All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gwtrpc.shaded.com.google.common.primitives.ImmutableDoubleArray Maven / Gradle / Ivy

There is a newer version: 1.0-alpha-8
Show newest version
/*
 * Copyright (C) 2017 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Preconditions;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.Immutable;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
import java.util.RandomAccess;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.DoubleConsumer;
import java.util.stream.DoubleStream;
import javax.annotation.CheckReturnValue;
import javax.annotation.Nullable;

/**
 * An immutable array of {@code double} values, with an API resembling {@link List}.
 *
 * 

Advantages compared to {@code double[]}: * *

    *
  • All the many well-known advantages of immutability (read Effective Java, second * edition, Item 15). *
  • Has the value-based (not identity-based) {@link #equals}, {@link #hashCode}, and {@link * #toString} behavior you expect. *
  • Offers useful operations beyond just {@code get} and {@code length}, so you don't have to * hunt through classes like {@link Arrays} and {@link Doubles} for them. *
  • Supports a copy-free {@link #subArray} view, so methods that accept this type don't need to * add overloads that accept start and end indexes. *
  • Can be streamed without "breaking the chain": {@code foo.getBarDoubles().stream()...}. *
  • Access to all collection-based utilities via {@link #asList} (though at the cost of * allocating garbage). *
* *

Disadvantages compared to {@code double[]}: * *

    *
  • Memory footprint has a fixed overhead (about 24 bytes per instance). *
  • Some construction use cases force the data to be copied (though several construction * APIs are offered that don't). *
  • Can't be passed directly to methods that expect {@code double[]} (though the most common * utilities do have replacements here). *
  • Dependency on {@code com.google.common} / Guava. *
* *

Advantages compared to {@link com.google.common.collect.ImmutableList ImmutableList}{@code * }: * *

    *
  • Improved memory compactness and locality. *
  • Can be queried without allocating garbage. *
  • Access to {@code DoubleStream} features (like {@link DoubleStream#sum}) using {@code * stream()} instead of the awkward {@code stream().mapToDouble(v -> v)}. *
* *

Disadvantages compared to {@code ImmutableList}: * *

    *
  • Can't be passed directly to methods that expect {@code Iterable}, {@code Collection}, or * {@code List} (though the most common utilities do have replacements here, and there is a * lazy {@link #asList} view). *
* * @since 22.0 */ @Beta @GwtCompatible @Immutable public final class ImmutableDoubleArray implements Serializable { private static final ImmutableDoubleArray EMPTY = new ImmutableDoubleArray(new double[0]); /** Returns the empty array. */ public static ImmutableDoubleArray of() { return EMPTY; } /** Returns an immutable array containing a single value. */ public static ImmutableDoubleArray of(double e0) { return new ImmutableDoubleArray(new double[] {e0}); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray of(double e0, double e1) { return new ImmutableDoubleArray(new double[] {e0, e1}); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray of(double e0, double e1, double e2) { return new ImmutableDoubleArray(new double[] {e0, e1, e2}); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray of(double e0, double e1, double e2, double e3) { return new ImmutableDoubleArray(new double[] {e0, e1, e2, e3}); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray of(double e0, double e1, double e2, double e3, double e4) { return new ImmutableDoubleArray(new double[] {e0, e1, e2, e3, e4}); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray of( double e0, double e1, double e2, double e3, double e4, double e5) { return new ImmutableDoubleArray(new double[] {e0, e1, e2, e3, e4, e5}); } // TODO(kevinb): go up to 11? /** Returns an immutable array containing the given values, in order. */ // Use (first, rest) so that `of(someDoubleArray)` won't compile (they should use copyOf), which // is okay since we have to copy the just-created array anyway. public static ImmutableDoubleArray of(double first, double... rest) { double[] array = new double[rest.length + 1]; array[0] = first; System.arraycopy(rest, 0, array, 1, rest.length); return new ImmutableDoubleArray(array); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray copyOf(double[] values) { return values.length == 0 ? EMPTY : new ImmutableDoubleArray(Arrays.copyOf(values, values.length)); } /** Returns an immutable array containing the given values, in order. */ public static ImmutableDoubleArray copyOf(Collection values) { return values.isEmpty() ? EMPTY : new ImmutableDoubleArray(Doubles.toArray(values)); } /** * Returns an immutable array containing the given values, in order. * *

