com.google.gwt.emul.java.math.BigInteger Maven / Gradle / Ivy
Show all versions of vaadin-client Show documentation
/*
* Copyright 2009 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with this
* work for additional information regarding copyright ownership. The ASF
* licenses this file to You under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*
* INCLUDES MODIFICATIONS BY RICHARD ZSCHECH AS WELL AS GOOGLE.
*/
package java.math;
import static com.google.gwt.core.shared.impl.InternalPreconditions.checkCriticalArgument;
import static com.google.gwt.core.shared.impl.InternalPreconditions.checkNotNull;
import java.io.Serializable;
import java.util.Random;
/**
* This class represents immutable integer numbers of arbitrary length. Large
* numbers are typically used in security applications and therefore BigIntegers
* offer dedicated functionality like the generation of large prime numbers or
* the computation of modular inverse.
*
* Since the class was modeled to offer all the functionality as the
* {@link Integer} class does, it provides even methods that operate bitwise on
* a two's complement representation of large integers. Note however that the
* implementations favors an internal representation where magnitude and sign
* are treated separately. Hence such operations are inefficient and should be
* discouraged. In simple words: Do NOT implement any bit fields based on
* BigInteger.
*/
public class BigInteger extends Number implements Comparable,
Serializable {
/**
* The {@code BigInteger} constant 1.
*/
public static final BigInteger ONE = new BigInteger(1, 1);
/* Fields used for the internal representation. */
/**
* The {@code BigInteger} constant 10.
*/
public static final BigInteger TEN = new BigInteger(1, 10);
/**
* The {@code BigInteger} constant 0.
*/
public static final BigInteger ZERO = new BigInteger(0, 0);
/**
* The {@code BigInteger} constant 0 used for comparison.
*/
static final int EQUALS = 0;
/**
* The {@code BigInteger} constant 1 used for comparison.
*/
static final int GREATER = 1;
/**
* The {@code BigInteger} constant -1 used for comparison.
*/
static final int LESS = -1;
/**
* The {@code BigInteger} constant -1.
*/
static final BigInteger MINUS_ONE = new BigInteger(-1, 1);
/**
* 2^32.
*/
static final double POW32 = 4294967296d;
/**
* All the {@code BigInteger} numbers in the range [0,10] are cached.
*/
static final BigInteger[] SMALL_VALUES = {
ZERO, ONE, new BigInteger(1, 2), new BigInteger(1, 3),
new BigInteger(1, 4), new BigInteger(1, 5), new BigInteger(1, 6),
new BigInteger(1, 7), new BigInteger(1, 8), new BigInteger(1, 9), TEN};
static final BigInteger[] TWO_POWS;
/**
* This is the serialVersionUID used by the sun implementation.
*/
private static final long serialVersionUID = -8287574255936472291L;
static {
TWO_POWS = new BigInteger[32];
for (int i = 0; i < TWO_POWS.length; i++) {
TWO_POWS[i] = BigInteger.valueOf(1L << i);
}
}
/**
* Returns a random positive {@code BigInteger} instance in the range [0,
* 2^(bitLength)-1] which is probably prime. The probability that the returned
* {@code BigInteger} is prime is beyond (1-1/2^80).
*
* Implementation Note: Currently {@code rnd} is ignored.
*
* @param bitLength length of the new {@code BigInteger} in bits.
* @param rnd random generator used to generate the new {@code BigInteger}.
* @return probably prime random {@code BigInteger} instance.
* @throws ArithmeticException if {@code bitLength < 2}.
*/
public static BigInteger probablePrime(int bitLength, Random rnd) {
return new BigInteger(bitLength, 100, rnd);
}
public static BigInteger valueOf(long val) {
if (val < 0) {
if (val != -1) {
return new BigInteger(-1, -val);
}
return MINUS_ONE;
} else if (val <= 10) {
return SMALL_VALUES[(int) val];
} else {
// (val > 10)
return new BigInteger(1, val);
}
}
static BigInteger getPowerOfTwo(int exp) {
if (exp < TWO_POWS.length) {
return TWO_POWS[exp];
}
int intCount = exp >> 5;
int bitN = exp & 31;
int resDigits[] = new int[intCount + 1];
resDigits[intCount] = 1 << bitN;
return new BigInteger(1, intCount + 1, resDigits);
}
static BigInteger valueOf(double val) {
if (val < 0) {
if (val != -1) {
return new BigInteger(-1, -val);
}
return MINUS_ONE;
} else if (val <= 10) {
return SMALL_VALUES[(int) val];
} else {
// (val > 10)
return new BigInteger(1, val);
}
}
/**
* @see BigInteger#BigInteger(String, int)
*/
private static void setFromString(BigInteger bi, String val, int radix) {
int sign;
int[] digits;
int numberLength;
int stringLength = val.length();
int startChar;
int endChar = stringLength;
if (val.charAt(0) == '-') {
sign = -1;
startChar = 1;
stringLength--;
} else {
sign = 1;
startChar = 0;
}
/*
* We use the following algorithm: split a string into portions of n
* characters and convert each portion to an integer according to the radix.
* Then convert an exp(radix, n) based number to binary using the
* multiplication method. See D. Knuth, The Art of Computer Programming,
* vol. 2.
