All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.virjar.sekiro.business.netty.util.NetUtil Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package com.virjar.sekiro.business.netty.util;

import com.virjar.sekiro.business.netty.util.internal.PlatformDependent;
import com.virjar.sekiro.business.netty.util.internal.SocketUtils;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLogger;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLoggerFactory;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.net.Inet4Address;
import java.net.Inet6Address;
import java.net.InetAddress;
import java.net.NetworkInterface;
import java.net.SocketException;
import java.net.UnknownHostException;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.StringTokenizer;

/**
 * A class that holds a number of network-related constants.
 * 

* This class borrowed some of its methods from a modified fork of the * Inet6Util class which was part of Apache Harmony. */ public final class NetUtil { /** * The {@link Inet4Address} that represents the IPv4 loopback address '127.0.0.1' */ public static final Inet4Address LOCALHOST4; /** * The {@link Inet6Address} that represents the IPv6 loopback address '::1' */ public static final Inet6Address LOCALHOST6; /** * The {@link InetAddress} that represents the loopback address. If IPv6 stack is available, it will refer to * {@link #LOCALHOST6}. Otherwise, {@link #LOCALHOST4}. */ public static final InetAddress LOCALHOST; /** * The loopback {@link NetworkInterface} of the current machine */ public static final NetworkInterface LOOPBACK_IF; /** * The SOMAXCONN value of the current machine. If failed to get the value, {@code 200} is used as a * default value for Windows or {@code 128} for others. */ public static final int SOMAXCONN; /** * This defines how many words (represented as ints) are needed to represent an IPv6 address */ private static final int IPV6_WORD_COUNT = 8; /** * The maximum number of characters for an IPV6 string with no scope */ private static final int IPV6_MAX_CHAR_COUNT = 39; /** * Number of bytes needed to represent and IPV6 value */ private static final int IPV6_BYTE_COUNT = 16; /** * Maximum amount of value adding characters in between IPV6 separators */ private static final int IPV6_MAX_CHAR_BETWEEN_SEPARATOR = 4; /** * Minimum number of separators that must be present in an IPv6 string */ private static final int IPV6_MIN_SEPARATORS = 2; /** * Maximum number of separators that must be present in an IPv6 string */ private static final int IPV6_MAX_SEPARATORS = 8; /** * Number of bytes needed to represent and IPV4 value */ private static final int IPV4_BYTE_COUNT = 4; /** * Maximum amount of value adding characters in between IPV4 separators */ private static final int IPV4_MAX_CHAR_BETWEEN_SEPARATOR = 3; /** * Number of separators that must be present in an IPv4 string */ private static final int IPV4_SEPARATORS = 3; /** * {@code true} if ipv4 should be used on a system that supports ipv4 and ipv6. */ private static final boolean IPV4_PREFERRED = Boolean.getBoolean("java.net.preferIPv4Stack"); /** * The logger being used by this class */ private static final InternalLogger logger = InternalLoggerFactory.getInstance(NetUtil.class); static { byte[] LOCALHOST4_BYTES = {127, 0, 0, 1}; byte[] LOCALHOST6_BYTES = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; // Create IPv4 loopback address. Inet4Address localhost4 = null; try { localhost4 = (Inet4Address) InetAddress.getByAddress(LOCALHOST4_BYTES); } catch (Exception e) { // We should not get here as long as the length of the address is correct. PlatformDependent.throwException(e); } LOCALHOST4 = localhost4; // Create IPv6 loopback address. Inet6Address localhost6 = null; try { localhost6 = (Inet6Address) InetAddress.getByAddress(LOCALHOST6_BYTES); } catch (Exception e) { // We should not get here as long as the length of the address is correct. PlatformDependent.throwException(e); } LOCALHOST6 = localhost6; // Retrieve the list of available network interfaces. List