AccessRestriction accessRestriction) {
CompilationUnitScope scope = new CompilationUnitScope(unit, this);
scope.buildTypeBindings(accessRestriction);
int unitsLength = units.length;
if (++lastUnitIndex >= unitsLength)
System.arraycopy(units, 0, units = new CompilationUnitDeclaration[2 * unitsLength], 0, unitsLength);
units[lastUnitIndex] = unit;
}
/* Cache the binary type since we know it is needed during this compile.
*
* Answer the created BinaryTypeBinding or null if the type is already in the cache.
*/
public BinaryTypeBinding cacheBinaryType(IBinaryType binaryType, AccessRestriction accessRestriction) {
return cacheBinaryType(binaryType, true, accessRestriction);
}
/* Cache the binary type since we know it is needed during this compile.
*
* Answer the created BinaryTypeBinding or null if the type is already in the cache.
*/
public BinaryTypeBinding cacheBinaryType(IBinaryType binaryType, boolean needFieldsAndMethods, AccessRestriction accessRestriction) {
char[][] compoundName = CharOperation.splitOn('/', binaryType.getName());
ReferenceBinding existingType = getCachedType(compoundName);
if (existingType == null || existingType instanceof UnresolvedReferenceBinding)
// only add the binary type if its not already in the cache
return createBinaryTypeFrom(binaryType, computePackageFrom(compoundName, false /* valid pkg */), needFieldsAndMethods, accessRestriction);
return null; // the type already exists & can be retrieved from the cache
}
public void completeTypeBindings() {
stepCompleted = BUILD_TYPE_HIERARCHY;
for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) {
(this.unitBeingCompleted = this.units[i]).scope.checkAndSetImports();
}
stepCompleted = CHECK_AND_SET_IMPORTS;
for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) {
(this.unitBeingCompleted = this.units[i]).scope.connectTypeHierarchy();
}
stepCompleted = CONNECT_TYPE_HIERARCHY;
for (int i = this.lastCompletedUnitIndex + 1; i <= this.lastUnitIndex; i++) {
CompilationUnitScope unitScope = (this.unitBeingCompleted = this.units[i]).scope;
unitScope.checkParameterizedTypes();
unitScope.buildFieldsAndMethods();
this.units[i] = null; // release unnecessary reference to the parsed unit
}
stepCompleted = BUILD_FIELDS_AND_METHODS;
this.lastCompletedUnitIndex = this.lastUnitIndex;
this.unitBeingCompleted = null;
}
/*
* 1. Connect the type hierarchy for the type bindings created for parsedUnits.
* 2. Create the field bindings
* 3. Create the method bindings
*/
/* We know each known compilationUnit is free of errors at this point...
*
* Each step will create additional bindings unless a problem is detected, in which
* case either the faulty import/superinterface/field/method will be skipped or a
* suitable replacement will be substituted (such as Object for a missing superclass)
*/
public void completeTypeBindings(CompilationUnitDeclaration parsedUnit) {
if (stepCompleted == BUILD_FIELDS_AND_METHODS) {
// This can only happen because the original set of units are completely built and
// are now being processed, so we want to treat all the additional units as a group
// until they too are completely processed.
completeTypeBindings();
} else {
if (parsedUnit.scope == null) return; // parsing errors were too severe
if (stepCompleted >= CHECK_AND_SET_IMPORTS)
(this.unitBeingCompleted = parsedUnit).scope.checkAndSetImports();
if (stepCompleted >= CONNECT_TYPE_HIERARCHY)
(this.unitBeingCompleted = parsedUnit).scope.connectTypeHierarchy();
this.unitBeingCompleted = null;
}
}
/*
* Used by other compiler tools which do not start by calling completeTypeBindings().
*
* 1. Connect the type hierarchy for the type bindings created for parsedUnits.
* 2. Create the field bindings
* 3. Create the method bindings
*/
/*
* Each step will create additional bindings unless a problem is detected, in which
* case either the faulty import/superinterface/field/method will be skipped or a
* suitable replacement will be substituted (such as Object for a missing superclass)
*/
public void completeTypeBindings(CompilationUnitDeclaration parsedUnit, boolean buildFieldsAndMethods) {
if (parsedUnit.scope == null) return; // parsing errors were too severe
(this.unitBeingCompleted = parsedUnit).scope.checkAndSetImports();
parsedUnit.scope.connectTypeHierarchy();
parsedUnit.scope.checkParameterizedTypes();
if (buildFieldsAndMethods)
parsedUnit.scope.buildFieldsAndMethods();
this.unitBeingCompleted = null;
}
public TypeBinding computeBoxingType(TypeBinding type) {
TypeBinding boxedType;
switch (type.id) {
case TypeIds.T_JavaLangBoolean :
return TypeBinding.BOOLEAN;
case TypeIds.T_JavaLangByte :
return TypeBinding.BYTE;
case TypeIds.T_JavaLangCharacter :
return TypeBinding.CHAR;
case TypeIds.T_JavaLangShort :
return TypeBinding.SHORT;
case TypeIds.T_JavaLangDouble :
return TypeBinding.DOUBLE;
case TypeIds.T_JavaLangFloat :
return TypeBinding.FLOAT;
case TypeIds.T_JavaLangInteger :
return TypeBinding.INT;
case TypeIds.T_JavaLangLong :
return TypeBinding.LONG;
case TypeIds.T_int :
boxedType = getType(JAVA_LANG_INTEGER);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_INTEGER, null, NotFound);
case TypeIds.T_byte :
boxedType = getType(JAVA_LANG_BYTE);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_BYTE, null, NotFound);
case TypeIds.T_short :
boxedType = getType(JAVA_LANG_SHORT);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_SHORT, null, NotFound);
case TypeIds.T_char :
boxedType = getType(JAVA_LANG_CHARACTER);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_CHARACTER, null, NotFound);
case TypeIds.T_long :
boxedType = getType(JAVA_LANG_LONG);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_LONG, null, NotFound);
case TypeIds.T_float :
boxedType = getType(JAVA_LANG_FLOAT);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_FLOAT, null, NotFound);
case TypeIds.T_double :
boxedType = getType(JAVA_LANG_DOUBLE);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_DOUBLE, null, NotFound);
case TypeIds.T_boolean :
boxedType = getType(JAVA_LANG_BOOLEAN);
if (boxedType != null) return boxedType;
return new ProblemReferenceBinding(JAVA_LANG_BOOLEAN, null, NotFound);
// case TypeIds.T_int :
// return getResolvedType(JAVA_LANG_INTEGER, null);
// case TypeIds.T_byte :
// return getResolvedType(JAVA_LANG_BYTE, null);
// case TypeIds.T_short :
// return getResolvedType(JAVA_LANG_SHORT, null);
// case TypeIds.T_char :
// return getResolvedType(JAVA_LANG_CHARACTER, null);
// case TypeIds.T_long :
// return getResolvedType(JAVA_LANG_LONG, null);
// case TypeIds.T_float :
// return getResolvedType(JAVA_LANG_FLOAT, null);
// case TypeIds.T_double :
// return getResolvedType(JAVA_LANG_DOUBLE, null);
// case TypeIds.T_boolean :
// return getResolvedType(JAVA_LANG_BOOLEAN, null);
}
// allow indirect unboxing conversion for wildcards and type parameters
switch (type.kind()) {
case Binding.WILDCARD_TYPE :
case Binding.INTERSECTION_TYPE :
case Binding.TYPE_PARAMETER :
switch (type.erasure().id) {
case TypeIds.T_JavaLangBoolean :
return TypeBinding.BOOLEAN;
case TypeIds.T_JavaLangByte :
return TypeBinding.BYTE;
case TypeIds.T_JavaLangCharacter :
return TypeBinding.CHAR;
case TypeIds.T_JavaLangShort :