*/
int charsPerInt = Conversion.digitFitInInt[radix];
int bigRadixDigitsLength = stringLength / charsPerInt;
int topChars = stringLength % charsPerInt;
if (topChars != 0) {
bigRadixDigitsLength++;
}
digits = new int[bigRadixDigitsLength];
// Get the maximal power of radix that fits in int
int bigRadix = Conversion.bigRadices[radix - 2];
// Parse an input string and accumulate the BigInteger's magnitude
int digitIndex = 0; // index of digits array
int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars);
int newDigit;
for (int substrStart = startChar; substrStart < endChar; substrStart = substrEnd, substrEnd = substrStart
+ charsPerInt) {
int bigRadixDigit = Integer.parseInt(
val.substring(substrStart, substrEnd), radix);
newDigit = Multiplication.multiplyByInt(digits, digitIndex, bigRadix);
newDigit += Elementary.inplaceAdd(digits, digitIndex, bigRadixDigit);
digits[digitIndex++] = newDigit;
}
numberLength = digitIndex;
bi.sign = sign;
bi.numberLength = numberLength;
bi.digits = digits;
bi.cutOffLeadingZeroes();
}
/**
* Converts an integral double to an unsigned integer; ie 2^31 will be
* returned as 0x80000000.
*
* @param val
* @return val as an unsigned int
*/
private static native int toUnsignedInt(double val) /*-{
return ~~val;
}-*/;
/**
* The magnitude of this big integer. This array is in little endian order and
* each "digit" is a 32-bit unsigned integer. For example: {@code 13} is
* represented as [ 13 ] {@code -13} is represented as [ 13 ] {@code 2^32 +
* 13} is represented as [ 13, 1 ] {@code 2^64 + 13} is represented as [ 13,
* 0, 1 ] {@code 2^31} is represented as [ Integer.MIN_VALUE ] The magnitude
* array may be longer than strictly necessary, which results in additional
* trailing zeros.
*
*
TODO(jat): consider changing to 24-bit integers for better performance
* in browsers.
*/
transient int digits[];
/**
* The length of this in measured in ints. Can be less than digits.length().
*/
transient int numberLength;
/**
* The sign of this.
*/
transient int sign;
private transient int firstNonzeroDigit = -2;
/**
* Cache for the hash code.
*/
private transient int hashCode = 0;
/**
* Constructs a new {@code BigInteger} from the given two's complement
* representation. The most significant byte is the entry at index 0. The most
* significant bit of this entry determines the sign of the new {@code
* BigInteger} instance. The given array must not be empty.
*
* @param val two's complement representation of the new {@code BigInteger}.
* @throws NullPointerException if {@code val == null}.
* @throws NumberFormatException if the length of {@code val} is zero.
*/
public BigInteger(byte[] val) {
if (val.length == 0) {
// math.12=Zero length BigInteger
throw new NumberFormatException("Zero length BigInteger"); //$NON-NLS-1$
}
if (val[0] < 0) {
sign = -1;
putBytesNegativeToIntegers(val);
} else {
sign = 1;
putBytesPositiveToIntegers(val);
}
cutOffLeadingZeroes();
}
/**
* Constructs a new {@code BigInteger} instance with the given sign and the
* given magnitude. The sign is given as an integer (-1 for negative, 0 for
* zero, 1 for positive). The magnitude is specified as a byte array. The most
* significant byte is the entry at index 0.
*
* @param signum sign of the new {@code BigInteger} (-1 for negative, 0 for
* zero, 1 for positive).
* @param magnitude magnitude of the new {@code BigInteger} with the most
* significant byte first.
* @throws NullPointerException if {@code magnitude == null}.
* @throws NumberFormatException if the sign is not one of -1, 0, 1 or if the
* sign is zero and the magnitude contains non-zero entries.
*/
public BigInteger(int signum, byte[] magnitude) {
checkNotNull(magnitude);
if ((signum < -1) || (signum > 1)) {
// math.13=Invalid signum value
throw new NumberFormatException("Invalid signum value"); //$NON-NLS-1$
}
if (signum == 0) {
for (byte element : magnitude) {
if (element != 0) {
// math.14=signum-magnitude mismatch
throw new NumberFormatException("signum-magnitude mismatch"); //$NON-NLS-1$
}
}
}
if (magnitude.length == 0) {
sign = 0;
numberLength = 1;
digits = new int[] {0};
} else {
sign = signum;
putBytesPositiveToIntegers(magnitude);
cutOffLeadingZeroes();
}
}
/**
* Constructs a random {@code BigInteger} instance in the range [0,
* 2^(bitLength)-1] which is probably prime. The probability that the returned
* {@code BigInteger} is prime is beyond (1-1/2^certainty).
*
* @param bitLength length of the new {@code BigInteger} in bits.
* @param certainty tolerated primality uncertainty.
* @param rnd is an optional random generator to be used.
* @throws ArithmeticException if {@code bitLength} < 2.
*/
public BigInteger(int bitLength, int certainty, Random rnd) {
if (bitLength < 2) {
// math.1C=bitLength < 2
throw new ArithmeticException("bitLength < 2"); //$NON-NLS-1$
}
BigInteger me = Primality.consBigInteger(bitLength, certainty, rnd);
sign = me.sign;
numberLength = me.numberLength;
digits = me.digits;
}
/**
* Constructs a random non-negative {@code BigInteger} instance in the range
* [0, 2^(numBits)-1].
*
* @param numBits maximum length of the new {@code BigInteger} in bits.
* @param rnd is an optional random generator to be used.
* @throws IllegalArgumentException if {@code numBits} < 0.
*/
public BigInteger(int numBits, Random rnd) {
checkCriticalArgument(numBits >= 0, "numBits must be non-negative");
if (numBits == 0) {
sign = 0;
numberLength = 1;
digits = new int[] {0};
} else {
sign = 1;
numberLength = (numBits + 31) >> 5;
digits = new int[numberLength];
for (int i = 0; i < numberLength; i++) {
digits[i] = rnd.nextInt();
}
// Using only the necessary bits
digits[numberLength - 1] >>>= (-numBits) & 31;
cutOffLeadingZeroes();
}
}
/**
* Constructs a new {@code BigInteger} instance from the string
* representation. The string representation consists of an optional minus
* sign followed by a non-empty sequence of decimal digits.