ifaces = new ArrayList(); try { for (Enumeration i = NetworkInterface.getNetworkInterfaces(); i.hasMoreElements();) { NetworkInterface iface = i.nextElement(); // Use the interface with proper INET addresses only. if (SocketUtils.addressesFromNetworkInterface(iface).hasMoreElements()) { ifaces.add(iface); } } } catch (SocketException e) { logger.warn("Failed to retrieve the list of available network interfaces", e); } // Find the first loopback interface available from its INET address (127.0.0.1 or ::1) // Note that we do not use NetworkInterface.isLoopback() in the first place because it takes long time // on a certain environment. (e.g. Windows with -Djava.net.preferIPv4Stack=true) NetworkInterface loopbackIface = null; InetAddress loopbackAddr = null; loop: for (NetworkInterface iface: ifaces) { for (Enumeration i = SocketUtils.addressesFromNetworkInterface(iface); i.hasMoreElements();) { InetAddress addr = i.nextElement(); if (addr.isLoopbackAddress()) { // Found loopbackIface = iface; loopbackAddr = addr; break loop; } } } // If failed to find the loopback interface from its INET address, fall back to isLoopback(). if (loopbackIface == null) { try { for (NetworkInterface iface: ifaces) { if (iface.isLoopback()) { Enumeration i = SocketUtils.addressesFromNetworkInterface(iface); if (i.hasMoreElements()) { // Found the one with INET address. loopbackIface = iface; loopbackAddr = i.nextElement(); break; } } } if (loopbackIface == null) { logger.warn("Failed to find the loopback interface"); } } catch (SocketException e) { logger.warn("Failed to find the loopback interface", e); } } if (loopbackIface != null) { // Found the loopback interface with an INET address. logger.debug( "Loopback interface: {} ({}, {})", loopbackIface.getName(), loopbackIface.getDisplayName(), loopbackAddr.getHostAddress()); } else { // Could not find the loopback interface, but we can't leave LOCALHOST as null. // Use LOCALHOST6 or LOCALHOST4, preferably the IPv6 one. if (loopbackAddr == null) { try { if (NetworkInterface.getByInetAddress(LOCALHOST6) != null) { logger.debug("Using hard-coded IPv6 localhost address: {}", localhost6); loopbackAddr = localhost6; } } catch (Exception e) { // Ignore } finally { if (loopbackAddr == null) { logger.debug("Using hard-coded IPv4 localhost address: {}", localhost4); loopbackAddr = localhost4; } } } } LOOPBACK_IF = loopbackIface; LOCALHOST = loopbackAddr; // As a SecurityManager may prevent reading the somaxconn file we wrap this in a privileged block. // // See https://github.com/netty/netty/issues/3680 SOMAXCONN = AccessController.doPrivileged(new PrivilegedAction() { @Override public Integer run() { // Determine the default somaxconn (server socket backlog) value of the platform. // The known defaults: // - Windows NT Server 4.0+: 200 // - Linux and Mac OS X: 128 int somaxconn = PlatformDependent.isWindows() ? 200 : 128; File file = new File("/proc/sys/net/core/somaxconn"); BufferedReader in = null; try { // file.exists() may throw a SecurityException if a SecurityManager is used, so execute it in the // try / catch block. // See https://github.com/netty/netty/issues/4936 if (file.exists()) { in = new BufferedReader(new FileReader(file)); somaxconn = Integer.parseInt(in.readLine()); if (logger.isDebugEnabled()) { logger.debug("{}: {}", file, somaxconn); } } else { if (logger.isDebugEnabled()) { logger.debug("{}: {} (non-existent)", file, somaxconn); } } } catch (Exception e) { logger.debug("Failed to get SOMAXCONN from: {}", file, e); } finally { if (in != null) { try { in.close(); } catch (Exception e) { // Ignored. } } } return somaxconn; } }); } /** * Returns {@code true} if ipv4 should be prefered on a system that supports ipv4 and ipv6. */ public static boolean isIpV4StackPreferred() { return IPV4_PREFERRED; } /** * Creates an byte[] based on an ipAddressString. No error handling is * performed here. */ public static byte[] createByteArrayFromIpAddressString(String ipAddressString) { if (isValidIpV4Address(ipAddressString)) { StringTokenizer