return TypeBinding.SHORT;
case TypeIds.T_JavaLangDouble :
return TypeBinding.DOUBLE;
case TypeIds.T_JavaLangFloat :
return TypeBinding.FLOAT;
case TypeIds.T_JavaLangInteger :
return TypeBinding.INT;
case TypeIds.T_JavaLangLong :
return TypeBinding.LONG;
}
}
return type;
}
private PackageBinding computePackageFrom(char[][] constantPoolName, boolean isMissing) {
if (constantPoolName.length == 1)
return defaultPackage;
PackageBinding packageBinding = getPackage0(constantPoolName[0]);
if (packageBinding == null || packageBinding == TheNotFoundPackage) {
packageBinding = new PackageBinding(constantPoolName[0], this);
if (isMissing) packageBinding.tagBits |= TagBits.HasMissingType;
knownPackages.put(constantPoolName[0], packageBinding);
}
for (int i = 1, length = constantPoolName.length - 1; i < length; i++) {
PackageBinding parent = packageBinding;
if ((packageBinding = parent.getPackage0(constantPoolName[i])) == null || packageBinding == TheNotFoundPackage) {
packageBinding = new PackageBinding(CharOperation.subarray(constantPoolName, 0, i + 1), parent, this);
if (isMissing) {
packageBinding.tagBits |= TagBits.HasMissingType;
}
parent.addPackage(packageBinding);
}
}
return packageBinding;
}
public TypeBinding convertEliminatingTypeVariables(TypeBinding originalType, ReferenceBinding genericType, int rank, Set eliminatedVariables) {
if ((originalType.tagBits & TagBits.HasTypeVariable) != 0) {
switch (originalType.kind()) {
case Binding.ARRAY_TYPE :
ArrayBinding originalArrayType = (ArrayBinding) originalType;
TypeBinding originalLeafComponentType = originalArrayType.leafComponentType;
TypeBinding substitute = convertEliminatingTypeVariables(originalLeafComponentType, genericType, rank, eliminatedVariables); // substitute could itself be array type
if (substitute != originalLeafComponentType) {
return createArrayType(substitute.leafComponentType(), substitute.dimensions() + originalArrayType.dimensions());
}
break;
case Binding.PARAMETERIZED_TYPE :
ParameterizedTypeBinding paramType = (ParameterizedTypeBinding) originalType;
ReferenceBinding originalEnclosing = paramType.enclosingType();
ReferenceBinding substitutedEnclosing = originalEnclosing;
if (originalEnclosing != null) {
substitutedEnclosing = (ReferenceBinding) convertEliminatingTypeVariables(originalEnclosing, genericType, rank, eliminatedVariables);
}
TypeBinding[] originalArguments = paramType.arguments;
TypeBinding[] substitutedArguments = originalArguments;
for (int i = 0, length = originalArguments == null ? 0 : originalArguments.length; i < length; i++) {
TypeBinding originalArgument = originalArguments[i];
TypeBinding substitutedArgument = convertEliminatingTypeVariables(originalArgument, paramType.genericType(), i, eliminatedVariables);
if (substitutedArgument != originalArgument) {
if (substitutedArguments == originalArguments) {
System.arraycopy(originalArguments, 0, substitutedArguments = new TypeBinding[length], 0, i);
}
substitutedArguments[i] = substitutedArgument;
} else if (substitutedArguments != originalArguments) {
substitutedArguments[i] = originalArgument;
}
}
if (originalEnclosing != substitutedEnclosing || originalArguments != substitutedArguments) {
return createParameterizedType(paramType.genericType(), substitutedArguments, substitutedEnclosing);
}
break;
case Binding.TYPE_PARAMETER :
if (eliminatedVariables != null && eliminatedVariables.contains(originalType)) {
return createWildcard(genericType, rank, null, null, Wildcard.UNBOUND);
}
TypeVariableBinding variable = (TypeVariableBinding) originalType;
TypeBinding originalUpperBound = variable.upperBound();
if (eliminatedVariables == null) {
eliminatedVariables = new HashSet(2);
}
eliminatedVariables.add(variable);
TypeBinding substitutedUpperBound = convertEliminatingTypeVariables(originalUpperBound, genericType, rank, eliminatedVariables);
eliminatedVariables.remove(variable);
return createWildcard(genericType, rank, substitutedUpperBound, null, Wildcard.EXTENDS);
case Binding.RAW_TYPE :
break;
case Binding.GENERIC_TYPE :
ReferenceBinding currentType = (ReferenceBinding) originalType;
originalEnclosing = currentType.enclosingType();
substitutedEnclosing = originalEnclosing;
if (originalEnclosing != null) {
substitutedEnclosing = (ReferenceBinding) convertEliminatingTypeVariables(originalEnclosing, genericType, rank, eliminatedVariables);
}
originalArguments = currentType.typeVariables();
substitutedArguments = originalArguments;
for (int i = 0, length = originalArguments == null ? 0 : originalArguments.length; i < length; i++) {
TypeBinding originalArgument = originalArguments[i];
TypeBinding substitutedArgument = convertEliminatingTypeVariables(originalArgument, currentType, i, eliminatedVariables);
if (substitutedArgument != originalArgument) {
if (substitutedArguments == originalArguments) {
System.arraycopy(originalArguments, 0, substitutedArguments = new TypeBinding[length], 0, i);
}
substitutedArguments[i] = substitutedArgument;
} else if (substitutedArguments != originalArguments) {
substitutedArguments[i] = originalArgument;
}
}
if (originalEnclosing != substitutedEnclosing || originalArguments != substitutedArguments) {
return createParameterizedType(genericType, substitutedArguments, substitutedEnclosing);
}
break;
case Binding.WILDCARD_TYPE :
WildcardBinding wildcard = (WildcardBinding) originalType;
TypeBinding originalBound = wildcard.bound;
TypeBinding substitutedBound = originalBound;
if (originalBound != null) {
substitutedBound = convertEliminatingTypeVariables(originalBound, genericType, rank, eliminatedVariables);
if (substitutedBound != originalBound) {
return createWildcard(wildcard.genericType, wildcard.rank, substitutedBound, null, wildcard.boundKind);
}
}
break;
case Binding.INTERSECTION_TYPE :
WildcardBinding intersection = (WildcardBinding) originalType;
originalBound = intersection.bound;
substitutedBound = originalBound;
if (originalBound != null) {
substitutedBound = convertEliminatingTypeVariables(originalBound, genericType, rank, eliminatedVariables);
}
TypeBinding[] originalOtherBounds = intersection.otherBounds;
TypeBinding[] substitutedOtherBounds = originalOtherBounds;
for (int i = 0, length = originalOtherBounds == null ? 0 : originalOtherBounds.length; i < length; i++) {
TypeBinding originalOtherBound = originalOtherBounds[i];
TypeBinding substitutedOtherBound = convertEliminatingTypeVariables(originalOtherBound, genericType, rank, eliminatedVariables);
if (substitutedOtherBound != originalOtherBound) {
if (substitutedOtherBounds == originalOtherBounds) {
System.arraycopy(originalOtherBounds, 0, substitutedOtherBounds = new TypeBinding[length], 0, i);
}
substitutedOtherBounds[i] = substitutedOtherBound;
} else if (substitutedOtherBounds != originalOtherBounds) {
substitutedOtherBounds[i] = originalOtherBound;
}
}
if (substitutedBound != originalBound || substitutedOtherBounds != originalOtherBounds) {
return createWildcard(intersection.genericType, intersection.rank, substitutedBound, substitutedOtherBounds, intersection.boundKind);
}
break;
}
}
return originalType;
}
/**
* Convert a given source type into a parameterized form if generic.