*
* @param val string representation of the new {@code BigInteger}.
* @throws NullPointerException if {@code val == null}.
* @throws NumberFormatException if {@code val} is not a valid representation
* of a {@code BigInteger}.
*/
public BigInteger(String val) {
this(val, 10);
}
/**
* Constructs a new {@code BigInteger} instance from the string
* representation. The string representation consists of an optional minus
* sign followed by a non-empty sequence of digits in the specified radix. For
* the conversion the method {@code Character.digit(char, radix)} is used.
*
* @param val string representation of the new {@code BigInteger}.
* @param radix the base to be used for the conversion.
* @throws NullPointerException if {@code val == null}.
* @throws NumberFormatException if {@code val} is not a valid representation
* of a {@code BigInteger} or if {@code radix < Character.MIN_RADIX}
* or {@code radix > Character.MAX_RADIX}.
*/
public BigInteger(String val, int radix) {
checkNotNull(val);
if ((radix < Character.MIN_RADIX) || (radix > Character.MAX_RADIX)) {
// math.11=Radix out of range
throw new NumberFormatException("Radix out of range"); //$NON-NLS-1$
}
if (val.isEmpty()) {
// math.12=Zero length BigInteger
throw new NumberFormatException("Zero length BigInteger"); //$NON-NLS-1$
}
setFromString(this, val, radix);
}
/**
* Constructs a number which array is of size 1.
*
* @param sign the sign of the number
* @param value the only one digit of array
*/
BigInteger(int sign, int value) {
this.sign = sign;
numberLength = 1;
digits = new int[] {value};
}
/**
* Creates a new {@code BigInteger} with the given sign and magnitude. This
* constructor does not create a copy, so any changes to the reference will
* affect the new number.
*
* @param signum The sign of the number represented by {@code digits}
* @param digits The magnitude of the number
*/
BigInteger(int signum, int digits[]) {
if (digits.length == 0) {
sign = 0;
numberLength = 1;
this.digits = new int[] {0};
} else {
sign = signum;
numberLength = digits.length;
this.digits = digits;
cutOffLeadingZeroes();
}
}
/**
* Constructs a number without to create new space. This construct should be
* used only if the three fields of representation are known.
*
* @param sign the sign of the number
* @param numberLength the length of the internal array
* @param digits a reference of some array created before
*/
BigInteger(int sign, int numberLength, int[] digits) {
this.sign = sign;
this.numberLength = numberLength;
this.digits = digits;
}
/**
* Creates a new {@code BigInteger} whose value is equal to the specified
* {@code long}.
*
* @param sign the sign of the number
* @param val the value of the new {@code BigInteger}.
*/
BigInteger(int sign, long val) {
// PRE: (val >= 0) && (sign >= -1) && (sign <= 1)
this.sign = sign;
if ((val & 0xFFFFFFFF00000000L) == 0) {
// It fits in one 'int'
numberLength = 1;
digits = new int[] {(int) val};
} else {
numberLength = 2;
digits = new int[] {(int) val, (int) (val >> 32)};
}
}
/**
* Creates a new {@code BigInteger} whose value is equal to the specified
* {@code double} (which must be an integral value).
*
* @param sign the sign of the number
* @param val the value of the new {@code BigInteger}.
*/
private BigInteger(int sign, double val) {
// PRE: (val >= 0) && (sign >= -1) && (sign <= 1)
// ~~ forces coercion to 32 bits
this.sign = sign;
if (val < POW32) {
// It fits in one 'int'
numberLength = 1;
digits = new int[] { toUnsignedInt(val) };
} else {
numberLength = 2;
digits = new int[] { toUnsignedInt(val % POW32), toUnsignedInt(val / POW32) };
}
}
/**
* Returns a (new) {@code BigInteger} whose value is the absolute value of
* {@code this}.
*
* @return {@code abs(this)}.
*/
public BigInteger abs() {
return ((sign < 0) ? new BigInteger(1, numberLength, digits) : this);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this + val}.
*
* @param val value to be added to {@code this}.
* @return {@code this + val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger add(BigInteger val) {
return Elementary.add(this, val);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this & val}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param val value to be and'ed with {@code this}.
* @return {@code this & val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger and(BigInteger val) {
return Logical.and(this, val);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this & ~val}.
* Evaluating {@code x.andNot(val)} returns the same result as {@code
* x.and(val.not())}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param val value to be not'ed and then and'ed with {@code this}.
* @return {@code this & ~val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger andNot(BigInteger val) {
return Logical.andNot(this, val);
}
/**
* Use {@code bitLength(0)} if you want to know the length of the binary value
* in bits.
*
* Returns the number of bits in the binary representation of {@code this}
* which differ from the sign bit. If {@code this} is positive the result is
* equivalent to the number of bits set in the binary representation of
* {@code this}. If {@code this} is negative the result is equivalent to the
* number of bits set in the binary representation of {@code -this-1}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @return number of bits in the binary representation of {@code this} which
* differ from the sign bit
*/
public int bitCount() {
return BitLevel.bitCount(this);
}
/**
* Returns the length of the value's two's complement representation without
* leading zeros for positive numbers / without leading ones for negative
* values.
*
* The two's complement representation of {@code this} will be at least
* {@code bitLength() + 1} bits long.
*
* The value will fit into an {@code int} if {@code bitLength() < 32} or into
* a {@code long} if {@code bitLength() < 64}.
*
* @return the length of the minimal two's complement representation for
* {@code this} without the sign bit.
*/
public int bitLength() {
return BitLevel.bitLength(this);
}
/**
* Returns a new {@code BigInteger} which has the same binary representation
* as {@code this} but with the bit at position n cleared. The result is
* equivalent to {@code this & ~(2^n)}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param n position where the bit in {@code this} has to be cleared.
* @return {@code this & ~(2^n)}.
* @throws ArithmeticException if {@code n < 0}.
*/
public BigInteger clearBit(int n) {
if (testBit(n)) {
return BitLevel.flipBit(this, n);
}
return this;
}
/**
* Compares this {@code BigInteger} with {@code val}. Returns one of the three
* values 1, 0, or -1.
*
* @param val value to be compared with {@code this}.
* @return {@code 1} if {@code this > val}, {@code -1} if {@code this < val} ,
* {@code 0} if {@code this == val}.
* @throws NullPointerException if {@code val == null}.
*/
public int compareTo(BigInteger val) {
if (sign > val.sign) {
return GREATER;
}
if (sign < val.sign) {
return LESS;
}
if (numberLength > val.numberLength) {
return sign;
}
if (numberLength < val.numberLength) {
return -val.sign;
}
// Equal sign and equal numberLength
return (sign * Elementary.compareArrays(digits, val.digits, numberLength));
}
/**
* Returns a new {@code BigInteger} whose value is {@code this / divisor}.
*
* @param divisor value by which {@code this} is divided.
* @return {@code this / divisor}.
* @throws NullPointerException if {@code divisor == null}.
* @throws ArithmeticException if {@code divisor == 0}.
*/
public BigInteger divide(BigInteger divisor) {
if (divisor.sign == 0) {
// math.17=BigInteger divide by zero
throw new ArithmeticException("BigInteger divide by zero"); //$NON-NLS-1$
}
int divisorSign = divisor.sign;
if (divisor.isOne()) {
return ((divisor.sign > 0) ? this : this.negate());
}
int thisSign = sign;
int thisLen = numberLength;
int divisorLen = divisor.numberLength;
if (thisLen + divisorLen == 2) {
long val = (digits[0] & 0xFFFFFFFFL) / (divisor.digits[0] & 0xFFFFFFFFL);
if (thisSign != divisorSign) {
val = -val;
}
return valueOf(val);
}
int cmp = ((thisLen != divisorLen) ? ((thisLen > divisorLen) ? 1 : -1)
: Elementary.compareArrays(digits, divisor.digits, thisLen));
if (cmp == EQUALS) {
return ((thisSign == divisorSign) ? ONE : MINUS_ONE);
}
if (cmp == LESS) {
return ZERO;
}
int resLength = thisLen - divisorLen + 1;
int resDigits[] = new int[resLength];
int resSign = ((thisSign == divisorSign) ? 1 : -1);
if (divisorLen == 1) {
Division.divideArrayByInt(resDigits, digits, thisLen, divisor.digits[0]);
} else {
Division.divide(resDigits, resLength, digits, thisLen, divisor.digits,
divisorLen);
}
BigInteger result = new BigInteger(resSign, resLength, resDigits);
result.cutOffLeadingZeroes();
return result;
}
/**
* Returns a {@code BigInteger} array which contains {@code this / divisor} at
* index 0 and {@code this % divisor} at index 1.
*
* @param divisor value by which {@code this} is divided.
* @return {@code [this / divisor, this % divisor]}.
* @throws NullPointerException if {@code divisor == null}.
* @throws ArithmeticException if {@code divisor == 0}.
* @see #divide
* @see #remainder
*/
public BigInteger[] divideAndRemainder(BigInteger divisor) {
int divisorSign = divisor.sign;
if (divisorSign == 0) {
// math.17=BigInteger divide by zero
throw new ArithmeticException("BigInteger divide by zero"); //$NON-NLS-1$
}
int divisorLen = divisor.numberLength;
int[] divisorDigits = divisor.digits;
if (divisorLen == 1) {
return Division.divideAndRemainderByInteger(this, divisorDigits[0],
divisorSign);
}
// res[0] is a quotient and res[1] is a remainder:
int[] thisDigits = digits;
int thisLen = numberLength;
int cmp = (thisLen != divisorLen) ? ((thisLen > divisorLen) ? 1 : -1)
: Elementary.compareArrays(thisDigits, divisorDigits, thisLen);
if (cmp < 0) {
return new BigInteger[] {ZERO, this};
}
int thisSign = sign;
int quotientLength = thisLen - divisorLen + 1;
int remainderLength = divisorLen;
int quotientSign = ((thisSign == divisorSign) ? 1 : -1);
int quotientDigits[] = new int[quotientLength];
int remainderDigits[] = Division.divide(quotientDigits, quotientLength,
thisDigits, thisLen, divisorDigits, divisorLen);
BigInteger result0 = new BigInteger(quotientSign, quotientLength,
quotientDigits);
BigInteger result1 = new BigInteger(thisSign, remainderLength,
remainderDigits);
result0.cutOffLeadingZeroes();
result1.cutOffLeadingZeroes();
return new BigInteger[] {result0, result1};
}
/**
* Returns this {@code BigInteger} as an double value. If {@code this} is too
* big to be represented as an double, then {@code Double.POSITIVE_INFINITY}
* or {@code Double.NEGATIVE_INFINITY} is returned. Note, that not all
* integers x in the range [-Double.MAX_VALUE, Double.MAX_VALUE] can be
* represented as a double. The double representation has a mantissa of length
* 53. For example, 2^53+1 = 9007199254740993 is returned as double
* 9007199254740992.0.
*
* @return this {@code BigInteger} as a double value
*/
@Override
public double doubleValue() {
return Double.parseDouble(this.toString());
}
/**
* Returns {@code true} if {@code x} is a BigInteger instance and if this
* instance is equal to this {@code BigInteger}.
*
* @param x object to be compared with {@code this}.
* @return true if {@code x} is a BigInteger and {@code this == x}, {@code
* false} otherwise.
