elemental.svg.SVGMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of vaadin-client Show documentation
Show all versions of vaadin-client Show documentation
Vaadin is a web application framework for Rich Internet Applications (RIA).
Vaadin enables easy development and maintenance of fast and
secure rich web
applications with a stunning look and feel and a wide browser support.
It features a server-side architecture with the majority of the logic
running
on the server. Ajax technology is used at the browser-side to ensure a
rich
and interactive user experience.
/*
* Copyright 2012 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package elemental.svg;
import elemental.events.*;
import elemental.util.*;
import elemental.dom.*;
import elemental.html.*;
import elemental.css.*;
import elemental.stylesheets.*;
import java.util.Date;
/**
* Many of SVG's graphics operations utilize 2x3 matrices of the form:
[a c e]
[b d f]
which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:
[a c e]
[b d f]
[0 0 1]
An SVGMatrix
object can be designated as read only, which means that attempts to modify the object will result in an exception being thrown.
*/
public interface SVGMatrix {
double getA();
void setA(double arg);
double getB();
void setB(double arg);
double getC();
void setC(double arg);
double getD();
void setD(double arg);
double getE();
void setE(double arg);
double getF();
void setF(double arg);
/**
* Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.
*/
SVGMatrix flipX();
/**
* Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.
*/
SVGMatrix flipY();
/**
* Return the inverse matrix
Exceptions:
- a
DOMException
with code SVG_MATRIX_NOT_INVERTABLE
is raised if the matrix is not invertable.
*/
SVGMatrix inverse();
/**
* Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the resulting new matrix.
*/
SVGMatrix multiply(SVGMatrix secondMatrix);
/**
* Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix rotate(float angle);
/**
* Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix. The rotation angle is determined by taking (+/-) atan(y/x). The direction of the vector (x, y) determines whether the positive or negative angle value is used.
Exceptions:
- a
DOMException
with code SVG_INVALID_VALUE_ERR
is raised if one of the parameters has an invalid value.
*/
SVGMatrix rotateFromVector(float x, float y);
/**
* Post-multiplies a uniform scale transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix scale(float scaleFactor);
/**
* Post-multiplies a non-uniform scale transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix scaleNonUniform(float scaleFactorX, float scaleFactorY);
/**
* Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix skewX(float angle);
/**
* Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix skewY(float angle);
/**
* Post-multiplies a translation transformation on the current matrix and returns the resulting matrix.
*/
SVGMatrix translate(float x, float y);
}