tokenizer = new StringTokenizer(ipAddressString, "."); String token; int tempInt; byte[] byteAddress = new byte[IPV4_BYTE_COUNT]; for (int i = 0; i < IPV4_BYTE_COUNT; i ++) { token = tokenizer.nextToken(); tempInt = Integer.parseInt(token); byteAddress[i] = (byte) tempInt; } return byteAddress; } if (isValidIpV6Address(ipAddressString)) { if (ipAddressString.charAt(0) == '[') { ipAddressString = ipAddressString.substring(1, ipAddressString.length() - 1); } int percentPos = ipAddressString.indexOf('%'); if (percentPos >= 0) { ipAddressString = ipAddressString.substring(0, percentPos); } StringTokenizer tokenizer = new StringTokenizer(ipAddressString, ":.", true); ArrayList hexStrings = new ArrayList(); ArrayList decStrings = new ArrayList(); String token = ""; String prevToken = ""; int doubleColonIndex = -1; // If a double colon exists, we need to // insert 0s. // Go through the tokens, including the seperators ':' and '.' // When we hit a : or . the previous token will be added to either // the hex list or decimal list. In the case where we hit a :: // we will save the index of the hexStrings so we can add zeros // in to fill out the string while (tokenizer.hasMoreTokens()) { prevToken = token; token = tokenizer.nextToken(); if (":".equals(token)) { if (":".equals(prevToken)) { doubleColonIndex = hexStrings.size(); } else if (!prevToken.isEmpty()) { hexStrings.add(prevToken); } } else if (".".equals(token)) { decStrings.add(prevToken); } } if (":".equals(prevToken)) { if (":".equals(token)) { doubleColonIndex = hexStrings.size(); } else { hexStrings.add(token); } } else if (".".equals(prevToken)) { decStrings.add(token); } // figure out how many hexStrings we should have // also check if it is a IPv4 address int hexStringsLength = 8; // If we have an IPv4 address tagged on at the end, subtract // 4 bytes, or 2 hex words from the total if (!decStrings.isEmpty()) { hexStringsLength -= 2; } // if we hit a double Colon add the appropriate hex strings if (doubleColonIndex != -1) { int numberToInsert = hexStringsLength - hexStrings.size(); for (int i = 0; i < numberToInsert; i ++) { hexStrings.add(doubleColonIndex, "0"); } } byte[] ipByteArray = new byte[IPV6_BYTE_COUNT]; // Finally convert these strings to bytes... for (int i = 0; i < hexStrings.size(); i ++) { convertToBytes(hexStrings.get(i), ipByteArray, i << 1); } // Now if there are any decimal values, we know where they go... for (int i = 0; i < decStrings.size(); i ++) { ipByteArray[i + 12] = (byte) (Integer.parseInt(decStrings.get(i)) & 255); } return ipByteArray; } return null; } /** * Converts a 4 character hex word into a 2 byte word equivalent */ private static void convertToBytes(String hexWord, byte[] ipByteArray, int byteIndex) { int hexWordLength = hexWord.length(); int hexWordIndex = 0; ipByteArray[byteIndex] = 0; ipByteArray[byteIndex + 1] = 0; int charValue; // high order 4 bits of first byte if (hexWordLength > 3) { charValue = getIntValue(hexWord.charAt(hexWordIndex ++)); ipByteArray[byteIndex] |= charValue << 4; } // low order 4 bits of the first byte if (hexWordLength > 2) { charValue = getIntValue(hexWord.charAt(hexWordIndex ++)); ipByteArray[byteIndex] |= charValue; } // high order 4 bits of second byte if (hexWordLength > 1) { charValue = getIntValue(hexWord.charAt(hexWordIndex ++)); ipByteArray[byteIndex + 1] |= charValue << 4; } // low order 4 bits of the first byte charValue = getIntValue(hexWord.charAt(hexWordIndex)); ipByteArray[byteIndex + 1] |= charValue & 15; } static int getIntValue(char c) { switch (c) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; } c = Character.toLowerCase(c); switch (c) { case 'a': return 10; case 'b': return 11; case 'c': return 12; case 'd': return 13; case 'e': return 14; case 'f': return 15; } return 0; } public static boolean isValidIpV6Address(String ipAddress) { int length = ipAddress.length(); boolean doubleColon = false; int numberOfColons = 0; int numberOfPeriods = 0; StringBuilder word = new StringBuilder(); char c = 0; char prevChar; int