*/
@Override
public boolean equals(Object x) {
if (this == x) {
return true;
}
if (x instanceof BigInteger) {
BigInteger x1 = (BigInteger) x;
return sign == x1.sign && numberLength == x1.numberLength
&& equalsArrays(x1.digits);
}
return false;
}
/**
* Returns a new {@code BigInteger} which has the same binary representation
* as {@code this} but with the bit at position n flipped. The result is
* equivalent to {@code this ^ 2^n}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param n position where the bit in {@code this} has to be flipped.
* @return {@code this ^ 2^n}.
* @throws ArithmeticException if {@code n < 0}.
*/
public BigInteger flipBit(int n) {
if (n < 0) {
// math.15=Negative bit address
throw new ArithmeticException("Negative bit address"); //$NON-NLS-1$
}
return BitLevel.flipBit(this, n);
}
/**
* Returns this {@code BigInteger} as an float value. If {@code this} is too
* big to be represented as an float, then {@code Float.POSITIVE_INFINITY} or
* {@code Float.NEGATIVE_INFINITY} is returned. Note, that not all integers x
* in the range [-Float.MAX_VALUE, Float.MAX_VALUE] can be represented as a
* float. The float representation has a mantissa of length 24. For example,
* 2^24+1 = 16777217 is returned as float 16777216.0.
*
* @return this {@code BigInteger} as a float value.
*/
@Override
public float floatValue() {
return Float.parseFloat(this.toString());
}
/**
* Returns a new {@code BigInteger} whose value is greatest common divisor of
* {@code this} and {@code val}. If {@code this==0} and {@code val==0} then
* zero is returned, otherwise the result is positive.
*
* @param val value with which the greatest common divisor is computed.
* @return {@code gcd(this, val)}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger gcd(BigInteger val) {
BigInteger val1 = this.abs();
BigInteger val2 = val.abs();
// To avoid a possible division by zero
if (val1.signum() == 0) {
return val2;
} else if (val2.signum() == 0) {
return val1;
}
// Optimization for small operands
// (op2.bitLength() < 64) and (op1.bitLength() < 64)
if (((val1.numberLength == 1) || ((val1.numberLength == 2) && (val1.digits[1] > 0)))
&& (val2.numberLength == 1 || (val2.numberLength == 2 && val2.digits[1] > 0))) {
return BigInteger.valueOf(Division.gcdBinary(val1.longValue(),
val2.longValue()));
}
return Division.gcdBinary(val1.copy(), val2.copy());
}
/**
* Returns the position of the lowest set bit in the two's complement
* representation of this {@code BigInteger}. If all bits are zero (this=0)
* then -1 is returned as result.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @return position of lowest bit if {@code this != 0}, {@code -1} otherwise
*/
public int getLowestSetBit() {
if (sign == 0) {
return -1;
}
// (sign != 0) implies that exists some non zero digit
int i = getFirstNonzeroDigit();
return ((i << 5) + Integer.numberOfTrailingZeros(digits[i]));
}
/**
* Returns a hash code for this {@code BigInteger}.
*
* @return hash code for {@code this}.
*/
@Override
public int hashCode() {
if (hashCode != 0) {
return hashCode;
}
for (int i = 0; i < digits.length; i++) {
hashCode = (hashCode * 33 + (digits[i] & 0xffffffff));
}
hashCode = hashCode * sign;
return hashCode;
}
/**
* Returns this {@code BigInteger} as an int value. If {@code this} is too big
* to be represented as an int, then {@code this} % 2^32 is returned.
*
* @return this {@code BigInteger} as an int value.
*/
@Override
public int intValue() {
return (sign * digits[0]);
}
/**
* Tests whether this {@code BigInteger} is probably prime. If {@code true} is
* returned, then this is prime with a probability beyond (1-1/2^certainty).
* If {@code false} is returned, then this is definitely composite. If the
* argument {@code certainty} <= 0, then this method returns true.
*
* @param certainty tolerated primality uncertainty.
* @return {@code true}, if {@code this} is probably prime, {@code false}
* otherwise.
*/
public boolean isProbablePrime(int certainty) {
return Primality.isProbablePrime(abs(), certainty);
}
/**
* Returns this {@code BigInteger} as an long value. If {@code this} is too
* big to be represented as an long, then {@code this} % 2^64 is returned.
*
* @return this {@code BigInteger} as a long value.
*/
@Override
public long longValue() {
long value = (numberLength > 1) ? (((long) digits[1]) << 32)
| (digits[0] & 0xFFFFFFFFL) : (digits[0] & 0xFFFFFFFFL);
return (sign * value);
}
/**
* Returns the maximum of this {@code BigInteger} and {@code val}.
*
* @param val value to be used to compute the maximum with {@code this}
* @return {@code max(this, val)}
* @throws NullPointerException if {@code val == null}
*/
public BigInteger max(BigInteger val) {
return ((this.compareTo(val) == GREATER) ? this : val);
}
/**
* Returns the minimum of this {@code BigInteger} and {@code val}.
*
* @param val value to be used to compute the minimum with {@code this}.
* @return {@code min(this, val)}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger min(BigInteger val) {
return ((this.compareTo(val) == LESS) ? this : val);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this mod m}. The
* modulus {@code m} must be positive. The result is guaranteed to be in the
* interval {@code [0, m)} (0 inclusive, m exclusive). The behavior of this
* function is not equivalent to the behavior of the % operator defined for
* the built-in {@code int}'s.
*
* @param m the modulus.
* @return {@code this mod m}.
* @throws NullPointerException if {@code m == null}.
* @throws ArithmeticException if {@code m < 0}.
*/
public BigInteger mod(BigInteger m) {
if (m.sign <= 0) {
// math.18=BigInteger: modulus not positive
throw new ArithmeticException("BigInteger: modulus not positive"); //$NON-NLS-1$
}
BigInteger rem = remainder(m);
return ((rem.sign < 0) ? rem.add(m) : rem);
}
// @Override
// public double doubleValue() {
// return Conversion.bigInteger2Double(this);
// }
/**
* Returns a new {@code BigInteger} whose value is {@code 1/this mod m}. The
* modulus {@code m} must be positive. The result is guaranteed to be in the
* interval {@code [0, m)} (0 inclusive, m exclusive). If {@code this} is not
* relatively prime to m, then an exception is thrown.
*
* @param m the modulus.
* @return {@code 1/this mod m}.
* @throws NullPointerException if {@code m == null}
* @throws ArithmeticException if {@code m < 0 or} if {@code this} is not
* relatively prime to {@code m}
*/
public BigInteger modInverse(BigInteger m) {
if (m.sign <= 0) {
// math.18=BigInteger: modulus not positive
throw new ArithmeticException("BigInteger: modulus not positive"); //$NON-NLS-1$
}
// If both are even, no inverse exists
if (!(testBit(0) || m.testBit(0))) {
// math.19=BigInteger not invertible.
throw new ArithmeticException("BigInteger not invertible."); //$NON-NLS-1$
}
if (m.isOne()) {
return ZERO;
}
// From now on: (m > 1)
BigInteger res = Division.modInverseMontgomery(abs().mod(m), m);
if (res.sign == 0) {
// math.19=BigInteger not invertible.
throw new ArithmeticException("BigInteger not invertible."); //$NON-NLS-1$
}
res = ((sign < 0) ? m.subtract(res) : res);
return res;
}
/**
* Returns a new {@code BigInteger} whose value is {@code this^exponent mod m}
* . The modulus {@code m} must be positive. The result is guaranteed to be in
* the interval {@code [0, m)} (0 inclusive, m exclusive). If the exponent is
* negative, then {@code this.modInverse(m)^(-exponent) mod m)} is computed.
* The inverse of this only exists if {@code this} is relatively prime to m,
* otherwise an exception is thrown.
*
* @param exponent the exponent.
* @param m the modulus.
* @return {@code this^exponent mod val}.
* @throws NullPointerException if {@code m == null} or {@code exponent ==
* null}.
* @throws ArithmeticException if {@code m < 0} or if {@code exponent<0} and
* this is not relatively prime to {@code m}.
*/
public BigInteger modPow(BigInteger exponent, BigInteger m) {
if (m.sign <= 0) {
// math.18=BigInteger: modulus not positive
throw new ArithmeticException("BigInteger: modulus not positive"); //$NON-NLS-1$
}
BigInteger base = this;
if (m.isOne() | (exponent.sign > 0 & base.sign == 0)) {
return BigInteger.ZERO;
}
if (base.sign == 0 && exponent.sign == 0) {
return BigInteger.ONE;
}
if (exponent.sign < 0) {
base = modInverse(m);
exponent = exponent.negate();
}
// From now on: (m > 0) and (exponent >= 0)
BigInteger res = (m.testBit(0)) ? Division.oddModPow(base.abs(), exponent,
m) : Division.evenModPow(base.abs(), exponent, m);
if ((base.sign < 0) && exponent.testBit(0)) {
// -b^e mod m == ((-1 mod m) * (b^e mod m)) mod m
res = m.subtract(BigInteger.ONE).multiply(res).mod(m);
}
// else exponent is even, so base^exp is positive
return res;
}
/**
* Returns a new {@code BigInteger} whose value is {@code this * val}.
*
* @param val value to be multiplied with {@code this}.
* @return {@code this * val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger multiply(BigInteger val) {
// This let us to throw NullPointerException when val == null
if (val.sign == 0) {
return ZERO;
}
if (sign == 0) {
return ZERO;
}
return Multiplication.multiply(this, val);
}
/**
* Returns a new {@code BigInteger} whose value is the {@code -this}.
*
* @return {@code -this}.
*/
public BigInteger negate() {
return ((sign == 0) ? this : new BigInteger(-sign, numberLength, digits));
}
/**
* Returns the smallest integer x > {@code this} which is probably prime as a
* {@code BigInteger} instance. The probability that the returned {@code
* BigInteger} is prime is beyond (1-1/2^80).
*
* @return smallest integer > {@code this} which is robably prime.
* @throws ArithmeticException if {@code this < 0}.
*/
public BigInteger nextProbablePrime() {
if (sign < 0) {
// math.1A=start < 0: {0}
throw new ArithmeticException("start < 0: " + this); //$NON-NLS-1$
}
return Primality.nextProbablePrime(this);
}
/**
* Returns a new {@code BigInteger} whose value is {@code ~this}. The result
* of this operation is {@code -this-1}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @return {@code ~this}.
*/
public BigInteger not() {
return Logical.not(this);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this | val}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param val value to be or'ed with {@code this}.
* @return {@code this | val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger or(BigInteger val) {
return Logical.or(this, val);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this ^ exp}.
*
* @param exp exponent to which {@code this} is raised.
* @return {@code this ^ exp}.
* @throws ArithmeticException if {@code exp < 0}.
*/
public BigInteger pow(int exp) {
if (exp < 0) {
// math.16=Negative exponent
throw new ArithmeticException("Negative exponent"); //$NON-NLS-1$
}
if (exp == 0) {
return ONE;
} else if (exp == 1 || equals(ONE) || equals(ZERO)) {
return this;
}
// if even take out 2^x factor which we can
// calculate by shifting.
if (!testBit(0)) {
int x = 1;
while (!testBit(x)) {
x++;
}
return getPowerOfTwo(x * exp).multiply(this.shiftRight(x).pow(exp));
}
return Multiplication.pow(this, exp);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this % divisor}.
* Regarding signs this methods has the same behavior as the % operator on
* int's, i.e. the sign of the remainder is the same as the sign of this.
*
* @param divisor value by which {@code this} is divided.
* @return {@code this % divisor}.
* @throws NullPointerException if {@code divisor == null}.
* @throws ArithmeticException if {@code divisor == 0}.
*/
public BigInteger remainder(BigInteger divisor) {
if (divisor.sign == 0) {
// math.17=BigInteger divide by zero
throw new ArithmeticException("BigInteger divide by zero"); //$NON-NLS-1$
}
int thisLen = numberLength;
int divisorLen = divisor.numberLength;
if (((thisLen != divisorLen) ? ((thisLen > divisorLen) ? 1 : -1)
: Elementary.compareArrays(digits, divisor.digits, thisLen)) == LESS) {
return this;
}
int resLength = divisorLen;
int resDigits[] = new int[resLength];
if (resLength == 1) {
resDigits[0] = Division.remainderArrayByInt(digits, thisLen,
divisor.digits[0]);
} else {
int qLen = thisLen - divisorLen + 1;
resDigits = Division.divide(null, qLen, digits, thisLen, divisor.digits,
divisorLen);
}
BigInteger result = new BigInteger(sign, resLength, resDigits);
result.cutOffLeadingZeroes();
return result;
}
/**
* Returns a new {@code BigInteger} which has the same binary representation
* as {@code this} but with the bit at position n set. The result is
* equivalent to {@code this | 2^n}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param n position where the bit in {@code this} has to be set.
* @return {@code this | 2^n}.
* @throws ArithmeticException if {@code n < 0}.
*/
public BigInteger setBit(int n) {
if (!testBit(n)) {
return BitLevel.flipBit(this, n);
}
return this;
}
/**
* Returns a new {@code BigInteger} whose value is {@code this << n}. The
* result is equivalent to {@code this * 2^n} if n >= 0. The shift distance
* may be negative which means that {@code this} is shifted right. The result
* then corresponds to {@code floor(this / 2^(-n))}.
*
* Implementation Note: Usage of this method on negative values is not
* recommended as the current implementation is not efficient.
*
* @param n shift distance.
* @return {@code this << n} if {@code n >= 0}; {@code this >> (-n)}.
* otherwise
*/
public BigInteger shiftLeft(int n) {
if ((n == 0) || (sign == 0)) {
return this;
}
return ((n > 0) ? BitLevel.shiftLeft(this, n) : BitLevel.shiftRight(this,
-n));
}
/**
* Returns a new {@code BigInteger} whose value is {@code this >> n}. For
* negative arguments, the result is also negative. The shift distance may be
* negative which means that {@code this} is shifted left.
*
* Implementation Note: Usage of this method on negative values is not
* recommended as the current implementation is not efficient.
*
* @param n shift distance
* @return {@code this >> n} if {@code n >= 0}; {@code this << (-n)} otherwise
*/
public BigInteger shiftRight(int n) {
if ((n == 0) || (sign == 0)) {
return this;
}
return ((n > 0) ? BitLevel.shiftRight(this, n) : BitLevel.shiftLeft(this,
-n));
}
/**
* Returns the sign of this {@code BigInteger}.
*
* @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0},
* {@code 1} if {@code this > 0}.
*/
public int signum() {
return sign;
}
/**
* Returns a new {@code BigInteger} whose value is {@code this - val}.
*
* @param val value to be subtracted from {@code this}.
* @return {@code this - val}.
* @throws NullPointerException if {@code val == null}.
*/
public BigInteger subtract(BigInteger val) {
return Elementary.subtract(this, val);
}
/**
* Tests whether the bit at position n in {@code this} is set. The result is
* equivalent to {@code this & (2^n) != 0}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param n position where the bit in {@code this} has to be inspected.
* @return {@code this & (2^n) != 0}.
* @throws ArithmeticException if {@code n < 0}.
*/
public boolean testBit(int n) {
if (n == 0) {
return ((digits[0] & 1) != 0);
}
if (n < 0) {
// math.15=Negative bit address
throw new ArithmeticException("Negative bit address"); //$NON-NLS-1$
}
int intCount = n >> 5;
if (intCount >= numberLength) {
return (sign < 0);
}
int digit = digits[intCount];
n = (1 << (n & 31)); // int with 1 set to the needed position
if (sign < 0) {
int firstNonZeroDigit = getFirstNonzeroDigit();
if (intCount < firstNonZeroDigit) {
return false;
} else if (firstNonZeroDigit == intCount) {
digit = -digit;
} else {
digit = ~digit;
}
}
return ((digit & n) != 0);
}
/**
* Returns the two's complement representation of this BigInteger in a byte
* array.
*
* @return two's complement representation of {@code this}.
*/
public byte[] toByteArray() {
if (this.sign == 0) {
return new byte[] {0};
}
BigInteger temp = this;
int bitLen = bitLength();
int iThis = getFirstNonzeroDigit();
int bytesLen = (bitLen >> 3) + 1;
/*
* Puts the little-endian int array representing the magnitude of this
* BigInteger into the big-endian byte array.
*/
byte[] bytes = new byte[bytesLen];
int firstByteNumber = 0;
int highBytes;
int digitIndex = 0;
int bytesInInteger = 4;
int digit;
int hB;
if (bytesLen - (numberLength << 2) == 1) {
bytes[0] = (byte) ((sign < 0) ? -1 : 0);
highBytes = 4;
firstByteNumber++;
} else {
hB = bytesLen & 3;
highBytes = (hB == 0) ? 4 : hB;
}
digitIndex = iThis;
bytesLen -= iThis << 2;
if (sign < 0) {
digit = -temp.digits[digitIndex];
digitIndex++;
if (digitIndex == numberLength) {
bytesInInteger = highBytes;
}
for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
bytes[--bytesLen] = (byte) digit;
}
while (bytesLen > firstByteNumber) {
digit = ~temp.digits[digitIndex];
digitIndex++;
if (digitIndex == numberLength) {
bytesInInteger = highBytes;
}
for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
bytes[--bytesLen] = (byte) digit;
}
}
} else {
while (bytesLen > firstByteNumber) {
digit = temp.digits[digitIndex];
digitIndex++;
if (digitIndex == numberLength) {
bytesInInteger = highBytes;
}
for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
bytes[--bytesLen] = (byte) digit;
}
}
}
return bytes;
}
/**
* Returns a string representation of this {@code BigInteger} in decimal form.
*
* @return a string representation of {@code this} in decimal form.
*/
@Override
public String toString() {
return Conversion.toDecimalScaledString(this, 0);
}
/**
* Returns a string containing a string representation of this {@code
* BigInteger} with base radix. If {@code radix} is less than
* {@link Character#MIN_RADIX} or greater than {@link Character#MAX_RADIX}
* then a decimal representation is returned. The characters of the string
* representation are generated with method {@link Character#forDigit}.
*
* @param radix base to be used for the string representation.
* @return a string representation of this with radix 10.
*/
public String toString(int radix) {
return Conversion.bigInteger2String(this, radix);
}
/**
* Returns a new {@code BigInteger} whose value is {@code this ^ val}.
*
* Implementation Note: Usage of this method is not recommended as the
* current implementation is not efficient.
*
* @param val value to be xor'ed with {@code this}
* @return {@code this ^ val}
* @throws NullPointerException if {@code val == null}
*/
public BigInteger xor(BigInteger val) {
return Logical.xor(this, val);
}
/*
* Returns a copy of the current instance to achieve immutability
*/
BigInteger copy() {
int[] copyDigits = new int[numberLength];
System.arraycopy(digits, 0, copyDigits, 0, numberLength);
return new BigInteger(sign, numberLength, copyDigits);
}
/* Private Methods */
/**
* Decreases {@code numberLength} if there are zero high elements.
*/
final void cutOffLeadingZeroes() {
while ((numberLength > 0) && (digits[--numberLength] == 0)) {
// Empty
}
if (digits[numberLength++] == 0) {
sign = 0;
}
}
boolean equalsArrays(final int[] b) {
int i;
for (i = numberLength - 1; (i >= 0) && (digits[i] == b[i]); i--) {
// Empty
}
return i < 0;
}
int getFirstNonzeroDigit() {
if (firstNonzeroDigit == -2) {
int i;
if (this.sign == 0) {
i = -1;
} else {
for (i = 0; digits[i] == 0; i++) {
// Empty
}
}
firstNonzeroDigit = i;
}
return firstNonzeroDigit;
}
/**
* Tests if {@code this.abs()} is equals to {@code ONE}.
*/
boolean isOne() {
return ((numberLength == 1) && (digits[0] == 1));
}
BigInteger shiftLeftOneBit() {
return (sign == 0) ? this : BitLevel.shiftLeftOneBit(this);
}
void unCache() {
firstNonzeroDigit = -2;
}
/**
* Puts a big-endian byte array into a little-endian applying two complement.
*/
private void putBytesNegativeToIntegers(byte[] byteValues) {
int bytesLen = byteValues.length;
int highBytes = bytesLen & 3;
numberLength = (bytesLen >> 2) + ((highBytes == 0) ? 0 : 1);
digits = new int[numberLength];
int i = 0;
// Setting the sign
digits[numberLength - 1] = -1;
// Put bytes to the int array starting from the end of the byte array
while (bytesLen > highBytes) {
digits[i] = (byteValues[--bytesLen] & 0xFF)
| (byteValues[--bytesLen] & 0xFF) << 8
| (byteValues[--bytesLen] & 0xFF) << 16
| (byteValues[--bytesLen] & 0xFF) << 24;
if (digits[i] != 0) {
digits[i] = -digits[i];
firstNonzeroDigit = i;
i++;
while (bytesLen > highBytes) {
digits[i] = (byteValues[--bytesLen] & 0xFF)
| (byteValues[--bytesLen] & 0xFF) << 8
| (byteValues[--bytesLen] & 0xFF) << 16
| (byteValues[--bytesLen] & 0xFF) << 24;
digits[i] = ~digits[i];
i++;
}
break;
}
i++;
}
if (highBytes != 0) {
// Put the first bytes in the highest element of the int array
if (firstNonzeroDigit != -2) {
for (int j = 0; j < bytesLen; j++) {
digits[i] = (digits[i] << 8) | (byteValues[j] & 0xFF);
}
digits[i] = ~digits[i];
} else {
for (int j = 0; j < bytesLen; j++) {
digits[i] = (digits[i] << 8) | (byteValues[j] & 0xFF);
}
digits[i] = -digits[i];
}
}
}
/**
* Puts a big-endian byte array into a little-endian int array.
*/
private void putBytesPositiveToIntegers(byte[] byteValues) {
int bytesLen = byteValues.length;
int highBytes = bytesLen & 3;
numberLength = (bytesLen >> 2) + ((highBytes == 0) ? 0 : 1);
digits = new int[numberLength];
int i = 0;
// Put bytes to the int array starting from the end of the byte array
while (bytesLen > highBytes) {
digits[i++] = (byteValues[--bytesLen] & 0xFF)
| (byteValues[--bytesLen] & 0xFF) << 8
| (byteValues[--bytesLen] & 0xFF) << 16
| (byteValues[--bytesLen] & 0xFF) << 24;
}
// Put the first bytes in the highest element of the int array
for (int j = 0; j < bytesLen; j++) {
digits[i] = (digits[i] << 8) | (byteValues[j] & 0xFF);
}
}
}