All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.virjar.sekiro.business.netty.util.internal.PlatformDependent Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package com.virjar.sekiro.business.netty.util.internal;

import com.virjar.sekiro.business.netty.util.CharsetUtil;
import com.virjar.sekiro.business.netty.util.internal.chmv8.ConcurrentHashMapV8;
import com.virjar.sekiro.business.netty.util.internal.chmv8.LongAdderV8;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLogger;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLoggerFactory;
import org.jctools.queues.MpscArrayQueue;
import org.jctools.queues.MpscChunkedArrayQueue;
import org.jctools.queues.SpscLinkedQueue;
import org.jctools.queues.atomic.MpscAtomicArrayQueue;
import org.jctools.queues.atomic.MpscLinkedAtomicQueue;
import org.jctools.queues.atomic.SpscLinkedAtomicQueue;
import org.jctools.util.Pow2;
import org.jctools.util.UnsafeAccess;

import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Deque;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.atomic.AtomicLong;
import java.util.regex.Matcher;
import java.util.regex.Pattern;


/**
 * Utility that detects various properties specific to the current runtime
 * environment, such as Java version and the availability of the
 * {@code sun.misc.Unsafe} object.
 * 

* You can disable the use of {@code sun.misc.Unsafe} if you specify * the system property com.virjar.sekiro.business.netty.noUnsafe. */ public final class PlatformDependent { private static final InternalLogger logger = InternalLoggerFactory.getInstance(PlatformDependent.class); private static final Pattern MAX_DIRECT_MEMORY_SIZE_ARG_PATTERN = Pattern.compile( "\\s*-XX:MaxDirectMemorySize\\s*=\\s*([0-9]+)\\s*([kKmMgG]?)\\s*$"); // this must be initialized before any code below triggers initialization of PlatformDependent0 private static final boolean IS_EXPLICIT_NO_UNSAFE = explicitNoUnsafe0(); private static final boolean IS_ANDROID = isAndroid0(); private static final boolean IS_WINDOWS = isWindows0(); private static volatile Boolean IS_ROOT; private static final int JAVA_VERSION = javaVersion0(); private static final boolean CAN_ENABLE_TCP_NODELAY_BY_DEFAULT = !isAndroid(); private static final boolean HAS_UNSAFE = hasUnsafe0(); private static final boolean CAN_USE_CHM_V8 = HAS_UNSAFE && JAVA_VERSION < 8; private static final boolean DIRECT_BUFFER_PREFERRED = HAS_UNSAFE && !SystemPropertyUtil.getBoolean("com.virjar.sekiro.business.netty.noPreferDirect", false); private static final long MAX_DIRECT_MEMORY = maxDirectMemory0(); private static final int MPSC_CHUNK_SIZE = 1024; private static final int MIN_MAX_MPSC_CAPACITY = MPSC_CHUNK_SIZE * 2; private static final int DEFAULT_MAX_MPSC_CAPACITY = MPSC_CHUNK_SIZE * MPSC_CHUNK_SIZE; private static final int MAX_ALLOWED_MPSC_CAPACITY = Pow2.MAX_POW2; private static final long ARRAY_BASE_OFFSET = arrayBaseOffset0(); private static final boolean HAS_JAVASSIST = hasJavassist0(); private static final File TMPDIR = tmpdir0(); private static final int BIT_MODE = bitMode0(); private static final int ADDRESS_SIZE = addressSize0(); private static final boolean USE_DIRECT_BUFFER_NO_CLEANER; private static final AtomicLong DIRECT_MEMORY_COUNTER; private static final long DIRECT_MEMORY_LIMIT; public static final boolean BIG_ENDIAN_NATIVE_ORDER = ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN; static { if (logger.isDebugEnabled()) { logger.debug("-Dcom.virjar.sekiro.business.netty.noPreferDirect: {}", !DIRECT_BUFFER_PREFERRED); } if (!hasUnsafe() && !isAndroid() && !IS_EXPLICIT_NO_UNSAFE) { logger.info( "Your platform does not provide complete low-level API for accessing direct buffers