startOffset = 0; // offset for [] ip addresses int endOffset = ipAddress.length(); if (endOffset < 2) { return false; } // Strip [] if (ipAddress.charAt(0) == '[') { if (ipAddress.charAt(endOffset - 1) != ']') { return false; // must have a close ] } startOffset = 1; endOffset --; } // Strip the interface name/index after the percent sign. int percentIdx = ipAddress.indexOf('%', startOffset); if (percentIdx >= 0) { endOffset = percentIdx; } for (int i = startOffset; i < endOffset; i ++) { prevChar = c; c = ipAddress.charAt(i); switch (c) { // case for the last 32-bits represented as IPv4 x:x:x:x:x:x:d.d.d.d case '.': numberOfPeriods ++; if (numberOfPeriods > 3) { return false; } if (!isValidIp4Word(word.toString())) { return false; } if (numberOfColons != 6 && !doubleColon) { return false; } // a special case ::1:2:3:4:5:d.d.d.d allows 7 colons with an // IPv4 ending, otherwise 7 :'s is bad if (numberOfColons == 7 && ipAddress.charAt(startOffset) != ':' && ipAddress.charAt(1 + startOffset) != ':') { return false; } word.delete(0, word.length()); break; case ':': // FIX "IP6 mechanism syntax #ip6-bad1" // An IPV6 address cannot start with a single ":". // Either it can starti with "::" or with a number. if (i == startOffset && (ipAddress.length() <= i || ipAddress.charAt(i + 1) != ':')) { return false; } // END FIX "IP6 mechanism syntax #ip6-bad1" numberOfColons ++; if (numberOfColons > 7) { return false; } if (numberOfPeriods > 0) { return false; } if (prevChar == ':') { if (doubleColon) { return false; } doubleColon = true; } word.delete(0, word.length()); break; default: if (word != null && word.length() > 3) { return false; } if (!isValidHexChar(c)) { return false; } word.append(c); } } // Check if we have an IPv4 ending if (numberOfPeriods > 0) { // There is a test case with 7 colons and valid ipv4 this should resolve it if (numberOfPeriods != 3 || !(isValidIp4Word(word.toString()) && numberOfColons < 7)) { return false; } } else { // If we're at then end and we haven't had 7 colons then there is a // problem unless we encountered a doubleColon if (numberOfColons != 7 && !doubleColon) { return false; } // If we have an empty word at the end, it means we ended in either // a : or a . // If we did not end in :: then this is invalid if (word.length() == 0 && ipAddress.charAt(length - 1 - startOffset) == ':' && ipAddress.charAt(length - 2 - startOffset) != ':') { return false; } } return true; } /** * @deprecated Do not use; published by mistake. */ @Deprecated public static boolean isValidIp4Word(String word) { char c; if (word.length() < 1 || word.length() > 3) { return false; } for (int i = 0; i < word.length(); i ++) { c = word.charAt(i); if (!(c >= '0' && c <= '9')) { return false; } } return Integer.parseInt(word) <= 255; } private static boolean isValidHexChar(char c) { return c >= '0' && c <= '9' || c >= 'A' && c <= 'F' || c >= 'a' && c <= 'f'; } private static boolean isValidNumericChar(char c) { return c >= '0' && c <= '9'; } /** * Takes a string and parses it to see if it is a valid IPV4 address. * * @return true, if the string represents an IPV4 address in dotted * notation, false otherwise */ public static boolean isValidIpV4Address(String value) { int periods = 0; int i; int length = value.length(); if (length > 15) { return false; } char c; StringBuilder word = new StringBuilder(); for (i = 0; i < length; i ++) { c = value.charAt(i); if (c == '.') { periods ++; if (periods > 3) { return false; } if (word.length() == 0) { return false; } if (Integer.parseInt(word.toString()) > 255) { return false; } word.delete(0, word.length()); } else if (!Character.isDigit(c)) { return false; } else { if (word.length() > 2) { return false; } word.append(c); } } if (word.length() == 0 || Integer.parseInt(word.toString()) > 255) { return false; } return periods == 3; } /** * Returns the {@link Inet6Address} representation of a {@link CharSequence} IP address. *

