All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ibm.icu.util.BytesTrie Maven / Gradle / Ivy

Go to download

Vaadin is a web application framework for Rich Internet Applications (RIA). Vaadin enables easy development and maintenance of fast and secure rich web applications with a stunning look and feel and a wide browser support. It features a server-side architecture with the majority of the logic running on the server. Ajax technology is used at the browser-side to ensure a rich and interactive user experience.

There is a newer version: 1.2.0
Show newest version
/*
*******************************************************************************
*   Copyright (C) 2010-2012, International Business Machines
*   Corporation and others.  All Rights Reserved.
*******************************************************************************
*   created on: 2010nov23
*   created by: Markus W. Scherer
*   ported from ICU4C bytestrie.h/.cpp
*/
package com.ibm.icu.util;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.NoSuchElementException;

/**
 * Light-weight, non-const reader class for a BytesTrie.
 * Traverses a byte-serialized data structure with minimal state,
 * for mapping byte sequences to non-negative integer values.
 *
 * 

This class is not intended for public subclassing. * * @stable ICU 4.8 * @author Markus W. Scherer */ public final class BytesTrie implements Cloneable, Iterable { /** * Constructs a BytesTrie reader instance. * *

The array must contain a copy of a byte sequence from the BytesTrieBuilder, * with the offset indicating the first byte of that sequence. * The BytesTrie object will not read more bytes than * the BytesTrieBuilder generated in the corresponding build() call. * *

The array is not copied/cloned and must not be modified while * the BytesTrie object is in use. * * @param trieBytes Bytes array that contains the serialized trie. * @param offset Root offset of the trie in the array. * @stable ICU 4.8 */ public BytesTrie(byte[] trieBytes, int offset) { bytes_=trieBytes; pos_=root_=offset; remainingMatchLength_=-1; } /** * Clones this trie reader object and its state, * but not the byte array which will be shared. * @return A shallow clone of this trie. * @stable ICU 4.8 */ @Override public Object clone() throws CloneNotSupportedException { return super.clone(); // A shallow copy is just what we need. } /** * Resets this trie to its initial state. * @return this * @stable ICU 4.8 */ public BytesTrie reset() { pos_=root_; remainingMatchLength_=-1; return this; } /** * BytesTrie state object, for saving a trie's current state * and resetting the trie back to this state later. * @stable ICU 4.8 */ public static final class State { /** * Constructs an empty State. * @stable ICU 4.8 */ public State() {} private byte[] bytes; private int root; private int pos; private int remainingMatchLength; } /** * Saves the state of this trie. * @param state The State object to hold the trie's state. * @return this * @see #resetToState * @stable ICU 4.8 */ public BytesTrie saveState(State state) /*const*/ { state.bytes=bytes_; state.root=root_; state.pos=pos_; state.remainingMatchLength=remainingMatchLength_; return this; } /** * Resets this trie to the saved state. * @param state The State object which holds a saved trie state. * @return this * @throws IllegalArgumentException if the state object contains no state, * or the state of a different trie * @see #saveState * @see #reset * @stable ICU 4.8 */ public BytesTrie resetToState(State state) { if(bytes_==state.bytes && bytes_!