reliably. " + "Unless explicitly requested, heap buffer will always be preferred to avoid potential system " + "unstability."); } // Here is how the system property is used: // // * < 0 - Don't use cleaner, and inherit max direct memory from java. In this case the // "practical max direct memory" would be 2 * max memory as defined by the JDK. // * == 0 - Use cleaner, Netty will not enforce max memory, and instead will defer to JDK. // * > 0 - Don't use cleaner. This will limit Netty's total direct memory // (note: that JDK's direct memory limit is independent of this). long maxDirectMemory = SystemPropertyUtil.getLong("com.virjar.sekiro.business.netty.maxDirectMemory", -1); if (maxDirectMemory == 0 || !hasUnsafe() || !PlatformDependent0.hasDirectBufferNoCleanerConstructor()) { USE_DIRECT_BUFFER_NO_CLEANER = false; DIRECT_MEMORY_COUNTER = null; } else { USE_DIRECT_BUFFER_NO_CLEANER = true; if (maxDirectMemory < 0) { maxDirectMemory = maxDirectMemory0(); if (maxDirectMemory <= 0) { DIRECT_MEMORY_COUNTER = null; } else { DIRECT_MEMORY_COUNTER = new AtomicLong(); } } else { DIRECT_MEMORY_COUNTER = new AtomicLong(); } } DIRECT_MEMORY_LIMIT = maxDirectMemory; logger.debug("com.virjar.sekiro.business.netty.maxDirectMemory: {} bytes", maxDirectMemory); } /** * Returns {@code true} if and only if the current platform is Android */ public static boolean isAndroid() { return IS_ANDROID; } /** * Return {@code true} if the JVM is running on Windows */ public static boolean isWindows() { return IS_WINDOWS; } /** * Return {@code true} if the current user is root. Note that this method returns * {@code false} if on Windows. */ public static boolean isRoot() { if (IS_ROOT == null) { synchronized (PlatformDependent.class) { if (IS_ROOT == null) { IS_ROOT = isRoot0(); } } } return IS_ROOT; } /** * Return the version of Java under which this library is used. */ public static int javaVersion() { return JAVA_VERSION; } /** * Returns {@code true} if and only if it is fine to enable TCP_NODELAY socket option by default. */ public static boolean canEnableTcpNoDelayByDefault() { return CAN_ENABLE_TCP_NODELAY_BY_DEFAULT; } /** * Return {@code true} if {@code sun.misc.Unsafe} was found on the classpath and can be used for acclerated * direct memory access. */ public static boolean hasUnsafe() { return HAS_UNSAFE; } /** * {@code true} if and only if the platform supports unaligned access. * * @see Wikipedia on segfault */ public static boolean isUnaligned() { return PlatformDependent0.isUnaligned(); } /** * Returns {@code true} if the platform has reliable low-level direct buffer access API and a user has not specified * {@code -Dcom.virjar.sekiro.business.netty.noPreferDirect} option. */ public static boolean directBufferPreferred() { return DIRECT_BUFFER_PREFERRED; } /** * Returns the maximum memory reserved for direct buffer allocation. */ public static long maxDirectMemory() { return MAX_DIRECT_MEMORY; } /** * Returns {@code true} if and only if Javassist is available. */ public static boolean hasJavassist() { return HAS_JAVASSIST; } /** * Returns the temporary directory. */ public static File tmpdir() { return TMPDIR; } /** * Returns the bit mode of the current VM (usually 32 or 64.) */ public static int bitMode() { return BIT_MODE; } /** * Return the address size of the OS. * 4 (for 32 bits systems ) and 8 (for 64 bits systems). */ public static int addressSize() { return ADDRESS_SIZE; } public static long allocateMemory(long size) { return PlatformDependent0.allocateMemory(size); } public static void freeMemory(long address) { PlatformDependent0.freeMemory(address); } /** * Raises an exception bypassing compiler checks for checked exceptions. */ public static void