* This method will treat all IPv4 type addresses as "IPv4 mapped" (see {@link #getByName(CharSequence, boolean)}) * @param ip {@link CharSequence} IP address to be converted to a {@link Inet6Address} * @return {@link Inet6Address} representation of the {@code ip} or {@code null} if not a valid IP address. */ public static Inet6Address getByName(CharSequence ip) { return getByName(ip, true); } /** * Returns the {@link Inet6Address} representation of a {@link CharSequence} IP address. *

* The {@code ipv4Mapped} parameter specifies how IPv4 addresses should be treated. * "IPv4 mapped" format as * defined in rfc 4291 section 2 is supported. * @param ip {@link CharSequence} IP address to be converted to a {@link Inet6Address} * @param ipv4Mapped *

    *
  • {@code true} To allow IPv4 mapped inputs to be translated into {@link Inet6Address}
  • *
  • {@code false} Don't turn IPv4 addressed to mapped addresses
  • *
* @return {@link Inet6Address} representation of the {@code ip} or {@code null} if not a valid IP address. */ public static Inet6Address getByName(CharSequence ip, boolean ipv4Mapped) { final byte[] bytes = new byte[IPV6_BYTE_COUNT]; final int ipLength = ip.length(); int compressBegin = 0; int compressLength = 0; int currentIndex = 0; int value = 0; int begin = -1; int i = 0; int ipv6Seperators = 0; int ipv4Seperators = 0; int tmp; boolean needsShift = false; for (; i < ipLength; ++i) { final char c = ip.charAt(i); switch (c) { case ':': ++ipv6Seperators; if (i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR || ipv4Seperators > 0 || ipv6Seperators > IPV6_MAX_SEPARATORS || currentIndex + 1 >= bytes.length) { return null; } value <<= (IPV6_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2; if (compressLength > 0) { compressLength -= 2; } // The value integer holds at most 4 bytes from right (most significant) to left (least significant). // The following bit shifting is used to extract and re-order the individual bytes to achieve a // left (most significant) to right (least significant) ordering. bytes[currentIndex++] = (byte) (((value & 0xf) << 4) | ((value >> 4) & 0xf)); bytes[currentIndex++] = (byte) ((((value >> 8) & 0xf) << 4) | ((value >> 12) & 0xf)); tmp = i + 1; if (tmp < ipLength && ip.charAt(tmp) == ':') { ++tmp; if (compressBegin != 0 || (tmp < ipLength && ip.charAt(tmp) == ':')) { return null; } ++ipv6Seperators; needsShift = ipv6Seperators == 2 && value == 0; compressBegin = currentIndex; compressLength = bytes.length - compressBegin - 2; ++i; } value = 0; begin = -1; break; case '.': ++ipv4Seperators; if (i - begin > IPV4_MAX_CHAR_BETWEEN_SEPARATOR || ipv4Seperators > IPV4_SEPARATORS || (ipv6Seperators > 0 && (currentIndex + compressLength < 12)) || i + 1 >= ipLength || currentIndex >= bytes.length || begin < 0 || (begin == 0 && (i == 3 && (!isValidNumericChar(ip.charAt(2)) || !isValidNumericChar(ip.charAt(1)) || !isValidNumericChar(ip.charAt(0))) || i == 2 && (!isValidNumericChar(ip.charAt(1)) || !isValidNumericChar(ip.charAt(0))) || i == 1 && !isValidNumericChar(ip.charAt(0))))) { return null; } value <<= (IPV4_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2; // The value integer holds at most 3 bytes from right (most significant) to left (least significant). // The following bit shifting is to restructure the bytes to be left (most significant) to // right (least significant) while also accounting for each IPv4 digit is base 10. begin = (value & 0xf) * 100 + ((value >> 4) & 0xf) * 10 + ((value >> 8) & 0xf); if (begin < 0 || begin > 255) { return null; } bytes[currentIndex++] = (byte) begin; value = 0; begin = -1; break; default: if (!isValidHexChar(c) || (ipv4Seperators > 0 && !isValidNumericChar(c))) { return null; } if (begin < 0) { begin = i; } else if (i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR) { return null; } // The value is treated as a sort of array of numbers because we are dealing with // at most 4 consecutive bytes we can use bit shifting to accomplish this. // The most significant byte will be encountered first, and reside in the right most // position of the following integer value += getIntValue(c) << ((i - begin) << 2); break; } } final boolean isCompressed = compressBegin > 0; // Finish up last set of data that was accumulated in the loop (or before the loop) if (ipv4Seperators > 0) { if (begin > 0 && i - begin > IPV4_MAX_CHAR_BETWEEN_SEPARATOR || ipv4Seperators != IPV4_SEPARATORS || currentIndex >= bytes.length) { return null; } if (ipv6Seperators == 0) { compressLength = 12; } else if (ipv6Seperators >= IPV6_MIN_SEPARATORS && ip.charAt(ipLength - 1) != ':' && (!isCompressed && (ipv6Seperators == 6 && ip.charAt(0) != ':') || isCompressed && (ipv6Seperators + 1 < IPV6_MAX_SEPARATORS && (ip.charAt(0) != ':' || compressBegin <= 2)))) { compressLength -= 2; } else { return null; } value <<= (IPV4_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2; // The value integer holds at most 3 bytes from right (most significant) to left (least significant). // The following bit shifting is to restructure the bytes to be left (most significant) to // right (least significant) while also accounting for each IPv4 digit is base 10. begin = (value & 0xf) * 100 + ((value >> 4) & 0xf) * 10 + ((value >> 8) & 0xf); if (begin < 0 || begin > 255) { return null; } bytes[currentIndex++] = (byte) begin; } else { tmp = ipLength - 1; if (begin > 0 && i - begin > IPV6_MAX_CHAR_BETWEEN_SEPARATOR || ipv6Seperators < IPV6_MIN_SEPARATORS || !isCompressed && (ipv6Seperators + 1 != IPV6_MAX_SEPARATORS || ip.charAt(0) == ':' || ip.charAt(tmp) == ':') || isCompressed && (ipv6Seperators > IPV6_MAX_SEPARATORS || (ipv6Seperators == IPV6_MAX_SEPARATORS && (compressBegin <= 2 && ip.charAt(0) != ':' || compressBegin >= 14 && ip.charAt(tmp) != ':'))) || currentIndex + 1 >= bytes.length) { return null; } if (begin >= 0 && i - begin <= IPV6_MAX_CHAR_BETWEEN_SEPARATOR) { value <<= (IPV6_MAX_CHAR_BETWEEN_SEPARATOR - (i - begin)) << 2; } // The value integer holds at most 4 bytes from right (most significant) to left (least significant). // The following bit shifting is used to extract and re-order the individual bytes to achieve a // left (most significant) to right (least significant) ordering. bytes[currentIndex++] = (byte) (((value & 0xf) << 4) | ((value >> 4) & 0xf)); bytes[currentIndex++] = (byte) ((((value >> 8) & 0xf) << 4) | ((value >> 12) & 0xf)); } i = currentIndex + compressLength; if (needsShift || i >= bytes.length) { // Right shift array if (i >= bytes.length) { ++compressBegin; } for (i = currentIndex; i < bytes.length; ++i) { for (begin = bytes.length - 1; begin >= compressBegin; --begin) { bytes[begin] = bytes[begin - 1]; } bytes[begin] = 0; ++compressBegin; } } else { // Selectively move elements for (i = 0; i < compressLength; ++i) { begin = i + compressBegin; currentIndex = begin + compressLength; if (currentIndex < bytes.length) { bytes[currentIndex] = bytes[begin]; bytes[begin] = 0; } else { break; } } } if (ipv4Mapped && ipv4Seperators > 0 && bytes[0] == 0 && bytes[1] == 0 && bytes[2] == 0 && bytes[3] == 0 && bytes[4] == 0 && bytes[5] == 0 && bytes[6] == 0 && bytes[7] == 0 && bytes[8] == 0 && bytes[9] == 0) { bytes[10] = bytes[11] = (byte) 0xff; } try { return Inet6Address.getByAddress(null, bytes, -1); } catch (UnknownHostException e) { throw new RuntimeException(e); // Should never happen } } /** * Returns the {@link String} representation of an {@link InetAddress}. *
    *
  • Inet4Address results are identical to {@link InetAddress#getHostAddress()}
  • *
  • Inet6Address results adhere to * rfc 5952 section 4
  • *
*

* The output does not include Scope ID. * @param ip {@link InetAddress} to be converted to an address string * @return {@code String} containing the text-formatted IP address */ public static String toAddressString(InetAddress ip) { return toAddressString(ip, false); } /** * Returns the {@link String} representation of an {@link InetAddress}. *

    *
  • Inet4Address results are identical to {@link InetAddress#getHostAddress()}
  • *