* generic X --> param X
*/
public ReferenceBinding convertToParameterizedType(ReferenceBinding originalType) {
if (originalType != null) {
boolean isGeneric = originalType.isGenericType();
ReferenceBinding originalEnclosingType = originalType.enclosingType();
ReferenceBinding convertedEnclosingType = originalEnclosingType;
boolean needToConvert = isGeneric;
if (originalEnclosingType != null) {
convertedEnclosingType = originalType.isStatic()
? (ReferenceBinding) convertToRawType(originalEnclosingType, false /*do not force conversion of enclosing types*/)
: convertToParameterizedType(originalEnclosingType);
needToConvert |= originalEnclosingType != convertedEnclosingType;
}
if (needToConvert) {
return createParameterizedType(originalType, isGeneric ? originalType.typeVariables() : null, convertedEnclosingType);
}
}
return originalType;
}
/**
* Returns the given binding's raw type binding.
* @param type the TypeBinding to raw convert
* @param forceRawEnclosingType forces recursive raw conversion of enclosing types (used in Javadoc references only)
* @return TypeBinding the raw converted TypeBinding
*/
public TypeBinding convertToRawType(TypeBinding type, boolean forceRawEnclosingType) {
int dimension;
TypeBinding originalType;
switch(type.kind()) {
case Binding.BASE_TYPE :
case Binding.TYPE_PARAMETER:
case Binding.WILDCARD_TYPE:
case Binding.INTERSECTION_TYPE:
case Binding.RAW_TYPE:
return type;
case Binding.ARRAY_TYPE:
dimension = type.dimensions();
originalType = type.leafComponentType();
break;
default:
if (type.id == TypeIds.T_JavaLangObject)
return type; // Object is not generic
dimension = 0;
originalType = type;
}
boolean needToConvert;
switch (originalType.kind()) {
case Binding.BASE_TYPE :
return type;
case Binding.GENERIC_TYPE :
needToConvert = true;
break;
case Binding.PARAMETERIZED_TYPE :
ParameterizedTypeBinding paramType = (ParameterizedTypeBinding) originalType;
needToConvert = paramType.genericType().isGenericType(); // only recursive call to enclosing type can find parameterizedType with arguments
break;
default :
needToConvert = false;
break;
}
ReferenceBinding originalEnclosing = originalType.enclosingType();
TypeBinding convertedType;
if (originalEnclosing == null) {
convertedType = needToConvert ? createRawType((ReferenceBinding)originalType.erasure(), null) : originalType;
} else {
ReferenceBinding convertedEnclosing;
if (originalEnclosing.kind() == Binding.RAW_TYPE) {
needToConvert |= !((ReferenceBinding)originalType).isStatic();
convertedEnclosing = originalEnclosing;
} else if (forceRawEnclosingType && !needToConvert/*stop recursion when conversion occurs*/) {
convertedEnclosing = (ReferenceBinding) convertToRawType(originalEnclosing, forceRawEnclosingType);
needToConvert = originalEnclosing != convertedEnclosing; // only convert generic or parameterized types
} else if (needToConvert || ((ReferenceBinding)originalType).isStatic()) {
convertedEnclosing = (ReferenceBinding) convertToRawType(originalEnclosing, false);
} else {
convertedEnclosing = convertToParameterizedType(originalEnclosing);
}
if (needToConvert) {
convertedType = createRawType((ReferenceBinding) originalType.erasure(), convertedEnclosing);
} else if (originalEnclosing != convertedEnclosing) {
convertedType = createParameterizedType((ReferenceBinding) originalType.erasure(), null, convertedEnclosing);
} else {
convertedType = originalType;
}
}
if (originalType != convertedType) {
return dimension > 0 ? (TypeBinding)createArrayType(convertedType, dimension) : convertedType;
}
return type;
}
// variation for unresolved types in binaries (consider generic type as raw)
public TypeBinding convertUnresolvedBinaryToRawType(TypeBinding type) {
int dimension;
TypeBinding originalType;
switch(type.kind()) {
case Binding.BASE_TYPE :
case Binding.TYPE_PARAMETER:
case Binding.WILDCARD_TYPE:
case Binding.INTERSECTION_TYPE:
case Binding.RAW_TYPE:
return type;
case Binding.ARRAY_TYPE:
dimension = type.dimensions();
originalType = type.leafComponentType();
break;
default:
if (type.id == TypeIds.T_JavaLangObject)
return type; // Object is not generic
dimension = 0;
originalType = type;
}
boolean needToConvert;
switch (originalType.kind()) {
case Binding.BASE_TYPE :
return type;
case Binding.GENERIC_TYPE :
needToConvert = true;
break;
case Binding.PARAMETERIZED_TYPE :
ParameterizedTypeBinding paramType = (ParameterizedTypeBinding) originalType;
needToConvert = paramType.genericType().isGenericType(); // only recursive call to enclosing type can find parameterizedType with arguments
break;
default :
needToConvert = false;
break;
}
ReferenceBinding originalEnclosing = originalType.enclosingType();
TypeBinding convertedType;
if (originalEnclosing == null) {
convertedType = needToConvert ? createRawType((ReferenceBinding)originalType.erasure(), null) : originalType;
} else {
ReferenceBinding convertedEnclosing = (ReferenceBinding) convertUnresolvedBinaryToRawType(originalEnclosing);
if (convertedEnclosing != originalEnclosing) {
needToConvert |= !((ReferenceBinding)originalType).isStatic();
}
if (needToConvert) {
convertedType = createRawType((ReferenceBinding) originalType.erasure(), convertedEnclosing);
} else if (originalEnclosing != convertedEnclosing) {
convertedType = createParameterizedType((ReferenceBinding) originalType.erasure(), null, convertedEnclosing);
} else {
convertedType = originalType;
}
}
if (originalType != convertedType) {
return dimension > 0 ? (TypeBinding)createArrayType(convertedType, dimension) : convertedType;
}
return type;
}
/*
* Used to guarantee annotation identity.
*/
public AnnotationBinding createAnnotation(ReferenceBinding annotationType, ElementValuePair[] pairs) {
if (pairs.length != 0) {
AnnotationBinding.setMethodBindings(annotationType, pairs);
}
return new AnnotationBinding(annotationType, pairs);
}
/*
* Used to guarantee array type identity.
*/
public ArrayBinding createArrayType(TypeBinding leafComponentType, int dimensionCount) {
if (leafComponentType instanceof LocalTypeBinding) // cache local type arrays with the local type itself
return ((LocalTypeBinding) leafComponentType).createArrayType(dimensionCount, this);
// find the array binding cache for this dimension
int dimIndex = dimensionCount - 1;
int length = uniqueArrayBindings.length;
ArrayBinding[] arrayBindings;
if (dimIndex < length) {
if ((arrayBindings = uniqueArrayBindings[dimIndex]) == null)
uniqueArrayBindings[dimIndex] = arrayBindings = new ArrayBinding[10];
} else {
System.arraycopy(
uniqueArrayBindings, 0,
uniqueArrayBindings = new ArrayBinding[dimensionCount][], 0,
length);
uniqueArrayBindings[dimIndex] = arrayBindings = new ArrayBinding[10];
}
// find the cached array binding for this leaf component type (if any)
int index = -1;
length = arrayBindings.length;
while (++index < length) {
ArrayBinding currentBinding = arrayBindings[index];
if (currentBinding == null) // no matching array, but space left
return arrayBindings[index] = new ArrayBinding(leafComponentType, dimensionCount, this);
if (currentBinding.leafComponentType == leafComponentType)
return currentBinding;
}
// no matching array, no space left
System.arraycopy(
arrayBindings, 0,
(arrayBindings = new ArrayBinding[length * 2]), 0,
length);
uniqueArrayBindings[dimIndex] = arrayBindings;
return arrayBindings[length] = new ArrayBinding(leafComponentType, dimensionCount, this);
}
public BinaryTypeBinding createBinaryTypeFrom(IBinaryType binaryType, PackageBinding packageBinding, AccessRestriction accessRestriction) {
return createBinaryTypeFrom(binaryType, packageBinding, true, accessRestriction);
}
public BinaryTypeBinding createBinaryTypeFrom(IBinaryType binaryType, PackageBinding packageBinding, boolean needFieldsAndMethods, AccessRestriction accessRestriction) {
BinaryTypeBinding binaryBinding = new BinaryTypeBinding(packageBinding, binaryType, this);
// resolve any array bindings which reference the unresolvedType
ReferenceBinding cachedType = packageBinding.getType0(binaryBinding.compoundName[binaryBinding.compoundName.length - 1]);
if (cachedType != null) { // update reference to unresolved binding after having read classfile (knows whether generic for raw conversion)
if (cachedType instanceof UnresolvedReferenceBinding) {
((UnresolvedReferenceBinding) cachedType).setResolvedType(binaryBinding, this);
} else {
if (cachedType.isBinaryBinding()) // sanity check... at this point the cache should ONLY contain unresolved types
return (BinaryTypeBinding) cachedType;
// it is possible with a large number of source files (exceeding AbstractImageBuilder.MAX_AT_ONCE) that a member type can be in the cache as an UnresolvedType,
// but because its enclosingType is resolved while its created (call to BinaryTypeBinding constructor), its replaced with a source type
return null;
}
}
packageBinding.addType(binaryBinding);
setAccessRestriction(binaryBinding, accessRestriction);
binaryBinding.cachePartsFrom(binaryType, needFieldsAndMethods);
return binaryBinding;
}
/*
* Used to create types denoting missing types.
* If package is given, then reuse the package; if not then infer a package from compound name.
* If the package is existing, then install the missing type in type cache
*/
public MissingTypeBinding createMissingType(PackageBinding packageBinding, char[][] compoundName) {
// create a proxy for the missing BinaryType
if (packageBinding == null) {
packageBinding = computePackageFrom(compoundName, true /* missing */);
if (packageBinding == TheNotFoundPackage) packageBinding = this.defaultPackage;
}
MissingTypeBinding missingType = new MissingTypeBinding(packageBinding, compoundName, this);
if (missingType.id != TypeIds.T_JavaLangObject) {
// make Object be its superclass - it could in turn be missing as well
ReferenceBinding objectType = getType(TypeConstants.JAVA_LANG_OBJECT);
if (objectType == null) {
objectType = createMissingType(null, TypeConstants.JAVA_LANG_OBJECT); // create a proxy for the missing Object type
}
missingType.setMissingSuperclass(objectType);
}
packageBinding.addType(missingType);
return missingType;
}
/*
* 1. Connect the type hierarchy for the type bindings created for parsedUnits.
* 2. Create the field bindings
* 3. Create the method bindings
*/
public PackageBinding createPackage(char[][] compoundName) {
PackageBinding packageBinding = getPackage0(compoundName[0]);
if (packageBinding == null || packageBinding == TheNotFoundPackage) {
packageBinding = new PackageBinding(compoundName[0], this);
knownPackages.put(compoundName[0], packageBinding);
}
for (int i = 1, length = compoundName.length; i < length; i++) {
// check to see if it collides with a known type...
// this case can only happen if the package does not exist as a directory in the file system
// otherwise when the source type was defined, the correct error would have been reported
// unless its an unresolved type which is referenced from an inconsistent class file
// NOTE: empty packages are not packages according to changes in JLS v2, 7.4.3
// so not all types cause collision errors when they're created even though the package did exist
ReferenceBinding type = packageBinding.getType0(compoundName[i]);
if (type != null && type != TheNotFoundType && !(type instanceof UnresolvedReferenceBinding))
return null;
PackageBinding parent = packageBinding;
if ((packageBinding = parent.getPackage0(compoundName[i])) == null || packageBinding == TheNotFoundPackage) {
// if the package is unknown, check to see if a type exists which would collide with the new package
// catches the case of a package statement of: package java.lang.Object;
// since the package can be added after a set of source files have already been compiled,
// we need to check whenever a package is created
if (nameEnvironment.findType(compoundName[i], parent.compoundName) != null)
return null;
packageBinding = new PackageBinding(CharOperation.subarray(compoundName, 0, i + 1), parent, this);
parent.addPackage(packageBinding);
}
}
return packageBinding;
}
public ParameterizedGenericMethodBinding createParameterizedGenericMethod(MethodBinding genericMethod, RawTypeBinding rawType) {
// cached info is array of already created parameterized types for this type
ParameterizedGenericMethodBinding[] cachedInfo = (ParameterizedGenericMethodBinding[])this.uniqueParameterizedGenericMethodBindings.get(genericMethod);
boolean needToGrow = false;
int index = 0;
if (cachedInfo != null){
nextCachedMethod :
// iterate existing parameterized for reusing one with same type arguments if any
for (int max = cachedInfo.length; index < max; index++){
ParameterizedGenericMethodBinding cachedMethod = cachedInfo[index];
if (cachedMethod == null) break nextCachedMethod;
if (!cachedMethod.isRaw) continue nextCachedMethod;
if (cachedMethod.declaringClass != (rawType == null ? genericMethod.declaringClass : rawType)) continue nextCachedMethod;
return cachedMethod;
}
needToGrow = true;
} else {
cachedInfo = new ParameterizedGenericMethodBinding[5];
this.uniqueParameterizedGenericMethodBindings.put(genericMethod, cachedInfo);
}
// grow cache ?
int length = cachedInfo.length;
if (needToGrow && index == length){
System.arraycopy(cachedInfo, 0, cachedInfo = new ParameterizedGenericMethodBinding[length*2], 0, length);
this.uniqueParameterizedGenericMethodBindings.put(genericMethod, cachedInfo);
}
// add new binding
ParameterizedGenericMethodBinding parameterizedGenericMethod = new ParameterizedGenericMethodBinding(genericMethod, rawType, this);
cachedInfo[index] = parameterizedGenericMethod;
return parameterizedGenericMethod;
}
public ParameterizedGenericMethodBinding createParameterizedGenericMethod(MethodBinding genericMethod, TypeBinding[] typeArguments) {
// cached info is array of already created parameterized types for this type
ParameterizedGenericMethodBinding[] cachedInfo = (ParameterizedGenericMethodBinding[])this.uniqueParameterizedGenericMethodBindings.get(genericMethod);
int argLength = typeArguments == null ? 0: typeArguments.length;
boolean needToGrow = false;
int index = 0;
if (cachedInfo != null){
nextCachedMethod :
// iterate existing parameterized for reusing one with same type arguments if any
for (int max = cachedInfo.length; index < max; index++){
ParameterizedGenericMethodBinding cachedMethod = cachedInfo[index];
if (cachedMethod == null) break nextCachedMethod;
if (cachedMethod.isRaw) continue nextCachedMethod;
TypeBinding[] cachedArguments = cachedMethod.typeArguments;
int cachedArgLength = cachedArguments == null ? 0 : cachedArguments.length;
if (argLength != cachedArgLength) continue nextCachedMethod;
for (int j = 0; j < cachedArgLength; j++){
if (typeArguments[j] != cachedArguments[j]) continue nextCachedMethod;
}
// all arguments match, reuse current
return cachedMethod;
}
needToGrow = true;
} else {
cachedInfo = new ParameterizedGenericMethodBinding[5];
this.uniqueParameterizedGenericMethodBindings.put(genericMethod, cachedInfo);
}
// grow cache ?
int length = cachedInfo.length;
if (needToGrow && index == length){
System.arraycopy(cachedInfo, 0, cachedInfo = new ParameterizedGenericMethodBinding[length*2], 0, length);
this.uniqueParameterizedGenericMethodBindings.put(genericMethod, cachedInfo);
}
// add new binding
ParameterizedGenericMethodBinding parameterizedGenericMethod = new ParameterizedGenericMethodBinding(genericMethod, typeArguments, this);
cachedInfo[index] = parameterizedGenericMethod;
return parameterizedGenericMethod;
}
public ParameterizedTypeBinding createParameterizedType(ReferenceBinding genericType, TypeBinding[] typeArguments, ReferenceBinding enclosingType) {
// cached info is array of already created parameterized types for this type
ParameterizedTypeBinding[] cachedInfo = (ParameterizedTypeBinding[])this.uniqueParameterizedTypeBindings.get(genericType);
int argLength = typeArguments == null ? 0: typeArguments.length;
boolean needToGrow = false;
int index = 0;
if (cachedInfo != null){
nextCachedType :
// iterate existing parameterized for reusing one with same type arguments if any
for (int max = cachedInfo.length; index < max; index++){
ParameterizedTypeBinding cachedType = cachedInfo[index];
if (cachedType == null) break nextCachedType;
if (cachedType.actualType() != genericType) continue nextCachedType; // remain of unresolved type
if (cachedType.enclosingType() != enclosingType) continue nextCachedType;
TypeBinding[] cachedArguments = cachedType.arguments;
int cachedArgLength = cachedArguments == null ? 0 : cachedArguments.length;
if (argLength != cachedArgLength) continue nextCachedType; // would be an error situation (from unresolved binaries)
for (int j = 0; j < cachedArgLength; j++){
if (typeArguments[j] != cachedArguments[j]) continue nextCachedType;
}
// all arguments match, reuse current
return cachedType;
}
needToGrow = true;
} else {
cachedInfo = new ParameterizedTypeBinding[5];
this.uniqueParameterizedTypeBindings.put(genericType, cachedInfo);
}
// grow cache ?
int length = cachedInfo.length;
if (needToGrow && index == length){
System.arraycopy(cachedInfo, 0, cachedInfo = new ParameterizedTypeBinding[length*2], 0, length);
this.uniqueParameterizedTypeBindings.put(genericType, cachedInfo);
}
// add new binding
ParameterizedTypeBinding parameterizedType = new ParameterizedTypeBinding(genericType,typeArguments, enclosingType, this);
cachedInfo[index] = parameterizedType;
return parameterizedType;
}
public RawTypeBinding createRawType(ReferenceBinding genericType, ReferenceBinding enclosingType) {
// cached info is array of already created raw types for this type
RawTypeBinding[] cachedInfo = (RawTypeBinding[])this.uniqueRawTypeBindings.get(genericType);
boolean needToGrow = false;
int index = 0;
if (cachedInfo != null){
nextCachedType :
// iterate existing parameterized for reusing one with same type arguments if any
for (int max = cachedInfo.length; index < max; index++){
RawTypeBinding cachedType = cachedInfo[index];
if (cachedType == null) break nextCachedType;
if (cachedType.actualType() != genericType) continue nextCachedType; // remain of unresolved type
if (cachedType.enclosingType() != enclosingType) continue nextCachedType;
// all enclosing type match, reuse current
return cachedType;
}
needToGrow = true;
} else {
cachedInfo = new RawTypeBinding[1];
this.uniqueRawTypeBindings.put(genericType, cachedInfo);
}
// grow cache ?
int length = cachedInfo.length;
if (needToGrow && index == length){
System.arraycopy(cachedInfo, 0, cachedInfo = new RawTypeBinding[length*2], 0, length);
this.uniqueRawTypeBindings.put(genericType, cachedInfo);
}
// add new binding
RawTypeBinding rawType = new RawTypeBinding(genericType, enclosingType, this);
cachedInfo[index] = rawType;
return rawType;
}
public WildcardBinding createWildcard(ReferenceBinding genericType, int rank, TypeBinding bound, TypeBinding[] otherBounds, int boundKind) {
// cached info is array of already created wildcard types for this type
if (genericType == null) // pseudo wildcard denoting composite bounds for lub computation
genericType = ReferenceBinding.LUB_GENERIC;
WildcardBinding[] cachedInfo = (WildcardBinding[])this.uniqueWildcardBindings.get(genericType);
boolean needToGrow = false;
int index = 0;
if (cachedInfo != null){
nextCachedType :
// iterate existing wildcards for reusing one with same information if any
for (int max = cachedInfo.length; index < max; index++){
WildcardBinding cachedType = cachedInfo[index];
if (cachedType == null) break nextCachedType;
if (cachedType.genericType != genericType) continue nextCachedType; // remain of unresolved type
if (cachedType.rank != rank) continue nextCachedType;
if (cachedType.boundKind != boundKind) continue nextCachedType;
if (cachedType.bound != bound) continue nextCachedType;
if (cachedType.otherBounds != otherBounds) {
int cachedLength = cachedType.otherBounds == null ? 0 : cachedType.otherBounds.length;
int length = otherBounds == null ? 0 : otherBounds.length;
if (cachedLength != length) continue nextCachedType;
for (int j = 0; j < length; j++) {
if (cachedType.otherBounds[j] != otherBounds[j]) continue nextCachedType;
}
}
// all match, reuse current
return cachedType;
}
needToGrow = true;
} else {
cachedInfo = new WildcardBinding[10];
this.uniqueWildcardBindings.put(genericType, cachedInfo);
}
// grow cache ?
int length = cachedInfo.length;
if (needToGrow && index == length){
System.arraycopy(cachedInfo, 0, cachedInfo = new WildcardBinding[length*2], 0, length);
this.uniqueWildcardBindings.put(genericType, cachedInfo);
}
// add new binding
WildcardBinding wildcard = new WildcardBinding(genericType, rank, bound, otherBounds, boundKind, this);
cachedInfo[index] = wildcard;
return wildcard;
}
/**
* Returns the access restriction associated to a given type, or null if none
*/
public AccessRestriction getAccessRestriction(TypeBinding type) {
return (AccessRestriction) this.accessRestrictions.get(type);
}
/**
* Answer the type for the compoundName if it exists in the cache.
* Answer theNotFoundType if it could not be resolved the first time
* it was looked up, otherwise answer null.
*
* NOTE: Do not use for nested types... the answer is NOT the same for a.b.C or a.b.C.D.E
* assuming C is a type in both cases. In the a.b.C.D.E case, null is the answer.
*/
public ReferenceBinding getCachedType(char[][] compoundName) {
if (compoundName.length == 1) {
if (defaultPackage == null)
return null;
return defaultPackage.getType0(compoundName[0]);
}
PackageBinding packageBinding = getPackage0(compoundName[0]);
if (packageBinding == null || packageBinding == TheNotFoundPackage)
return null;
for (int i = 1, packageLength = compoundName.length - 1; i < packageLength; i++)
if ((packageBinding = packageBinding.getPackage0(compoundName[i])) == null || packageBinding == TheNotFoundPackage)
return null;
return packageBinding.getType0(compoundName[compoundName.length - 1]);
}
/* Answer the top level package named name if it exists in the cache.
* Answer theNotFoundPackage if it could not be resolved the first time
* it was looked up, otherwise answer null.
*
* NOTE: Senders must convert theNotFoundPackage into a real problem
* package if its to returned.
*/
PackageBinding getPackage0(char[] name) {
return knownPackages.get(name);
}
/* Answer the type corresponding to the compoundName.
* Ask the name environment for the type if its not in the cache.
* Fail with a classpath error if the type cannot be found.
*/
public ReferenceBinding getResolvedType(char[][] compoundName, Scope scope) {
ReferenceBinding type = getType(compoundName);
if (type != null) return type;
// create a proxy for the missing BinaryType
// report the missing class file first
problemReporter.isClassPathCorrect(
compoundName,
scope == null ? this.unitBeingCompleted : scope.referenceCompilationUnit(),
this.missingClassFileLocation);
return createMissingType(null, compoundName);
}
/* Answer the top level package named name.
* Ask the oracle for the package if its not in the cache.
* Answer null if the package cannot be found.
*/
PackageBinding getTopLevelPackage(char[] name) {
PackageBinding packageBinding = getPackage0(name);
if (packageBinding != null) {
if (packageBinding == TheNotFoundPackage)
return null;
return packageBinding;
}
if (nameEnvironment.isPackage(null, name)) {
knownPackages.put(name, packageBinding = new PackageBinding(name, this));
return packageBinding;
}
knownPackages.put(name, TheNotFoundPackage); // saves asking the oracle next time
return null;
}
/* Answer the type corresponding to the compoundName.
* Ask the name environment for the type if its not in the cache.
* Answer null if the type cannot be found.
*/
public ReferenceBinding getType(char[][] compoundName) {
ReferenceBinding referenceBinding;
if (compoundName.length == 1) {
if (defaultPackage == null)
return null;
if ((referenceBinding = defaultPackage.getType0(compoundName[0])) == null) {
PackageBinding packageBinding = getPackage0(compoundName[0]);
if (packageBinding != null && packageBinding != TheNotFoundPackage)
return null; // collides with a known package... should not call this method in such a case
referenceBinding = askForType(defaultPackage, compoundName[0]);
}
} else {
PackageBinding packageBinding = getPackage0(compoundName[0]);
if (packageBinding == TheNotFoundPackage)
return null;
if (packageBinding != null) {
for (int i = 1, packageLength = compoundName.length - 1; i < packageLength; i++) {
if ((packageBinding = packageBinding.getPackage0(compoundName[i])) == null)
break;
if (packageBinding == TheNotFoundPackage)
return null;
}
}
if (packageBinding == null)
referenceBinding = askForType(compoundName);
else if ((referenceBinding = packageBinding.getType0(compoundName[compoundName.length - 1])) == null)
referenceBinding = askForType(packageBinding, compoundName[compoundName.length - 1]);
}
if (referenceBinding == null || referenceBinding == TheNotFoundType)
return null;
referenceBinding = (ReferenceBinding) BinaryTypeBinding.resolveType(referenceBinding, this, false /* no raw conversion for now */);
// compoundName refers to a nested type incorrectly (for example, package1.A$B)
if (referenceBinding.isNestedType())
return new ProblemReferenceBinding(compoundName, referenceBinding, InternalNameProvided);
return referenceBinding;
}
private TypeBinding[] getTypeArgumentsFromSignature(SignatureWrapper wrapper, TypeVariableBinding[] staticVariables, ReferenceBinding enclosingType, ReferenceBinding genericType, char[][][] missingTypeNames) {
java.util.ArrayList args = new java.util.ArrayList(2);
int rank = 0;
do {
args.add(getTypeFromVariantTypeSignature(wrapper, staticVariables, enclosingType, genericType, rank++, missingTypeNames));
} while (wrapper.signature[wrapper.start] != '>');
wrapper.start++; // skip '>'
TypeBinding[] typeArguments = new TypeBinding[args.size()];
args.toArray(typeArguments);
return typeArguments;
}
/* Answer the type corresponding to the compound name.
* Does not ask the oracle for the type if its not found in the cache... instead an
* unresolved type is returned which must be resolved before used.
*
* NOTE: Does NOT answer base types nor array types!
*/
private ReferenceBinding getTypeFromCompoundName(char[][] compoundName, boolean isParameterized, boolean wasMissingType) {
ReferenceBinding binding = getCachedType(compoundName);
if (binding == null) {
PackageBinding packageBinding = computePackageFrom(compoundName, false /* valid pkg */);
binding = new UnresolvedReferenceBinding(compoundName, packageBinding);
if (wasMissingType) {
binding.tagBits |= TagBits.HasMissingType; // record it was bound to a missing type
}
packageBinding.addType(binding);
} else if (binding == TheNotFoundType) {
// report the missing class file first
problemReporter.isClassPathCorrect(compoundName, this.unitBeingCompleted, this.missingClassFileLocation);
// create a proxy for the missing BinaryType
binding = createMissingType(null, compoundName);
} else if (!isParameterized) {
// check raw type, only for resolved types
binding = (ReferenceBinding) convertUnresolvedBinaryToRawType(binding);
}
return binding;
}
/* Answer the type corresponding to the name from the binary file.
* Does not ask the oracle for the type if its not found in the cache... instead an
* unresolved type is returned which must be resolved before used.
*
* NOTE: Does NOT answer base types nor array types!
*/
ReferenceBinding getTypeFromConstantPoolName(char[] signature, int start, int end, boolean isParameterized, char[][][] missingTypeNames) {
if (end == -1)
end = signature.length;
char[][] compoundName = CharOperation.splitOn('/', signature, start, end);
boolean wasMissingType = false;
if (missingTypeNames != null) {
for (int i = 0, max = missingTypeNames.length; i < max; i++) {
if (CharOperation.equals(compoundName, missingTypeNames[i])) {
wasMissingType = true;
break;
}
}
}
return getTypeFromCompoundName(compoundName, isParameterized, wasMissingType);
}
/* Answer the type corresponding to the signature from the binary file.
* Does not ask the oracle for the type if its not found in the cache... instead an
* unresolved type is returned which must be resolved before used.
*
* NOTE: Does answer base types & array types.
*/
TypeBinding getTypeFromSignature(char[] signature, int start, int end, boolean isParameterized, TypeBinding enclosingType, char[][][] missingTypeNames) {
int dimension = 0;
while (signature[start] == '[') {
start++;
dimension++;
}
if (end == -1)
end = signature.length - 1;
// Just switch on signature[start] - the L case is the else
TypeBinding binding = null;
if (start == end) {
switch (signature[start]) {
case 'I' :
binding = TypeBinding.INT;
break;
case 'Z' :
binding = TypeBinding.BOOLEAN;
break;
case 'V' :
binding = TypeBinding.VOID;
break;
case 'C' :
binding = TypeBinding.CHAR;
break;
case 'D' :
binding = TypeBinding.DOUBLE;
break;
case 'B' :
binding = TypeBinding.BYTE;
break;
case 'F' :
binding = TypeBinding.FLOAT;
break;
case 'J' :
binding = TypeBinding.LONG;
break;
case 'S' :
binding = TypeBinding.SHORT;
break;
default :
problemReporter.corruptedSignature(enclosingType, signature, start);
// will never reach here, since error will cause abort
}
} else {
binding = getTypeFromConstantPoolName(signature, start + 1, end, isParameterized, missingTypeNames); // skip leading 'L' or 'T'
}
if (dimension == 0)
return binding;
return createArrayType(binding, dimension);
}
public TypeBinding getTypeFromTypeSignature(SignatureWrapper wrapper, TypeVariableBinding[] staticVariables, ReferenceBinding enclosingType, char[][][] missingTypeNames) {
// TypeVariableSignature = 'T' Identifier ';'
// ArrayTypeSignature = '[' TypeSignature
// ClassTypeSignature = 'L' Identifier TypeArgs(optional) ';'
// or ClassTypeSignature '.' 'L' Identifier TypeArgs(optional) ';'
// TypeArgs = '<' VariantTypeSignature VariantTypeSignatures '>'
int dimension = 0;
while (wrapper.signature[wrapper.start] == '[') {
wrapper.start++;
dimension++;
}
if (wrapper.signature[wrapper.start] == 'T') {
int varStart = wrapper.start + 1;
int varEnd = wrapper.computeEnd();
for (int i = staticVariables.length; --i >= 0;)
if (CharOperation.equals(staticVariables[i].sourceName, wrapper.signature, varStart, varEnd))
return dimension == 0 ? (TypeBinding) staticVariables[i] : createArrayType(staticVariables[i], dimension);
ReferenceBinding initialType = enclosingType;
do {
TypeVariableBinding[] enclosingTypeVariables;
if (enclosingType instanceof BinaryTypeBinding) { // compiler normal case, no eager resolution of binary variables
enclosingTypeVariables = ((BinaryTypeBinding)enclosingType).typeVariables; // do not trigger resolution of variables
} else { // codepath only use by codeassist for decoding signatures
enclosingTypeVariables = enclosingType.typeVariables();
}
for (int i = enclosingTypeVariables.length; --i >= 0;)
if (CharOperation.equals(enclosingTypeVariables[i].sourceName, wrapper.signature, varStart, varEnd))
return dimension == 0 ? (TypeBinding) enclosingTypeVariables[i] : createArrayType(enclosingTypeVariables[i], dimension);
} while ((enclosingType = enclosingType.enclosingType()) != null);
problemReporter.undefinedTypeVariableSignature(CharOperation.subarray(wrapper.signature, varStart, varEnd), initialType);
return null; // cannot reach this, since previous problem will abort compilation
}
boolean isParameterized;
TypeBinding type = getTypeFromSignature(wrapper.signature, wrapper.start, wrapper.computeEnd(), isParameterized = (wrapper.end == wrapper.bracket), enclosingType, missingTypeNames);
if (!isParameterized)
return dimension == 0 ? type : createArrayType(type, dimension);
// type must be a ReferenceBinding at this point, cannot be a BaseTypeBinding or ArrayTypeBinding
ReferenceBinding actualType = (ReferenceBinding) type;
if (actualType instanceof UnresolvedReferenceBinding)
if (CharOperation.indexOf('$', actualType.compoundName[actualType.compoundName.length - 1]) > 0)
actualType = (ReferenceBinding) BinaryTypeBinding.resolveType(actualType, this, false /* no raw conversion */); // must resolve member types before asking for enclosingType
ReferenceBinding actualEnclosing = actualType.enclosingType();
if (actualEnclosing != null) { // convert needed if read some static member type
actualEnclosing = (ReferenceBinding) convertToRawType(actualEnclosing, false /*do not force conversion of enclosing types*/);
}
TypeBinding[] typeArguments = getTypeArgumentsFromSignature(wrapper, staticVariables, enclosingType, actualType, missingTypeNames);
ParameterizedTypeBinding parameterizedType = createParameterizedType(actualType, typeArguments, actualEnclosing);
while (wrapper.signature[wrapper.start] == '.') {
wrapper.start++; // skip '.'
int memberStart = wrapper.start;
char[] memberName = wrapper.nextWord();
BinaryTypeBinding.resolveType(parameterizedType, this, false);
ReferenceBinding memberType = parameterizedType.genericType().getMemberType(memberName);
// need to protect against the member type being null when the signature is invalid
if (memberType == null)
this.problemReporter.corruptedSignature(parameterizedType, wrapper.signature, memberStart); // aborts
if (wrapper.signature[wrapper.start] == '<') {
wrapper.start++; // skip '<'
typeArguments = getTypeArgumentsFromSignature(wrapper, staticVariables, enclosingType, memberType, missingTypeNames);
} else {
typeArguments = null;
}
parameterizedType = createParameterizedType(memberType, typeArguments, parameterizedType);
}
wrapper.start++; // skip ';'
return dimension == 0 ? (TypeBinding) parameterizedType : createArrayType(parameterizedType, dimension);
}
TypeBinding getTypeFromVariantTypeSignature(
SignatureWrapper wrapper,
TypeVariableBinding[] staticVariables,
ReferenceBinding enclosingType,
ReferenceBinding genericType,
int rank,
char[][][] missingTypeNames) {
// VariantTypeSignature = '-' TypeSignature
// or '+' TypeSignature
// or TypeSignature
// or '*'
switch (wrapper.signature[wrapper.start]) {
case '-' :
// ? super aType
wrapper.start++;
TypeBinding bound = getTypeFromTypeSignature(wrapper, staticVariables, enclosingType, missingTypeNames);
return createWildcard(genericType, rank, bound, null /*no extra bound*/, Wildcard.SUPER);
case '+' :
// ? extends aType
wrapper.start++;
bound = getTypeFromTypeSignature(wrapper, staticVariables, enclosingType, missingTypeNames);
return createWildcard(genericType, rank, bound, null /*no extra bound*/, Wildcard.EXTENDS);
case '*' :
// ?
wrapper.start++;
return createWildcard(genericType, rank, null, null /*no extra bound*/, Wildcard.UNBOUND);
default :
return getTypeFromTypeSignature(wrapper, staticVariables, enclosingType, missingTypeNames);
}
}
/* Ask the oracle if a package exists named name in the package named compoundName.
*/
boolean isPackage(char[][] compoundName, char[] name) {
if (compoundName == null || compoundName.length == 0)
return nameEnvironment.isPackage(null, name);
return nameEnvironment.isPackage(compoundName, name);
}
// The method verifier is lazily initialized to guarantee the receiver, the compiler & the oracle are ready.
public MethodVerifier methodVerifier() {
if (verifier == null)
verifier = this.globalOptions.sourceLevel < ClassFileConstants.JDK1_5
? new MethodVerifier(this)
: new MethodVerifier15(this); // covariance only if sourceLevel is >= 1.5
return verifier;
}
public void releaseClassFiles(org.eclipse.jdt.internal.compiler.ClassFile[] classFiles) {
for (int i = 0, fileCount = classFiles.length; i < fileCount; i++)
this.classFilePool.release(classFiles[i]);
}
public void reset() {
this.defaultPackage = new PackageBinding(this); // assume the default package always exists
this.defaultImports = null;
this.knownPackages = new HashtableOfPackage();
this.accessRestrictions = new HashMap(3);
this.verifier = null;
for (int i = this.uniqueArrayBindings.length; --i >= 0;) {
ArrayBinding[] arrayBindings = this.uniqueArrayBindings[i];
if (arrayBindings != null)
for (int j = arrayBindings.length; --j >= 0;)
arrayBindings[j] = null;
}
// NOTE: remember to fix #updateCaches(...) when adding unique binding caches
this.uniqueParameterizedTypeBindings = new SimpleLookupTable(3);
this.uniqueRawTypeBindings = new SimpleLookupTable(3);
this.uniqueWildcardBindings = new SimpleLookupTable(3);
this.uniqueParameterizedGenericMethodBindings = new SimpleLookupTable(3);
for (int i = this.units.length; --i >= 0;)
this.units[i] = null;
this.lastUnitIndex = -1;
this.lastCompletedUnitIndex = -1;
this.unitBeingCompleted = null; // in case AbortException occurred
this.classFilePool.reset();
// name environment has a longer life cycle, and must be reset in
// the code which created it.
}
/**
* Associate a given type with some access restriction
* (did not store the restriction directly into binding, since sparse information)
*/
public void setAccessRestriction(ReferenceBinding type, AccessRestriction accessRestriction) {
if (accessRestriction == null) return;
type.modifiers |= ExtraCompilerModifiers.AccRestrictedAccess;
this.accessRestrictions.put(type, accessRestriction);
}
void updateCaches(UnresolvedReferenceBinding unresolvedType, ReferenceBinding resolvedType) {
// walk all the unique collections & replace the unresolvedType with the resolvedType
// must prevent 2 entries so == still works (1 containing the unresolvedType and the other containing the resolvedType)
if (this.uniqueParameterizedTypeBindings.get(unresolvedType) != null) { // update the key
Object[] keys = this.uniqueParameterizedTypeBindings.keyTable;
for (int i = 0, l = keys.length; i < l; i++) {
if (keys[i] == unresolvedType) {
keys[i] = resolvedType; // hashCode is based on compoundName so this works - cannot be raw since type of parameterized type
break;
}
}
}
if (this.uniqueRawTypeBindings.get(unresolvedType) != null) { // update the key
Object[] keys = this.uniqueRawTypeBindings.keyTable;
for (int i = 0, l = keys.length; i < l; i++) {
if (keys[i] == unresolvedType) {
keys[i] = resolvedType; // hashCode is based on compoundName so this works
break;
}
}
}
if (this.uniqueWildcardBindings.get(unresolvedType) != null) { // update the key
Object[] keys = this.uniqueWildcardBindings.keyTable;
for (int i = 0, l = keys.length; i < l; i++) {
if (keys[i] == unresolvedType) {
keys[i] = resolvedType; // hashCode is based on compoundName so this works
break;
}
}
}
}
}