throwException(Throwable t) { if (hasUnsafe()) { PlatformDependent0.throwException(t); } else { PlatformDependent.throwException0(t); } } @SuppressWarnings("unchecked") private static void throwException0(Throwable t) throws E { throw (E) t; } /** * Creates a new fastest {@link ConcurrentMap} implementaion for the current platform. */ public static ConcurrentMap newConcurrentHashMap() { if (CAN_USE_CHM_V8) { return new ConcurrentHashMapV8(); } else { return new ConcurrentHashMap(); } } /** * Creates a new fastest {@link LongCounter} implementaion for the current platform. */ public static LongCounter newLongCounter() { if (HAS_UNSAFE) { return new LongAdderV8(); } else { return new AtomicLongCounter(); } } /** * Creates a new fastest {@link ConcurrentMap} implementaion for the current platform. */ public static ConcurrentMap newConcurrentHashMap(int initialCapacity) { if (CAN_USE_CHM_V8) { return new ConcurrentHashMapV8(initialCapacity); } else { return new ConcurrentHashMap(initialCapacity); } } /** * Creates a new fastest {@link ConcurrentMap} implementaion for the current platform. */ public static ConcurrentMap newConcurrentHashMap(int initialCapacity, float loadFactor) { if (CAN_USE_CHM_V8) { return new ConcurrentHashMapV8(initialCapacity, loadFactor); } else { return new ConcurrentHashMap(initialCapacity, loadFactor); } } /** * Creates a new fastest {@link ConcurrentMap} implementaion for the current platform. */ public static ConcurrentMap newConcurrentHashMap( int initialCapacity, float loadFactor, int concurrencyLevel) { if (CAN_USE_CHM_V8) { return new ConcurrentHashMapV8(initialCapacity, loadFactor, concurrencyLevel); } else { return new ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel); } } /** * Creates a new fastest {@link ConcurrentMap} implementaion for the current platform. */ public static ConcurrentMap newConcurrentHashMap(Map map) { if (CAN_USE_CHM_V8) { return new ConcurrentHashMapV8(map); } else { return new ConcurrentHashMap(map); } } /** * Try to deallocate the specified direct {@link ByteBuffer}. Please note this method does nothing if * the current platform does not support this operation or the specified buffer is not a direct buffer. */ public static void freeDirectBuffer(ByteBuffer buffer) { if (hasUnsafe() && !isAndroid()) { // only direct to method if we are not running on android. // See https://github.com/netty/netty/issues/2604 PlatformDependent0.freeDirectBuffer(buffer); } } public static long directBufferAddress(ByteBuffer buffer) { return PlatformDependent0.directBufferAddress(buffer); } public static ByteBuffer directBuffer(long memoryAddress, int size) { if (PlatformDependent0.hasDirectBufferNoCleanerConstructor()) { return PlatformDependent0.newDirectBuffer(memoryAddress, size); } throw new UnsupportedOperationException( "sun.misc.Unsafe or java.nio.DirectByteBuffer.(long, int) not available"); } public static Object getObject(Object object, long fieldOffset) { return PlatformDependent0.getObject(object, fieldOffset); } public static Object getObjectVolatile(Object object, long fieldOffset) { return PlatformDependent0.getObjectVolatile(object, fieldOffset); } public static int getInt(Object object, long fieldOffset) { return PlatformDependent0.getInt(object, fieldOffset); } public static long objectFieldOffset(Field field) { return PlatformDependent0.objectFieldOffset(field); } public static byte getByte(long address) { return PlatformDependent0.getByte(address); } public static short getShort(long address) { return PlatformDependent0.getShort(address); } public static int getInt(long address) { return PlatformDependent0.getInt(address); } public static long getLong(long address) { return PlatformDependent0.getLong(address); } public static byte getByte(byte[] data, int index) { return PlatformDependent0.getByte(data, index); } public static short getShort(byte[] data, int index) { return PlatformDependent0.getShort(data, index); } public static int getInt(byte[] data, int index) { return PlatformDependent0.getInt(data, index); } public static long getLong(byte[] data, int index) { return PlatformDependent0.getLong(data, index); } public static void putByte(long address, byte value) { PlatformDependent0.putByte(address, value); } public static void putShort(long address, short value) { PlatformDependent0.putShort(address, value); } public static void putInt(long address, int value) { PlatformDependent0.putInt(address, value); } public static void putLong(long address, long value) { PlatformDependent0.putLong(address, value); } public static void putByte(byte[] data, int index, byte value) { PlatformDependent0.putByte(data, index, value); } public static void putShort(byte[] data, int index, short value) { PlatformDependent0.putShort(data, index, value); } public static void putInt(byte[] data, int index, int value) { PlatformDependent0.putInt(data, index, value); } public static void putLong(byte[] data, int index, long value) { PlatformDependent0.putLong(data, index, value); } public static void copyMemory(long srcAddr, long dstAddr, long length) { PlatformDependent0.copyMemory(srcAddr, dstAddr, length); } public static void copyMemory(byte[] src, int srcIndex, long dstAddr, long length) { PlatformDependent0.copyMemory(src, ARRAY_BASE_OFFSET + srcIndex, null, dstAddr, length); } public static void copyMemory(long srcAddr, byte[] dst, int dstIndex, long length) { PlatformDependent0.copyMemory(null, srcAddr, dst, ARRAY_BASE_OFFSET + dstIndex, length); } public static void setMemory(byte[] dst, int dstIndex, long bytes, byte value) { PlatformDependent0.setMemory(dst, ARRAY_BASE_OFFSET + dstIndex, bytes, value); } public static void setMemory(long address, long bytes, byte value) { PlatformDependent0.setMemory(address, bytes, value); } /** * Allocate a new {@link ByteBuffer} with the given {@code capacity}. {@link ByteBuffer}s allocated with * this method MUST be deallocated via {@link #freeDirectNoCleaner(ByteBuffer)}. */ public static ByteBuffer allocateDirectNoCleaner(int capacity) { assert USE_DIRECT_BUFFER_NO_CLEANER; incrementMemoryCounter(capacity); try { return PlatformDependent0.allocateDirectNoCleaner(capacity); } catch (Throwable e) { decrementMemoryCounter(capacity); throwException(e); return null; } } /** * Reallocate a new {@link ByteBuffer} with the given {@code capacity}. {@link ByteBuffer}s reallocated with * this method MUST be deallocated via {@link #freeDirectNoCleaner(ByteBuffer)}. */ public static ByteBuffer reallocateDirectNoCleaner(ByteBuffer buffer, int capacity) { assert USE_DIRECT_BUFFER_NO_CLEANER; int len = capacity - buffer.capacity(); incrementMemoryCounter(len); try { return PlatformDependent0.reallocateDirectNoCleaner(buffer, capacity); } catch (Throwable e) { decrementMemoryCounter(len); throwException(e); return null; } } /** * This method MUST only be called for {@link ByteBuffer}s that were allocated via * {@link #allocateDirectNoCleaner(int)}. */ public static void freeDirectNoCleaner(ByteBuffer buffer) { assert USE_DIRECT_BUFFER_NO_CLEANER; int capacity = buffer.capacity(); PlatformDependent0.freeMemory(PlatformDependent0.directBufferAddress(buffer)); decrementMemoryCounter(capacity); } private static void incrementMemoryCounter(int capacity) { if (DIRECT_MEMORY_COUNTER != null) { for (;;) { long usedMemory = DIRECT_MEMORY_COUNTER.get(); long newUsedMemory = usedMemory + capacity; if (newUsedMemory > DIRECT_MEMORY_LIMIT) { throw new OutOfDirectMemoryError("failed to allocate " + capacity + " byte(s) of direct memory (used: " + usedMemory + ", max: " + DIRECT_MEMORY_LIMIT + ')'); } if (DIRECT_MEMORY_COUNTER.compareAndSet(usedMemory, newUsedMemory)) { break; } } } } private static void decrementMemoryCounter(int capacity) { if (DIRECT_MEMORY_COUNTER != null) { long usedMemory = DIRECT_MEMORY_COUNTER.addAndGet(-capacity); assert usedMemory >= 0; } } public static boolean useDirectBufferNoCleaner() { return USE_DIRECT_BUFFER_NO_CLEANER; } private static final class Mpsc { private static final boolean USE_MPSC_CHUNKED_ARRAY_QUEUE; private Mpsc() { } static { Object unsafe = null; if (hasUnsafe()) { // jctools goes through its own process of initializing unsafe; of // course, this requires permissions which might not be granted to calling code, so we // must mark this block as privileged too unsafe = AccessController.doPrivileged(new PrivilegedAction() { @Override public Object run() { // force JCTools to initialize unsafe return UnsafeAccess.UNSAFE; } }); } if (unsafe == null) { logger.debug("org.jctools-core.MpscChunkedArrayQueue: unavailable"); USE_MPSC_CHUNKED_ARRAY_QUEUE = false; } else { logger.debug("org.jctools-core.MpscChunkedArrayQueue: available"); USE_MPSC_CHUNKED_ARRAY_QUEUE = true; } } static Queue newMpscQueue(final int maxCapacity) { if (USE_MPSC_CHUNKED_ARRAY_QUEUE) { // Calculate the max capacity which can not be bigger then MAX_ALLOWED_MPSC_CAPACITY. // This is forced by the MpscChunkedArrayQueue implementation as will try to round it // up to the next power of two and so will overflow otherwise. final int capacity = Math.max(Math.min(maxCapacity, MAX_ALLOWED_MPSC_CAPACITY), MIN_MAX_MPSC_CAPACITY); return new MpscChunkedArrayQueue(MPSC_CHUNK_SIZE, capacity, true); } else { return new MpscLinkedAtomicQueue(); } } } /** * Create a new {@link Queue} which is safe to use for multiple producers (different threads) and a single * consumer (one thread!). */ public static Queue newMpscQueue() { return newMpscQueue(DEFAULT_MAX_MPSC_CAPACITY); } /** * Create a new {@link Queue} which is safe to use for multiple producers (different threads) and a single * consumer (one thread!). */ public static Queue newMpscQueue(final int maxCapacity) { return Mpsc.newMpscQueue(maxCapacity); } /** * Create a new {@link Queue} which is safe to use for single producer (one thread!) and a single * consumer (one thread!). */ public static Queue newSpscQueue() { return hasUnsafe() ? new SpscLinkedQueue() : new SpscLinkedAtomicQueue(); } /** * Create a new {@link Queue} which is safe to use for multiple producers (different threads) and a single * consumer (one thread!) with the given fixes {@code capacity}. */ public static Queue newFixedMpscQueue(int capacity) { return hasUnsafe() ? new MpscArrayQueue(capacity) : new MpscAtomicArrayQueue(capacity); } /** * Return the {@link ClassLoader} for the given {@link Class}. */ public static ClassLoader getClassLoader(final Class clazz) { return PlatformDependent0.getClassLoader(clazz); } /** * Return the context {@link ClassLoader} for the current {@link Thread}. */ public static ClassLoader getContextClassLoader() { return PlatformDependent0.getContextClassLoader(); } /** * Return the system {@link ClassLoader}. */ public static ClassLoader getSystemClassLoader() { return PlatformDependent0.getSystemClassLoader(); } /** * Returns a new concurrent {@link Deque}. */ public static Deque newConcurrentDeque() { if (javaVersion() < 7) { return new LinkedBlockingDeque(); } else { return new ConcurrentLinkedDeque(); } } private static boolean isAndroid0() { boolean android; try { Class.forName("android.app.Application", false, getSystemClassLoader()); android = true; } catch (Throwable ignored) { // Failed to load the class uniquely available in Android. android = false; } if (android) { logger.debug("Platform: Android"); } return android; } private static boolean isWindows0() { boolean windows = SystemPropertyUtil.get("os.name", "").toLowerCase(Locale.US).contains("win"); if (windows) { logger.debug("Platform: Windows"); } return windows; } private static boolean isRoot0() { if (isWindows()) { return false; } String[] ID_COMMANDS = { "/usr/bin/id", "/bin/id", "/usr/xpg4/bin/id", "id"}; Pattern UID_PATTERN = Pattern.compile("^(?:0|[1-9][0-9]*)$"); for (String idCmd: ID_COMMANDS) { Process p = null; BufferedReader in = null; String uid = null; try { p = Runtime.getRuntime().exec(new String[] { idCmd, "-u" }); in = new BufferedReader(new InputStreamReader(p.getInputStream(), CharsetUtil.US_ASCII)); uid = in.readLine(); in.close(); for (;;) { try { int exitCode = p.waitFor(); if (exitCode != 0) { uid = null; } break; } catch (InterruptedException e) { // Ignore } } } catch (Throwable ignored) { // Failed to run the command. uid = null; } finally { if (in != null) { try { in.close(); } catch (IOException e) { // Ignore } } if (p != null) { try { p.destroy(); } catch (Exception e) { // Android sometimes triggers an ErrnoException. } } } if (uid != null && UID_PATTERN.matcher(uid).matches()) { logger.debug("UID: {}", uid); return "0".equals(uid); } } logger.debug("Could not determine the current UID using /usr/bin/id; attempting to bind at privileged ports."); Pattern PERMISSION_DENIED = Pattern.compile(".*(?:denied|not.*permitted).*"); for (int i = 1023; i > 0; i --) { ServerSocket ss = null; try { ss = new ServerSocket(); ss.setReuseAddress(true); ss.bind(new InetSocketAddress(i)); if (logger.isDebugEnabled()) { logger.debug("UID: 0 (succeded to bind at port {})", i); } return true; } catch (Exception e) { // Failed to bind. // Check the error message so that we don't always need to bind 1023 times. String message = e.getMessage(); if (message == null) { message = ""; } message = message.toLowerCase(); if (PERMISSION_DENIED.matcher(message).matches()) { break; } } finally { if (ss != null) { try { ss.close(); } catch (Exception e) { // Ignore. } } } } logger.debug("UID: non-root (failed to bind at any privileged ports)"); return false; } private static int javaVersion0() { final int majorVersion; if (isAndroid()) { majorVersion = 6; } else { majorVersion = majorVersionFromJavaSpecificationVersion(); } logger.debug("Java version: {}", majorVersion); return majorVersion; } static int majorVersionFromJavaSpecificationVersion() { try { final String javaSpecVersion = AccessController.doPrivileged(new PrivilegedAction() { @Override public String run() { return System.getProperty("java.specification.version"); } }); return majorVersion(javaSpecVersion); } catch (SecurityException e) { logger.debug("security exception while reading java.specification.version", e); return 6; } } static int majorVersion(final String javaSpecVersion) { final String[] components = javaSpecVersion.split("\\."); final int[] version = new int[components.length]; for (int i = 0; i < components.length; i++) { version[i] = Integer.parseInt(components[i]); } if (version[0] == 1) { assert version[1] >= 6; return version[1]; } else { return version[0]; } } static boolean isExplicitNoUnsafe() { return IS_EXPLICIT_NO_UNSAFE; } private static boolean explicitNoUnsafe0() { final boolean noUnsafe = SystemPropertyUtil.getBoolean("com.virjar.sekiro.business.netty.noUnsafe", false); logger.debug("-Dcom.virjar.sekiro.business.netty.noUnsafe: {}", noUnsafe); if (noUnsafe) { logger.debug("sun.misc.Unsafe: unavailable (com.virjar.sekiro.business.netty.noUnsafe)"); return true; } // Legacy properties boolean tryUnsafe; if (SystemPropertyUtil.contains("com.virjar.sekiro.business.netty.tryUnsafe")) { tryUnsafe = SystemPropertyUtil.getBoolean("com.virjar.sekiro.business.netty.tryUnsafe", true); } else { tryUnsafe = SystemPropertyUtil.getBoolean("org.jboss.netty.tryUnsafe", true); } if (!tryUnsafe) { logger.debug("sun.misc.Unsafe: unavailable (com.virjar.sekiro.business.netty.tryUnsafe/org.jboss.netty.tryUnsafe)"); return true; } return false; } private static boolean hasUnsafe0() { if (isAndroid()) { logger.debug("sun.misc.Unsafe: unavailable (Android)"); return false; } if (IS_EXPLICIT_NO_UNSAFE) { return false; } try { boolean hasUnsafe = PlatformDependent0.hasUnsafe(); logger.debug("sun.misc.Unsafe: {}", hasUnsafe ? "available" : "unavailable"); return hasUnsafe; } catch (Throwable ignored) { // Probably failed to initialize PlatformDependent0. return false; } } private static long arrayBaseOffset0() { if (!hasUnsafe()) { return -1; } return PlatformDependent0.arrayBaseOffset(); } private static long maxDirectMemory0() { long maxDirectMemory = 0; ClassLoader systemClassLoader = null; try { // Try to get from sun.misc.VM.maxDirectMemory() which should be most accurate. systemClassLoader = getSystemClassLoader(); Class vmClass = Class.forName("sun.misc.VM", true, systemClassLoader); Method m = vmClass.getDeclaredMethod("maxDirectMemory"); maxDirectMemory = ((Number) m.invoke(null)).longValue(); } catch (Throwable ignored) { // Ignore } if (maxDirectMemory > 0) { return maxDirectMemory; } try { // Now try to get the JVM option (-XX:MaxDirectMemorySize) and parse it. // Note that we are using reflection because Android doesn't have these classes. Class mgmtFactoryClass = Class.forName( "java.lang.management.ManagementFactory", true, systemClassLoader); Class runtimeClass = Class.forName( "java.lang.management.RuntimeMXBean", true, systemClassLoader); Object runtime = mgmtFactoryClass.getDeclaredMethod("getRuntimeMXBean").invoke(null); @SuppressWarnings("unchecked") List vmArgs = (List) runtimeClass.getDeclaredMethod("getInputArguments").invoke(runtime); for (int i = vmArgs.size() - 1; i >= 0; i --) { Matcher m = MAX_DIRECT_MEMORY_SIZE_ARG_PATTERN.matcher(vmArgs.get(i)); if (!m.matches()) { continue; } maxDirectMemory = Long.parseLong(m.group(1)); switch (m.group(2).charAt(0)) { case 'k': case 'K': maxDirectMemory *= 1024; break; case 'm': case 'M': maxDirectMemory *= 1024 * 1024; break; case 'g': case 'G': maxDirectMemory *= 1024 * 1024 * 1024; break; } break; } } catch (Throwable ignored) { // Ignore } if (maxDirectMemory <= 0) { maxDirectMemory = Runtime.getRuntime().maxMemory(); logger.debug("maxDirectMemory: {} bytes (maybe)", maxDirectMemory); } else { logger.debug("maxDirectMemory: {} bytes", maxDirectMemory); } return maxDirectMemory; } private static boolean hasJavassist0() { if (isAndroid()) { return false; } boolean noJavassist = SystemPropertyUtil.getBoolean("com.virjar.sekiro.business.netty.noJavassist", false); logger.debug("-Dcom.virjar.sekiro.business.netty.noJavassist: {}", noJavassist); if (noJavassist) { logger.debug("Javassist: unavailable (com.virjar.sekiro.business.netty.noJavassist)"); return false; } try { JavassistTypeParameterMatcherGenerator.generate(Object.class, getClassLoader(PlatformDependent.class)); logger.debug("Javassist: available"); return true; } catch (Throwable t) { // Failed to generate a Javassist-based matcher. logger.debug("Javassist: unavailable"); logger.debug( "You don't have Javassist in your class path or you don't have enough permission " + "to load dynamically generated classes. Please check the configuration for better performance."); return false; } } private static File tmpdir0() { File f; try { f = toDirectory(SystemPropertyUtil.get("com.virjar.sekiro.business.netty.tmpdir")); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {}", f); return f; } f = toDirectory(SystemPropertyUtil.get("java.io.tmpdir")); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {} (java.io.tmpdir)", f); return f; } // This shouldn't happen, but just in case .. if (isWindows()) { f = toDirectory(System.getenv("TEMP")); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {} (%TEMP%)", f); return f; } String userprofile = System.getenv("USERPROFILE"); if (userprofile != null) { f = toDirectory(userprofile + "\\AppData\\Local\\Temp"); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {} (%USERPROFILE%\\AppData\\Local\\Temp)", f); return f; } f = toDirectory(userprofile + "\\Local Settings\\Temp"); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {} (%USERPROFILE%\\Local Settings\\Temp)", f); return f; } } } else { f = toDirectory(System.getenv("TMPDIR")); if (f != null) { logger.debug("-Dcom.virjar.sekiro.business.netty.tmpdir: {} ($TMPDIR)", f); return f; } } } catch (Throwable ignored) { // Environment variable inaccessible } // Last resort. if (isWindows()) { f = new File("C:\\Windows\\Temp"); } else { f = new File("/tmp"); } logger.warn("Failed to get the temporary directory; falling back to: {}", f); return f; } @SuppressWarnings("ResultOfMethodCallIgnored") private static File toDirectory(String path) { if (path == null) { return null; } File f = new File(path); f.mkdirs(); if (!f.isDirectory()) { return null; } try { return f.getAbsoluteFile(); } catch (Exception ignored) { return f; } } private static int bitMode0() { // Check user-specified bit mode first. int bitMode = SystemPropertyUtil.getInt("com.virjar.sekiro.business.netty.bitMode", 0); if (bitMode > 0) { logger.debug("-Dcom.virjar.sekiro.business.netty.bitMode: {}", bitMode); return bitMode; } // And then the vendor specific ones which is probably most reliable. bitMode = SystemPropertyUtil.getInt("sun.arch.data.model", 0); if (bitMode > 0) { logger.debug("-Dcom.virjar.sekiro.business.netty.bitMode: {} (sun.arch.data.model)", bitMode); return bitMode; } bitMode = SystemPropertyUtil.getInt("com.ibm.vm.bitmode", 0); if (bitMode > 0) { logger.debug("-Dcom.virjar.sekiro.business.netty.bitMode: {} (com.ibm.vm.bitmode)", bitMode); return bitMode; } // os.arch also gives us a good hint. String arch = SystemPropertyUtil.get("os.arch", "").toLowerCase(Locale.US).trim(); if ("amd64".equals(arch) || "x86_64".equals(arch)) { bitMode = 64; } else if ("i386".equals(arch) || "i486".equals(arch) || "i586".equals(arch) || "i686".equals(arch)) { bitMode = 32; } if (bitMode > 0) { logger.debug("-Dcom.virjar.sekiro.business.netty.bitMode: {} (os.arch: {})", bitMode, arch); } // Last resort: guess from VM name and then fall back to most common 64-bit mode. String vm = SystemPropertyUtil.get("java.vm.name", "").toLowerCase(Locale.US); Pattern BIT_PATTERN = Pattern.compile("([1-9][0-9]+)-?bit"); Matcher m = BIT_PATTERN.matcher(vm); if (m.find()) { return Integer.parseInt(m.group(1)); } else { return 64; } } private static int addressSize0() { if (!hasUnsafe()) { return -1; } return PlatformDependent0.addressSize(); } private static final class AtomicLongCounter extends AtomicLong implements LongCounter { @Override public void add(long delta) { addAndGet(delta); } @Override public void increment() { incrementAndGet(); } @Override public void decrement() { decrementAndGet(); } @Override public long value() { return get(); } } private PlatformDependent() { // only static method supported } }