  • Inet6Address results adhere to * rfc 5952 section 4 if * {@code ipv4Mapped} is false. If {@code ipv4Mapped} is true then "IPv4 mapped" format * from rfc 4291 section 2 will be supported. * The compressed result will always obey the compression rules defined in * rfc 5952 section 4
  • *
*

* The output does not include Scope ID. * @param ip {@link InetAddress} to be converted to an address string * @param ipv4Mapped *

    *
  • {@code true} to stray from strict rfc 5952 and support the "IPv4 mapped" format * defined in rfc 4291 section 2 while still * following the updated guidelines in * rfc 5952 section 4
  • *
  • {@code false} to strictly follow rfc 5952
  • *
* @return {@code String} containing the text-formatted IP address */ public static String toAddressString(InetAddress ip, boolean ipv4Mapped) { if (ip instanceof Inet4Address) { return ip.getHostAddress(); } if (!(ip instanceof Inet6Address)) { throw new IllegalArgumentException("Unhandled type: " + ip.getClass()); } final byte[] bytes = ip.getAddress(); final int[] words = new int[IPV6_WORD_COUNT]; int i; for (i = 0; i < words.length; ++i) { words[i] = ((bytes[i << 1] & 0xff) << 8) | (bytes[(i << 1) + 1] & 0xff); } // Find longest run of 0s, tie goes to first found instance int currentStart = -1; int currentLength = 0; int shortestStart = -1; int shortestLength = 0; for (i = 0; i < words.length; ++i) { if (words[i] == 0) { if (currentStart < 0) { currentStart = i; } } else if (currentStart >= 0) { currentLength = i - currentStart; if (currentLength > shortestLength) { shortestStart = currentStart; shortestLength = currentLength; } currentStart = -1; } } // If the array ends on a streak of zeros, make sure we account for it if (currentStart >= 0) { currentLength = i - currentStart; if (currentLength > shortestLength) { shortestStart = currentStart; shortestLength = currentLength; } } // Ignore the longest streak if it is only 1 long if (shortestLength == 1) { shortestLength = 0; shortestStart = -1; } // Translate to string taking into account longest consecutive 0s final int shortestEnd = shortestStart + shortestLength; final StringBuilder b = new StringBuilder(IPV6_MAX_CHAR_COUNT); if (shortestEnd < 0) { // Optimization when there is no compressing needed b.append(Integer.toHexString(words[0])); for (i = 1; i < words.length; ++i) { b.append(':'); b.append(Integer.toHexString(words[i])); } } else { // General case that can handle compressing (and not compressing) // Loop unroll the first index (so we don't constantly check i==0 cases in loop) final boolean isIpv4Mapped; if (inRangeEndExclusive(0, shortestStart, shortestEnd)) { b.append("::"); isIpv4Mapped = ipv4Mapped && (shortestEnd == 5 && words[5] == 0xffff); } else { b.append(Integer.toHexString(words[0])); isIpv4Mapped = false; } for (i = 1; i < words.length; ++i) { if (!inRangeEndExclusive(i, shortestStart, shortestEnd)) { if (!inRangeEndExclusive(i - 1, shortestStart, shortestEnd)) { // If the last index was not part of the shortened sequence if (!isIpv4Mapped || i == 6) { b.append(':'); } else { b.append('.'); } } if (isIpv4Mapped && i > 5) { b.append(words[i] >> 8); b.append('.'); b.append(words[i] & 0xff); } else { b.append(Integer.toHexString(words[i])); } } else if (!inRangeEndExclusive(i - 1, shortestStart, shortestEnd)) { // If we are in the shortened sequence and the last index was not b.append("::"); } } } return b.toString(); } /** * Does a range check on {@code value} if is within {@code start} (inclusive) and {@code end} (exclusive). * @param value The value to checked if is within {@code start} (inclusive) and {@code end} (exclusive) * @param start The start of the range (inclusive) * @param end The end of the range (exclusive) * @return *
    *
  • {@code true} if {@code value} if is within {@code start} (inclusive) and {@code end} (exclusive)
  • *
  • {@code false} otherwise
  • *
*/ private static boolean inRangeEndExclusive(int value, int start, int end) { return value >= start && value < end; } /** * A constructor to stop this class being constructed. */ private NetUtil() { // Unused } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy