com.virjar.sekiro.business.netty.util.internal.PlatformDependent Maven / Gradle / Ivy
Show all versions of sekiro-netty Show documentation
/*
* Copyright 2012 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package com.virjar.sekiro.business.netty.util.internal;
import com.virjar.sekiro.business.netty.util.CharsetUtil;
import com.virjar.sekiro.business.netty.util.internal.chmv8.ConcurrentHashMapV8;
import com.virjar.sekiro.business.netty.util.internal.chmv8.LongAdderV8;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLogger;
import com.virjar.sekiro.business.netty.util.internal.logging.InternalLoggerFactory;
import org.jctools.queues.MpscArrayQueue;
import org.jctools.queues.MpscChunkedArrayQueue;
import org.jctools.queues.SpscLinkedQueue;
import org.jctools.queues.atomic.MpscAtomicArrayQueue;
import org.jctools.queues.atomic.MpscLinkedAtomicQueue;
import org.jctools.queues.atomic.SpscLinkedAtomicQueue;
import org.jctools.util.Pow2;
import org.jctools.util.UnsafeAccess;
import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.net.InetSocketAddress;
import java.net.ServerSocket;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Deque;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.atomic.AtomicLong;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
* Utility that detects various properties specific to the current runtime
* environment, such as Java version and the availability of the
* {@code sun.misc.Unsafe} object.
*
* You can disable the use of {@code sun.misc.Unsafe} if you specify
* the system property com.virjar.sekiro.business.netty.noUnsafe.
*/
public final class PlatformDependent {
private static final InternalLogger logger = InternalLoggerFactory.getInstance(PlatformDependent.class);
private static final Pattern MAX_DIRECT_MEMORY_SIZE_ARG_PATTERN = Pattern.compile(
"\\s*-XX:MaxDirectMemorySize\\s*=\\s*([0-9]+)\\s*([kKmMgG]?)\\s*$");
// this must be initialized before any code below triggers initialization of PlatformDependent0
private static final boolean IS_EXPLICIT_NO_UNSAFE = explicitNoUnsafe0();
private static final boolean IS_ANDROID = isAndroid0();
private static final boolean IS_WINDOWS = isWindows0();
private static volatile Boolean IS_ROOT;
private static final int JAVA_VERSION = javaVersion0();
private static final boolean CAN_ENABLE_TCP_NODELAY_BY_DEFAULT = !isAndroid();
private static final boolean HAS_UNSAFE = hasUnsafe0();
private static final boolean CAN_USE_CHM_V8 = HAS_UNSAFE && JAVA_VERSION < 8;
private static final boolean DIRECT_BUFFER_PREFERRED =
HAS_UNSAFE && !SystemPropertyUtil.getBoolean("com.virjar.sekiro.business.netty.noPreferDirect", false);
private static final long MAX_DIRECT_MEMORY = maxDirectMemory0();
private static final int MPSC_CHUNK_SIZE = 1024;
private static final int MIN_MAX_MPSC_CAPACITY = MPSC_CHUNK_SIZE * 2;
private static final int DEFAULT_MAX_MPSC_CAPACITY = MPSC_CHUNK_SIZE * MPSC_CHUNK_SIZE;
private static final int MAX_ALLOWED_MPSC_CAPACITY = Pow2.MAX_POW2;
private static final long ARRAY_BASE_OFFSET = arrayBaseOffset0();
private static final boolean HAS_JAVASSIST = hasJavassist0();
private static final File TMPDIR = tmpdir0();
private static final int BIT_MODE = bitMode0();
private static final int ADDRESS_SIZE = addressSize0();
private static final boolean USE_DIRECT_BUFFER_NO_CLEANER;
private static final AtomicLong DIRECT_MEMORY_COUNTER;
private static final long DIRECT_MEMORY_LIMIT;
public static final boolean BIG_ENDIAN_NATIVE_ORDER = ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN;
static {
if (logger.isDebugEnabled()) {
logger.debug("-Dcom.virjar.sekiro.business.netty.noPreferDirect: {}", !DIRECT_BUFFER_PREFERRED);
}
if (!hasUnsafe() && !isAndroid() && !IS_EXPLICIT_NO_UNSAFE) {
logger.info(
"Your platform does not provide complete low-level API for accessing direct buffers reliably. " +
"Unless explicitly requested, heap buffer will always be preferred to avoid potential system " +
"unstability.");
}
// Here is how the system property is used:
//
// * < 0 - Don't use cleaner, and inherit max direct memory from java. In this case the
// "practical max direct memory" would be 2 * max memory as defined by the JDK.
// * == 0 - Use cleaner, Netty will not enforce max memory, and instead will defer to JDK.
// * > 0 - Don't use cleaner. This will limit Netty's total direct memory
// (note: that JDK's direct memory limit is independent of this).
long maxDirectMemory = SystemPropertyUtil.getLong("com.virjar.sekiro.business.netty.maxDirectMemory", -1);
if (maxDirectMemory == 0 || !hasUnsafe() || !PlatformDependent0.hasDirectBufferNoCleanerConstructor()) {
USE_DIRECT_BUFFER_NO_CLEANER = false;
DIRECT_MEMORY_COUNTER = null;
} else {
USE_DIRECT_BUFFER_NO_CLEANER = true;
if (maxDirectMemory < 0) {
maxDirectMemory = maxDirectMemory0();
if (maxDirectMemory <= 0) {
DIRECT_MEMORY_COUNTER = null;
} else {
DIRECT_MEMORY_COUNTER = new AtomicLong();
}
} else {
DIRECT_MEMORY_COUNTER = new AtomicLong();
}
}
DIRECT_MEMORY_LIMIT = maxDirectMemory;
logger.debug("com.virjar.sekiro.business.netty.maxDirectMemory: {} bytes", maxDirectMemory);
}
/**
* Returns {@code true} if and only if the current platform is Android
*/
public static boolean isAndroid() {
return IS_ANDROID;
}
/**
* Return {@code true} if the JVM is running on Windows
*/
public static boolean isWindows() {
return IS_WINDOWS;
}
/**
* Return {@code true} if the current user is root. Note that this method returns
* {@code false} if on Windows.
*/
public static boolean isRoot() {
if (IS_ROOT == null) {
synchronized (PlatformDependent.class) {
if (IS_ROOT == null) {
IS_ROOT = isRoot0();
}
}
}
return IS_ROOT;
}
/**
* Return the version of Java under which this library is used.
*/
public static int javaVersion() {
return JAVA_VERSION;
}
/**
* Returns {@code true} if and only if it is fine to enable TCP_NODELAY socket option by default.
*/
public static boolean canEnableTcpNoDelayByDefault() {
return CAN_ENABLE_TCP_NODELAY_BY_DEFAULT;
}
/**
* Return {@code true} if {@code sun.misc.Unsafe} was found on the classpath and can be used for acclerated
* direct memory access.
*/
public static boolean hasUnsafe() {
return HAS_UNSAFE;
}
/**
* {@code true} if and only if the platform supports unaligned access.
*
* @see Wikipedia on segfault
*/
public static boolean isUnaligned() {
return PlatformDependent0.isUnaligned();
}
/**
* Returns {@code true} if the platform has reliable low-level direct buffer access API and a user has not specified
* {@code -Dcom.virjar.sekiro.business.netty.noPreferDirect} option.
*/
public static boolean directBufferPreferred() {
return DIRECT_BUFFER_PREFERRED;
}
/**
* Returns the maximum memory reserved for direct buffer allocation.
*/
public static long maxDirectMemory() {
return MAX_DIRECT_MEMORY;
}
/**
* Returns {@code true} if and only if Javassist is available.
*/
public static boolean hasJavassist() {
return HAS_JAVASSIST;
}
/**
* Returns the temporary directory.
*/
public static File tmpdir() {
return TMPDIR;
}
/**
* Returns the bit mode of the current VM (usually 32 or 64.)
*/
public static int bitMode() {
return BIT_MODE;
}
/**
* Return the address size of the OS.
* 4 (for 32 bits systems ) and 8 (for 64 bits systems).
*/
public static int addressSize() {
return ADDRESS_SIZE;
}
public static long allocateMemory(long size) {
return PlatformDependent0.allocateMemory(size);
}
public static void freeMemory(long address) {
PlatformDependent0.freeMemory(address);
}
/**
* Raises an exception bypassing compiler checks for checked exceptions.
*/
public static void throwException(Throwable t) {
if (hasUnsafe()) {
PlatformDependent0.throwException(t);
} else {
PlatformDependent.throwException0(t);
}
}
@SuppressWarnings("unchecked")
private static void throwException0(Throwable t) throws E {
throw (E) t;
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static ConcurrentMap newConcurrentHashMap() {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8();
} else {
return new ConcurrentHashMap();
}
}
/**
* Creates a new fastest {@link LongCounter} implementaion for the current platform.
*/
public static LongCounter newLongCounter() {
if (HAS_UNSAFE) {
return new LongAdderV8();
} else {
return new AtomicLongCounter();
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static ConcurrentMap newConcurrentHashMap(int initialCapacity) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8(initialCapacity);
} else {
return new ConcurrentHashMap(initialCapacity);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static ConcurrentMap newConcurrentHashMap(int initialCapacity, float loadFactor) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8(initialCapacity, loadFactor);
} else {
return new ConcurrentHashMap(initialCapacity, loadFactor);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static ConcurrentMap newConcurrentHashMap(
int initialCapacity, float loadFactor, int concurrencyLevel) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8(initialCapacity, loadFactor, concurrencyLevel);
} else {
return new ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel);
}
}
/**
* Creates a new fastest {@link ConcurrentMap} implementaion for the current platform.
*/
public static ConcurrentMap newConcurrentHashMap(Map extends K, ? extends V> map) {
if (CAN_USE_CHM_V8) {
return new ConcurrentHashMapV8(map);
} else {
return new ConcurrentHashMap(map);
}
}
/**
* Try to deallocate the specified direct {@link ByteBuffer}. Please note this method does nothing if
* the current platform does not support this operation or the specified buffer is not a direct buffer.
*/
public static void freeDirectBuffer(ByteBuffer buffer) {
if (hasUnsafe() && !isAndroid()) {
// only direct to method if we are not running on android.
// See https://github.com/netty/netty/issues/2604
PlatformDependent0.freeDirectBuffer(buffer);
}
}
public static long directBufferAddress(ByteBuffer buffer) {
return PlatformDependent0.directBufferAddress(buffer);
}
public static ByteBuffer directBuffer(long memoryAddress, int size) {
if (PlatformDependent0.hasDirectBufferNoCleanerConstructor()) {
return PlatformDependent0.newDirectBuffer(memoryAddress, size);
}
throw new UnsupportedOperationException(
"sun.misc.Unsafe or java.nio.DirectByteBuffer.(long, int) not available");
}
public static Object getObject(Object object, long fieldOffset) {
return PlatformDependent0.getObject(object, fieldOffset);
}
public static Object getObjectVolatile(Object object, long fieldOffset) {
return PlatformDependent0.getObjectVolatile(object, fieldOffset);
}
public static int getInt(Object object, long fieldOffset) {
return PlatformDependent0.getInt(object, fieldOffset);
}
public static long objectFieldOffset(Field field) {
return PlatformDependent0.objectFieldOffset(field);
}
public static byte getByte(long address) {
return PlatformDependent0.getByte(address);
}
public static short getShort(long address) {
return PlatformDependent0.getShort(address);
}
public static int getInt(long address) {
return PlatformDependent0.getInt(address);
}
public static long getLong(long address) {
return PlatformDependent0.getLong(address);
}
public static byte getByte(byte[] data, int index) {
return PlatformDependent0.getByte(data, index);
}
public static short getShort(byte[] data, int index) {
return PlatformDependent0.getShort(data, index);
}
public static int getInt(byte[] data, int index) {
return PlatformDependent0.getInt(data, index);
}
public static long getLong(byte[] data, int index) {
return PlatformDependent0.getLong(data, index);
}
public static void putByte(long address, byte value) {
PlatformDependent0.putByte(address, value);
}
public static void putShort(long address, short value) {
PlatformDependent0.putShort(address, value);
}
public static void putInt(long address, int value) {
PlatformDependent0.putInt(address, value);
}
public static void putLong(long address, long value) {
PlatformDependent0.putLong(address, value);
}
public static void putByte(byte[] data, int index, byte value) {
PlatformDependent0.putByte(data, index, value);
}
public static void putShort(byte[] data, int index, short value) {
PlatformDependent0.putShort(data, index, value);
}
public static void putInt(byte[] data, int index, int value) {
PlatformDependent0.putInt(data, index, value);
}
public static void putLong(byte[] data, int index, long value) {
PlatformDependent0.putLong(data, index, value);
}
public static void copyMemory(long srcAddr, long dstAddr, long length) {
PlatformDependent0.copyMemory(srcAddr, dstAddr, length);
}
public static void copyMemory(byte[] src, int srcIndex, long dstAddr, long length) {
PlatformDependent0.copyMemory(src, ARRAY_BASE_OFFSET + srcIndex, null, dstAddr, length);
}
public static void copyMemory(long srcAddr, byte[] dst, int dstIndex, long length) {
PlatformDependent0.copyMemory(null, srcAddr, dst, ARRAY_BASE_OFFSET + dstIndex, length);
}
public static void setMemory(byte[] dst, int dstIndex, long bytes, byte value) {
PlatformDependent0.setMemory(dst, ARRAY_BASE_OFFSET + dstIndex, bytes, value);
}
public static void setMemory(long address, long bytes, byte value) {
PlatformDependent0.setMemory(address, bytes, value);
}
/**
* Allocate a new {@link ByteBuffer} with the given {@code capacity}. {@link ByteBuffer}s allocated with
* this method MUST be deallocated via {@link #freeDirectNoCleaner(ByteBuffer)}.
*/
public static ByteBuffer allocateDirectNoCleaner(int capacity) {
assert USE_DIRECT_BUFFER_NO_CLEANER;
incrementMemoryCounter(capacity);
try {
return PlatformDependent0.allocateDirectNoCleaner(capacity);
} catch (Throwable e) {
decrementMemoryCounter(capacity);
throwException(e);
return null;
}
}
/**
* Reallocate a new {@link ByteBuffer} with the given {@code capacity}. {@link ByteBuffer}s reallocated with
* this method MUST be deallocated via {@link #freeDirectNoCleaner(ByteBuffer)}.
*/
public static ByteBuffer reallocateDirectNoCleaner(ByteBuffer buffer, int capacity) {
assert USE_DIRECT_BUFFER_NO_CLEANER;
int len = capacity - buffer.capacity();
incrementMemoryCounter(len);
try {
return PlatformDependent0.reallocateDirectNoCleaner(buffer, capacity);
} catch (Throwable e) {
decrementMemoryCounter(len);
throwException(e);
return null;
}
}
/**
* This method MUST only be called for {@link ByteBuffer}s that were allocated via
* {@link #allocateDirectNoCleaner(int)}.
*/
public static void freeDirectNoCleaner(ByteBuffer buffer) {
assert USE_DIRECT_BUFFER_NO_CLEANER;
int capacity = buffer.capacity();
PlatformDependent0.freeMemory(PlatformDependent0.directBufferAddress(buffer));
decrementMemoryCounter(capacity);
}
private static void incrementMemoryCounter(int capacity) {
if (DIRECT_MEMORY_COUNTER != null) {
for (;;) {
long usedMemory = DIRECT_MEMORY_COUNTER.get();
long newUsedMemory = usedMemory + capacity;
if (newUsedMemory > DIRECT_MEMORY_LIMIT) {
throw new OutOfDirectMemoryError("failed to allocate " + capacity
+ " byte(s) of direct memory (used: " + usedMemory + ", max: " + DIRECT_MEMORY_LIMIT + ')');
}
if (DIRECT_MEMORY_COUNTER.compareAndSet(usedMemory, newUsedMemory)) {
break;
}
}
}
}
private static void decrementMemoryCounter(int capacity) {
if (DIRECT_MEMORY_COUNTER != null) {
long usedMemory = DIRECT_MEMORY_COUNTER.addAndGet(-capacity);
assert usedMemory >= 0;
}
}
public static boolean useDirectBufferNoCleaner() {
return USE_DIRECT_BUFFER_NO_CLEANER;
}
private static final class Mpsc {
private static final boolean USE_MPSC_CHUNKED_ARRAY_QUEUE;
private Mpsc() {
}
static {
Object unsafe = null;
if (hasUnsafe()) {
// jctools goes through its own process of initializing unsafe; of
// course, this requires permissions which might not be granted to calling code, so we
// must mark this block as privileged too
unsafe = AccessController.doPrivileged(new PrivilegedAction