Performance note: this method delegates to {@link #copyOf(Collection)} if {@code * values} is a {@link Collection}. Otherwise it creates a {@link #builder} and uses {@link * Builder#addAll(Iterable)}, with all the performance implications associated with that. */ public static ImmutableDoubleArray copyOf(Iterable values) { if (values instanceof Collection) { return copyOf((Collection) values); } return builder().addAll(values).build(); } /** Returns an immutable array containing all the values from {@code stream}, in order. */ public static ImmutableDoubleArray copyOf(DoubleStream stream) { // Note this uses very different growth behavior from copyOf(Iterable) and the builder. double[] array = stream.toArray(); return (array.length == 0) ? EMPTY : new ImmutableDoubleArray(array); } /** * Returns a new, empty builder for {@link ImmutableDoubleArray} instances, sized to hold up to * {@code initialCapacity} values without resizing. The returned builder is not thread-safe. * *

Performance note: When feasible, {@code initialCapacity} should be the exact number * of values that will be added, if that knowledge is readily available. It is better to guess a * value slightly too high than slightly too low. If the value is not exact, the {@link * ImmutableDoubleArray} that is built will very likely occupy more memory than strictly * necessary; to trim memory usage, build using {@code builder.build().trimmed()}. */ public static Builder builder(int initialCapacity) { checkArgument(initialCapacity >= 0, "Invalid initialCapacity: %s", initialCapacity); return new Builder(initialCapacity); } /** * Returns a new, empty builder for {@link ImmutableDoubleArray} instances, with a default initial * capacity. The returned builder is not thread-safe. * *

Performance note: The {@link ImmutableDoubleArray} that is built will very likely * occupy more memory than necessary; to trim memory usage, build using {@code * builder.build().trimmed()}. */ public static Builder builder() { return new Builder(10); } /** * A builder for {@link ImmutableDoubleArray} instances; obtained using {@link * ImmutableDoubleArray#builder}. */ @CanIgnoreReturnValue public static final class Builder { private double[] array; private int count = 0; // <= array.length Builder(int initialCapacity) { array = new double[initialCapacity]; } /** * Appends {@code value} to the end of the values the built {@link ImmutableDoubleArray} will * contain. */ public Builder add(double value) { ensureRoomFor(1); array[count] = value; count += 1; return this; } /** * Appends {@code values}, in order, to the end of the values the built {@link * ImmutableDoubleArray} will contain. */ public Builder addAll(double[] values) { ensureRoomFor(values.length); System.arraycopy(values, 0, array, count, values.length); count += values.length; return this; } /** * Appends {@code values}, in order, to the end of the values the built {@link * ImmutableDoubleArray} will contain. */ public Builder addAll(Iterable values) { if (values instanceof Collection) { return addAll((Collection) values); } for (Double value : values) { add(value); } return this; } /** * Appends {@code values}, in order, to the end of the values the built {@link * ImmutableDoubleArray} will contain. */ public Builder addAll(Collection values) { ensureRoomFor(values.size()); for (Double value : values) { array[count++] = value; } return this; } /** * Appends all values from {@code stream}, in order, to the end of the values the built {@link * ImmutableDoubleArray} will contain. */ public Builder addAll(DoubleStream stream) { Spliterator.OfDouble spliterator = stream.spliterator(); long size = spliterator.getExactSizeIfKnown(); if (size > 0) { // known *and* nonempty ensureRoomFor(Ints.saturatedCast(size)); } spliterator.forEachRemaining((DoubleConsumer) this::add); return this; } /** * Appends {@code values}, in order, to the end of the values the built {@link * ImmutableDoubleArray} will contain. */ public Builder addAll(ImmutableDoubleArray values) { ensureRoomFor(values.length()); System.arraycopy(values.array, values.start, array, count, values.length()); count += values.length(); return this; } private void ensureRoomFor(int numberToAdd) { int newCount = count + numberToAdd; // TODO(kevinb): check overflow now? if (newCount > array.length) { double[] newArray = new double[expandedCapacity(array.length, newCount)]; System.arraycopy(array, 0, newArray, 0, count); this.array = newArray; } } // Unfortunately this is pasted from ImmutableCollection.Builder. private static int expandedCapacity(int oldCapacity, int minCapacity) { if (minCapacity < 0) { throw new AssertionError("cannot store more than MAX_VALUE elements"); } // careful of overflow! int newCapacity = oldCapacity + (oldCapacity >> 1) + 1; if (newCapacity < minCapacity) { newCapacity = Integer.highestOneBit(minCapacity - 1) << 1; } if (newCapacity < 0) { newCapacity = Integer.MAX_VALUE; // guaranteed to be >= newCapacity } return newCapacity; } /** * Returns a new immutable array. The builder can continue to be used after this call, to append * more values and build again. * *

Performance note: the returned array is backed by the same array as the builder, so * no data is copied as part of this step, but this may occupy more memory than strictly * necessary. To copy the data to a right-sized backing array, use {@code .build().trimmed()}. */ @CheckReturnValue public ImmutableDoubleArray build() { return count == 0 ? EMPTY : new ImmutableDoubleArray(array, 0, count); } } // Instance stuff here // The array is never mutated after storing in this field and the construction strategies ensure // it doesn't escape this class @SuppressWarnings("Immutable") private final double[] array; /* * TODO(kevinb): evaluate the trade-offs of going bimorphic to save these two fields from most * instances. Note that the instances that would get smaller are the right set to care about * optimizing, because the rest have the option of calling `trimmed`. */ private final transient int start; // it happens that we only serialize instances where this is 0 private final int end; // exclusive private ImmutableDoubleArray(double[] array) { this(array, 0, array.length); } private ImmutableDoubleArray(double[] array, int start, int end) { this.array = array; this.start = start; this.end = end; } /** Returns the number of values in this array. */ public int length() { return end - start; } /** Returns {@code true} if there are no values in this array ({@link #length} is zero). */ public boolean isEmpty() { return end == start; } /** * Returns the {@code double} value present at the given index. * * @throws IndexOutOfBoundsException if {@code index} is negative, or greater than or equal to * {@link #length} */ public double get(int index) { Preconditions.checkElementIndex(index, length()); return array[start + index]; } /** * Returns the smallest index for which {@link #get} returns {@code target}, or {@code -1} if no * such index exists. Values are compared as if by {@link Double#equals}. Equivalent to {@code * asList().indexOf(target)}. */ public int indexOf(double target) { for (int i = start; i < end; i++) { if (areEqual(array[i], target)) { return i - start; } } return -1; } /** * Returns the largest index for which {@link #get} returns {@code target}, or {@code -1} if no * such index exists. Values are compared as if by {@link Double#equals}. Equivalent to {@code * asList().lastIndexOf(target)}. */ public int lastIndexOf(double target) { for (int i = end - 1; i >= start; i--) { if (areEqual(array[i], target)) { return i - start; } } return -1; } /** * Returns {@code true} if {@code target} is present at any index in this array. Values are * compared as if by {@link Double#equals}. Equivalent to {@code asList().contains(target)}. */ public boolean contains(double target) { return indexOf(target) >= 0; } /** Invokes {@code consumer} for each value contained in this array, in order. */ public void forEach(DoubleConsumer consumer) { checkNotNull(consumer); for (int i = start; i < end; i++) { consumer.accept(array[i]); } } /** Returns a stream over the values in this array, in order. */ public DoubleStream stream() { return Arrays.stream(array, start, end); } /** Returns a new, mutable copy of this array's values, as a primitive {@code double[]}. */ public double[] toArray() { return Arrays.copyOfRange(array, start, end); } /** * Returns a new immutable array containing the values in the specified range. * *

Performance note: The returned array has the same full memory footprint as this one * does (no actual copying is performed). To reduce memory usage, use {@code subArray(start, * end).trimmed()}. */ public ImmutableDoubleArray subArray(int startIndex, int endIndex) { Preconditions.checkPositionIndexes(startIndex, endIndex, length()); return startIndex == endIndex ? EMPTY : new ImmutableDoubleArray(array, start + startIndex, start + endIndex); } private Spliterator.OfDouble spliterator() { return Spliterators.spliterator(array, start, end, Spliterator.IMMUTABLE | Spliterator.ORDERED); } /** * Returns an immutable view of this array's values as a {@code List}; note that {@code * double} values are boxed into {@link Double} instances on demand, which can be very expensive. * The returned list should be used once and discarded. For any usages beyond that, pass the * returned list to {@link com.google.common.collect.ImmutableList#copyOf(Collection) * ImmutableList.copyOf} and use that list instead. */ public List asList() { /* * Typically we cache this kind of thing, but much repeated use of this view is a performance * anti-pattern anyway. If we cache, then everyone pays a price in memory footprint even if * they never use this method. */ return new AsList(this); } static class AsList extends AbstractList implements RandomAccess, Serializable { private final ImmutableDoubleArray parent; private AsList(ImmutableDoubleArray parent) { this.parent = parent; } // inherit: isEmpty, containsAll, toArray x2, iterator, listIterator, stream, forEach, mutations @Override public int size() { return parent.length(); } @Override public Double get(int index) { return parent.get(index); } @Override public boolean contains(Object target) { return indexOf(target) >= 0; } @Override public int indexOf(Object target) { return target instanceof Double ? parent.indexOf((Double) target) : -1; } @Override public int lastIndexOf(Object target) { return target instanceof Double ? parent.lastIndexOf((Double) target) : -1; } @Override public List subList(int fromIndex, int toIndex) { return parent.subArray(fromIndex, toIndex).asList(); } // The default List spliterator is not efficiently splittable @Override public Spliterator spliterator() { return parent.spliterator(); } @Override public boolean equals(@Nullable Object object) { if (object instanceof AsList) { AsList that = (AsList) object; return this.parent.equals(that.parent); } // We could delegate to super now but it would still box too much if (!(object instanceof List)) { return false; } List that = (List) object; if (this.size() != that.size()) { return false; } int i = parent.start; // Since `that` is very likely RandomAccess we could avoid allocating this iterator... for (Object element : that) { if (!(element instanceof Double) || !areEqual(parent.array[i++], (Double) element)) { return false; } } return true; } // Because we happen to use the same formula. If that changes, just don't override this. @Override public int hashCode() { return parent.hashCode(); } @Override public String toString() { return parent.toString(); } } /** * Returns {@code true} if {@code object} is an {@code ImmutableDoubleArray} containing the same * values as this one, in the same order. Values are compared as if by {@link Double#equals}. */ @Override public boolean equals(@Nullable Object object) { if (object == this) { return true; } if (!(object instanceof ImmutableDoubleArray)) { return false; } ImmutableDoubleArray that = (ImmutableDoubleArray) object; if (this.length() != that.length()) { return false; } for (int i = 0; i < length(); i++) { if (!areEqual(this.get(i), that.get(i))) { return false; } } return true; } // Match the behavior of Double.equals() private static boolean areEqual(double a, double b) { return Double.doubleToLongBits(a) == Double.doubleToLongBits(b); } /** Returns an unspecified hash code for the contents of this immutable array. */ @Override public int hashCode() { int hash = 1; for (int i = start; i < end; i++) { hash *= 31; hash += Doubles.hashCode(array[i]); } return hash; } /** * Returns a string representation of this array in the same form as {@link * Arrays#toString(double[])}, for example {@code "[1, 2, 3]"}. */ @Override public String toString() { if (isEmpty()) { return "[]"; } StringBuilder builder = new StringBuilder(length() * 5); // rough estimate is fine builder.append('[').append(array[start]); for (int i = start + 1; i < end; i++) { builder.append(", ").append(array[i]); } builder.append(']'); return builder.toString(); } /** * Returns an immutable array containing the same values as {@code this} array. This is logically * a no-op, and in some circumstances {@code this} itself is returned. However, if this instance * is a {@link #subArray} view of a larger array, this method will copy only the appropriate range * of values, resulting in an equivalent array with a smaller memory footprint. */ public ImmutableDoubleArray trimmed() { return isPartialView() ? new ImmutableDoubleArray(toArray()) : this; } private boolean isPartialView() { return start > 0 || end < array.length; } Object writeReplace() { return trimmed(); } Object readResolve() { return isEmpty() ? EMPTY : this; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy