com.vividsolutions.jts.math.Vector3D Maven / Gradle / Ivy
The newest version!
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.math;
import com.vividsolutions.jts.geom.Coordinate;
/**
* Represents a vector in 3-dimensional Cartesian space.
*
* @author mdavis
*
*/
public class Vector3D {
/**
* Computes the dot product of the 3D vectors AB and CD.
*
* @param A
* @param B
* @param C
* @param D
* @return the dot product
*/
public static double dot(Coordinate A, Coordinate B, Coordinate C, Coordinate D)
{
double ABx = B.x - A.x;
double ABy = B.y - A.y;
double ABz = B.z - A.z;
double CDx = D.x - C.x;
double CDy = D.y - C.y;
double CDz = D.z - C.z;
return ABx*CDx + ABy*CDy + ABz*CDz;
}
/**
* Creates a new vector with given X and Y components.
*
* @param x
* the x component
* @param y
* the y component
* @param z
* the z component
* @return a new vector
*/
public static Vector3D create(double x, double y, double z) {
return new Vector3D(x, y, z);
}
/**
* Creates a vector from a {@link Coordinate}.
*
* @param coord
* the Coordinate to copy
* @return a new vector
*/
public static Vector3D create(Coordinate coord) {
return new Vector3D(coord);
}
public Vector3D(Coordinate v) {
x = v.x;
y = v.y;
z = v.z;
}
/**
* Computes the 3D dot-product of two {@link Coordinate}s.
*
* @param v1 the first vector
* @param v2 the second vector
* @return the dot product of the vectors
*/
public static double dot(Coordinate v1, Coordinate v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
private double x;
private double y;
private double z;
public Vector3D(Coordinate from, Coordinate to) {
x = to.x - from.x;
y = to.y - from.y;
z = to.z - from.z;
}
public Vector3D(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
public double getZ() {
return z;
}
/**
* Computes the dot-product of two vectors
*
* @param v
* a vector
* @return the dot product of the vectors
*/
public double dot(Vector3D v) {
return x * v.x + y * v.y + z * v.z;
}
public double length() {
return Math.sqrt(x * x + y * y + z * z);
}
public static double length(Coordinate v) {
return Math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
}
public Vector3D normalize() {
double length = length();
if (length > 0.0)
return divide(length());
return create(0.0, 0.0, 0.0);
}
private Vector3D divide(double d) {
return create(x / d, y / d, z / d);
}
public static Coordinate normalize(Coordinate v) {
double len = length(v);
return new Coordinate(v.x / len, v.y / len, v.z / len);
}
/**
* Gets a string representation of this vector
*
* @return a string representing this vector
*/
public String toString() {
return "[" + x + ", " + y + ", " + z + "]";
}
}