=null && root_==state.root) { pos_=state.pos; remainingMatchLength_=state.remainingMatchLength; } else { throw new IllegalArgumentException("incompatible trie state"); } return this; } /** * Return values for BytesTrie.next(), CharsTrie.next() and similar methods. * @stable ICU 4.8 */ public enum Result { /** * The input unit(s) did not continue a matching string. * Once current()/next() return NO_MATCH, * all further calls to current()/next() will also return NO_MATCH, * until the trie is reset to its original state or to a saved state. * @stable ICU 4.8 */ NO_MATCH, /** * The input unit(s) continued a matching string * but there is no value for the string so far. * (It is a prefix of a longer string.) * @stable ICU 4.8 */ NO_VALUE, /** * The input unit(s) continued a matching string * and there is a value for the string so far. * This value will be returned by getValue(). * No further input byte/unit can continue a matching string. * @stable ICU 4.8 */ FINAL_VALUE, /** * The input unit(s) continued a matching string * and there is a value for the string so far. * This value will be returned by getValue(). * Another input byte/unit can continue a matching string. * @stable ICU 4.8 */ INTERMEDIATE_VALUE; // Note: The following methods assume the particular order // of enum constants, treating the ordinal() values like bit sets. // Do not reorder the enum constants! /** * Same as (result!=NO_MATCH). * @return true if the input bytes/units so far are part of a matching string/byte sequence. * @stable ICU 4.8 */ public boolean matches() { return this!=NO_MATCH; } /** * Equivalent to (result==INTERMEDIATE_VALUE || result==FINAL_VALUE). * @return true if there is a value for the input bytes/units so far. * @see #getValue * @stable ICU 4.8 */ public boolean hasValue() { return ordinal()>=2; } /** * Equivalent to (result==NO_VALUE || result==INTERMEDIATE_VALUE). * @return true if another input byte/unit can continue a matching string. * @stable ICU 4.8 */ public boolean hasNext() { return (ordinal()&1)!=0; } } /** * Determines whether the byte sequence so far matches, whether it has a value, * and whether another input byte can continue a matching byte sequence. * @return The match/value Result. * @stable ICU 4.8 */ public Result current() /*const*/ { int pos=pos_; if(pos<0) { return Result.NO_MATCH; } else { int node; return (remainingMatchLength_<0 && (node=bytes_[pos]&0xff)>=kMinValueLead) ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } } /** * Traverses the trie from the initial state for this input byte. * Equivalent to reset().next(inByte). * @param inByte Input byte value. Values -0x100..-1 are treated like 0..0xff. * Values below -0x100 and above 0xff will never match. * @return The match/value Result. * @stable ICU 4.8 */ public Result first(int inByte) { remainingMatchLength_=-1; if(inByte<0) { inByte+=0x100; } return nextImpl(root_, inByte); } /** * Traverses the trie from the current state for this input byte. * @param inByte Input byte value. Values -0x100..-1 are treated like 0..0xff. * Values below -0x100 and above 0xff will never match. * @return The match/value Result. * @stable ICU 4.8 */ public Result next(int inByte) { int pos=pos_; if(pos<0) { return Result.NO_MATCH; } if(inByte<0) { inByte+=0x100; } int length=remainingMatchLength_; // Actual remaining match length minus 1. if(length>=0) { // Remaining part of a linear-match node. if(inByte==(bytes_[pos++]&0xff)) { remainingMatchLength_=--length; pos_=pos; int node; return (length<0 && (node=bytes_[pos]&0xff)>=kMinValueLead) ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } else { stop(); return Result.NO_MATCH; } } return nextImpl(pos, inByte); } /** * Traverses the trie from the current state for this byte sequence. * Equivalent to *

     * Result result=current();
     * for(each c in s)
     *   if(!result.hasNext()) return Result.NO_MATCH;
     *   result=next(c);
     * return result;
     * 
* @param s Contains a string or byte sequence. * @param sIndex The start index of the byte sequence in s. * @param sLimit The (exclusive) end index of the byte sequence in s. * @return The match/value Result. * @stable ICU 4.8 */ public Result next(byte[] s, int sIndex, int sLimit) { if(sIndex>=sLimit) { // Empty input. return current(); } int pos=pos_; if(pos<0) { return Result.NO_MATCH; } int length=remainingMatchLength_; // Actual remaining match length minus 1. for(;;) { // Fetch the next input byte, if there is one. // Continue a linear-match node. byte inByte; for(;;) { if(sIndex==sLimit) { remainingMatchLength_=length; pos_=pos; int node; return (length<0 && (node=(bytes_[pos]&0xff))>=kMinValueLead) ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } inByte=s[sIndex++]; if(length<0) { remainingMatchLength_=length; break; } if(inByte!=bytes_[pos]) { stop(); return Result.NO_MATCH; } ++pos; --length; } for(;;) { int node=bytes_[pos++]&0xff; if(node=kMinValueLead); return readValue(bytes_, pos, leadByte>>1); } /** * Determines whether all byte sequences reachable from the current state * map to the same value, and if so, returns that value. * @return The unique value in bits 32..1 with bit 0 set, * if all byte sequences reachable from the current state * map to the same value; otherwise returns 0. * @stable ICU 4.8 */ public long getUniqueValue() /*const*/ { int pos=pos_; if(pos<0) { return 0; } // Skip the rest of a pending linear-match node. long uniqueValue=findUniqueValue(bytes_, pos+remainingMatchLength_+1, 0); // Ignore internally used bits 63..33; extend the actual value's sign bit from bit 32. return (uniqueValue<<31)>>31; } /** * Finds each byte which continues the byte sequence from the current state. * That is, each byte b for which it would be next(b)!=Result.NO_MATCH now. * @param out Each next byte is 0-extended to a char and appended to this object. * (Only uses the out.append(c) method.) * @return The number of bytes which continue the byte sequence from here. * @stable ICU 4.8 */ public int getNextBytes(Appendable out) /*const*/ { int pos=pos_; if(pos<0) { return 0; } if(remainingMatchLength_>=0) { append(out, bytes_[pos]&0xff); // Next byte of a pending linear-match node. return 1; } int node=bytes_[pos++]&0xff; if(node>=kMinValueLead) { if((node&kValueIsFinal)!=0) { return 0; } else { pos=skipValue(pos, node); node=bytes_[pos++]&0xff; assert(node { private Iterator(byte[] trieBytes, int offset, int remainingMatchLength, int maxStringLength) { bytes_=trieBytes; pos_=initialPos_=offset; remainingMatchLength_=initialRemainingMatchLength_=remainingMatchLength; maxLength_=maxStringLength; entry_=new Entry(maxLength_!=0 ? maxLength_ : 32); int length=remainingMatchLength_; // Actual remaining match length minus 1. if(length>=0) { // Pending linear-match node, append remaining bytes to entry_. ++length; if(maxLength_>0 && length>maxLength_) { length=maxLength_; // This will leave remainingMatchLength>=0 as a signal. } entry_.append(bytes_, pos_, length); pos_+=length; remainingMatchLength_-=length; } } /** * Resets this iterator to its initial state. * @return this * @stable ICU 4.8 */ public Iterator reset() { pos_=initialPos_; remainingMatchLength_=initialRemainingMatchLength_; int length=remainingMatchLength_+1; // Remaining match length. if(maxLength_>0 && length>maxLength_) { length=maxLength_; } entry_.truncateString(length); pos_+=length; remainingMatchLength_-=length; stack_.clear(); return this; } /** * @return true if there are more elements. * @stable ICU 4.8 */ public boolean hasNext() /*const*/ { return pos_>=0 || !stack_.isEmpty(); } /** * Finds the next (byte sequence, value) pair if there is one. * * If the byte sequence is truncated to the maximum length and does not * have a real value, then the value is set to -1. * In this case, this "not a real value" is indistinguishable from * a real value of -1. * @return An Entry with the string and value of the next element. * @throws NoSuchElementException - iteration has no more elements. * @stable ICU 4.8 */ public Entry next() { int pos=pos_; if(pos<0) { if(stack_.isEmpty()) { throw new NoSuchElementException(); } // Pop the state off the stack and continue with the next outbound edge of // the branch node. long top=stack_.remove(stack_.size()-1); int length=(int)top; pos=(int)(top>>32); entry_.truncateString(length&0xffff); length>>>=16; if(length>1) { pos=branchNext(pos, length); if(pos<0) { return entry_; // Reached a final value. } } else { entry_.append(bytes_[pos++]); } } if(remainingMatchLength_>=0) { // We only get here if we started in a pending linear-match node // with more than maxLength remaining bytes. return truncateAndStop(); } for(;;) { int node=bytes_[pos++]&0xff; if(node>=kMinValueLead) { // Deliver value for the byte sequence so far. boolean isFinal=(node&kValueIsFinal)!=0; entry_.value=readValue(bytes_, pos, node>>1); if(isFinal || (maxLength_>0 && entry_.length==maxLength_)) { pos_=-1; } else { pos_=skipValue(pos, node); } return entry_; } if(maxLength_>0 && entry_.length==maxLength_) { return truncateAndStop(); } if(node0 && entry_.length+length>maxLength_) { entry_.append(bytes_, pos, maxLength_-entry_.length); return truncateAndStop(); } entry_.append(bytes_, pos, length); pos+=length; } } } /** * Iterator.remove() is not supported. * @throws UnsupportedOperationException (always) * @stable ICU 4.8 */ public void remove() { throw new UnsupportedOperationException(); } private Entry truncateAndStop() { pos_=-1; entry_.value=-1; // no real value for str return entry_; } private int branchNext(int pos, int length) { while(length>kMaxBranchLinearSubNodeLength) { ++pos; // ignore the comparison byte // Push state for the greater-or-equal edge. stack_.add(((long)skipDelta(bytes_, pos)<<32)|((length-(length>>1))<<16)|entry_.length); // Follow the less-than edge. length>>=1; pos=jumpByDelta(bytes_, pos); } // List of key-value pairs where values are either final values or jump deltas. // Read the first (key, value) pair. byte trieByte=bytes_[pos++]; int node=bytes_[pos++]&0xff; boolean isFinal=(node&kValueIsFinal)!=0; int value=readValue(bytes_, pos, node>>1); pos=skipValue(pos, node); stack_.add(((long)pos<<32)|((length-1)<<16)|entry_.length); entry_.append(trieByte); if(isFinal) { pos_=-1; entry_.value=value; return -1; } else { return pos+value; } } private byte[] bytes_; private int pos_; private int initialPos_; private int remainingMatchLength_; private int initialRemainingMatchLength_; private int maxLength_; private Entry entry_; // The stack stores longs for backtracking to another // outbound edge of a branch node. // Each long has the offset from bytes_ in bits 62..32, // the entry_.stringLength() from before the node in bits 15..0, // and the remaining branch length in bits 24..16. (Bits 31..25 are unused.) // (We could store the remaining branch length minus 1 in bits 23..16 and not use bits 31..24, // but the code looks more confusing that way.) private ArrayList stack_=new ArrayList(); } private void stop() { pos_=-1; } // Reads a compact 32-bit integer. // pos is already after the leadByte, and the lead byte is already shifted right by 1. private static int readValue(byte[] bytes, int pos, int leadByte) { int value; if(leadByte=kMinValueLead); if(leadByte>=(kMinTwoByteValueLead<<1)) { if(leadByte<(kMinThreeByteValueLead<<1)) { ++pos; } else if(leadByte<(kFourByteValueLead<<1)) { pos+=2; } else { pos+=3+((leadByte>>1)&1); } } return pos; } private static int skipValue(byte[] bytes, int pos) { int leadByte=bytes[pos++]&0xff; return skipValue(pos, leadByte); } // Reads a jump delta and jumps. private static int jumpByDelta(byte[] bytes, int pos) { int delta=bytes[pos++]&0xff; if(delta=kMinTwoByteDeltaLead) { if(deltakMaxBranchLinearSubNodeLength) { if(inByte<(bytes_[pos++]&0xff)) { length>>=1; pos=jumpByDelta(bytes_, pos); } else { length=length-(length>>1); pos=skipDelta(bytes_, pos); } } // Drop down to linear search for the last few bytes. // length>=2 because the loop body above sees length>kMaxBranchLinearSubNodeLength>=3 // and divides length by 2. do { if(inByte==(bytes_[pos++]&0xff)) { Result result; int node=bytes_[pos]&0xff; assert(node>=kMinValueLead); if((node&kValueIsFinal)!=0) { // Leave the final value for getValue() to read. result=Result.FINAL_VALUE; } else { // Use the non-final value as the jump delta. ++pos; // int delta=readValue(pos, node>>1); node>>=1; int delta; if(node=kMinValueLead ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } pos_=pos; return result; } --length; pos=skipValue(bytes_, pos); } while(length>1); if(inByte==(bytes_[pos++]&0xff)) { pos_=pos; int node=bytes_[pos]&0xff; return node>=kMinValueLead ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } else { stop(); return Result.NO_MATCH; } } // Requires remainingLength_<0. private Result nextImpl(int pos, int inByte) { for(;;) { int node=bytes_[pos++]&0xff; if(node=kMinValueLead) ? valueResults_[node&kValueIsFinal] : Result.NO_VALUE; } else { // No match. break; } } else if((node&kValueIsFinal)!=0) { // No further matching bytes. break; } else { // Skip intermediate value. pos=skipValue(pos, node); // The next node must not also be a value node. assert((bytes_[pos]&0xff)kMaxBranchLinearSubNodeLength) { ++pos; // ignore the comparison byte uniqueValue=findUniqueValueFromBranch(bytes, jumpByDelta(bytes, pos), length>>1, uniqueValue); if(uniqueValue==0) { return 0; } length=length-(length>>1); pos=skipDelta(bytes, pos); } do { ++pos; // ignore a comparison byte // handle its value int node=bytes[pos++]&0xff; boolean isFinal=(node&kValueIsFinal)!=0; int value=readValue(bytes, pos, node>>1); pos=skipValue(pos, node); if(isFinal) { if(uniqueValue!=0) { if(value!=(int)(uniqueValue>>1)) { return 0; } } else { uniqueValue=((long)value<<1)|1; } } else { uniqueValue=findUniqueValue(bytes, pos+value, uniqueValue); if(uniqueValue==0) { return 0; } } } while(--length>1); // ignore the last comparison byte return ((long)(pos+1)<<33)|(uniqueValue&0x1ffffffffL); } // Recursively finds a unique value (or whether there is not a unique one) // starting from a position on a node lead byte. // uniqueValue: If there is one, then bits 32..1 contain the value and bit 0 is set. // Otherwise, uniqueValue is 0. Bits 63..33 are ignored. private static long findUniqueValue(byte[] bytes, int pos, long uniqueValue) { for(;;) { int node=bytes[pos++]&0xff; if(node>>33); } else if(node>1); if(uniqueValue!=0) { if(value!=(int)(uniqueValue>>1)) { return 0; } } else { uniqueValue=((long)value<<1)|1; } if(isFinal) { return uniqueValue; } pos=skipValue(pos, node); } } } // Helper functions for getNextBytes(). // getNextBytes() when pos is on a branch node. private static void getNextBranchBytes(byte[] bytes, int pos, int length, Appendable out) { while(length>kMaxBranchLinearSubNodeLength) { ++pos; // ignore the comparison byte getNextBranchBytes(bytes, jumpByDelta(bytes, pos), length>>1, out); length=length-(length>>1); pos=skipDelta(bytes, pos); } do { append(out, bytes[pos++]&0xff); pos=skipValue(bytes, pos); } while(--length>1); append(out, bytes[pos]&0xff); } private static void append(Appendable out, int c) { try { out.append((char)c); } catch(IOException e) { throw new RuntimeException(e); } } // BytesTrie data structure // // The trie consists of a series of byte-serialized nodes for incremental // string/byte sequence matching. The root node is at the beginning of the trie data. // // Types of nodes are distinguished by their node lead byte ranges. // After each node, except a final-value node, another node follows to // encode match values or continue matching further bytes. // // Node types: // - Value node: Stores a 32-bit integer in a compact, variable-length format. // The value is for the string/byte sequence so far. // One node bit indicates whether the value is final or whether // matching continues with the next node. // - Linear-match node: Matches a number of bytes. // - Branch node: Branches to other nodes according to the current input byte. // The node byte is the length of the branch (number of bytes to select from) // minus 1. It is followed by a sub-node: // - If the length is at most kMaxBranchLinearSubNodeLength, then // there are length-1 (key, value) pairs and then one more comparison byte. // If one of the key bytes matches, then the value is either a final value for // the string/byte sequence so far, or a "jump" delta to the next node. // If the last byte matches, then matching continues with the next node. // (Values have the same encoding as value nodes.) // - If the length is greater than kMaxBranchLinearSubNodeLength, then // there is one byte and one "jump" delta. // If the input byte is less than the sub-node byte, then "jump" by delta to // the next sub-node which will have a length of length/2. // (The delta has its own compact encoding.) // Otherwise, skip the "jump" delta to the next sub-node // which will have a length of length-length/2. // Node lead byte values. // 00..0f: Branch node. If node!=0 then the length is node+1, otherwise // the length is one more than the next byte. // For a branch sub-node with at most this many entries, we drop down // to a linear search. /*package*/ static final int kMaxBranchLinearSubNodeLength=5; // 10..1f: Linear-match node, match 1..16 bytes and continue reading the next node. /*package*/ static final int kMinLinearMatch=0x10; /*package*/ static final int kMaxLinearMatchLength=0x10; // 20..ff: Variable-length value node. // If odd, the value is final. (Otherwise, intermediate value or jump delta.) // Then shift-right by 1 bit. // The remaining lead byte value indicates the number of following bytes (0..4) // and contains the value's top bits. /*package*/ static final int kMinValueLead=kMinLinearMatch+kMaxLinearMatchLength; // 0x20 // It is a final value if bit 0 is set. private static final int kValueIsFinal=1; // Compact value: After testing bit 0, shift right by 1 and then use the following thresholds. /*package*/ static final int kMinOneByteValueLead=kMinValueLead/2; // 0x10 /*package*/ static final int kMaxOneByteValue=0x40; // At least 6 bits in the first byte. /*package*/ static final int kMinTwoByteValueLead=kMinOneByteValueLead+kMaxOneByteValue+1; // 0x51 /*package*/ static final int kMaxTwoByteValue=0x1aff; /*package*/ static final int kMinThreeByteValueLead=kMinTwoByteValueLead+(kMaxTwoByteValue>>8)+1; // 0x6c /*package*/ static final int kFourByteValueLead=0x7e; // A little more than Unicode code points. (0x11ffff) /*package*/ static final int kMaxThreeByteValue=((kFourByteValueLead-kMinThreeByteValueLead)<<16)-1; /*package*/ static final int kFiveByteValueLead=0x7f; // Compact delta integers. /*package*/ static final int kMaxOneByteDelta=0xbf; /*package*/ static final int kMinTwoByteDeltaLead=kMaxOneByteDelta+1; // 0xc0 /*package*/ static final int kMinThreeByteDeltaLead=0xf0; /*package*/ static final int kFourByteDeltaLead=0xfe; /*package*/ static final int kFiveByteDeltaLead=0xff; /*package*/ static final int kMaxTwoByteDelta=((kMinThreeByteDeltaLead-kMinTwoByteDeltaLead)<<8)-1; // 0x2fff /*package*/ static final int kMaxThreeByteDelta=((kFourByteDeltaLead-kMinThreeByteDeltaLead)<<16)-1; // 0xdffff // Fixed value referencing the BytesTrie bytes. private byte[] bytes_; private int root_; // Iterator variables. // Index of next trie byte to read. Negative if no more matches. private int pos_; // Remaining length of a linear-match node, minus 1. Negative if not in such a node. private int remainingMatchLength_; };




© 2015 - 2024 Weber Informatics LLC | Privacy Policy