All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vividsolutions.jts.operation.buffer.OffsetCurveSetBuilder Maven / Gradle / Ivy

The newest version!



/*
 * The JTS Topology Suite is a collection of Java classes that
 * implement the fundamental operations required to validate a given
 * geo-spatial data set to a known topological specification.
 *
 * Copyright (C) 2001 Vivid Solutions
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * For more information, contact:
 *
 *     Vivid Solutions
 *     Suite #1A
 *     2328 Government Street
 *     Victoria BC  V8T 5G5
 *     Canada
 *
 *     (250)385-6040
 *     www.vividsolutions.com
 */
package com.vividsolutions.jts.operation.buffer;

/**
 * @version 1.7
 */
import java.util.*;
import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.algorithm.*;
import com.vividsolutions.jts.geomgraph.*;
import com.vividsolutions.jts.noding.*;

/**
 * Creates all the raw offset curves for a buffer of a {@link Geometry}.
 * Raw curves need to be noded together and polygonized to form the final buffer area.
 *
 * @version 1.7
 */
public class OffsetCurveSetBuilder {


  private Geometry inputGeom;
  private double distance;
  private OffsetCurveBuilder curveBuilder;

  private List curveList = new ArrayList();

  public OffsetCurveSetBuilder(
      Geometry inputGeom,
          double distance,
          OffsetCurveBuilder curveBuilder)
  {
    this.inputGeom = inputGeom;
    this.distance = distance;
    this.curveBuilder = curveBuilder;
  }

  /**
   * Computes the set of raw offset curves for the buffer.
   * Each offset curve has an attached {@link Label} indicating
   * its left and right location.
   *
   * @return a Collection of SegmentStrings representing the raw buffer curves
   */
  public List getCurves()
  {
    add(inputGeom);
    return curveList;
  }

  /**
   * Creates a {@link SegmentString} for a coordinate list which is a raw offset curve,
   * and adds it to the list of buffer curves.
   * The SegmentString is tagged with a Label giving the topology of the curve.
   * The curve may be oriented in either direction.
   * If the curve is oriented CW, the locations will be:
   * 
Left: Location.EXTERIOR *
Right: Location.INTERIOR */ private void addCurve(Coordinate[] coord, int leftLoc, int rightLoc) { // don't add null or trivial curves if (coord == null || coord.length < 2) return; // add the edge for a coordinate list which is a raw offset curve SegmentString e = new NodedSegmentString(coord, new Label(0, Location.BOUNDARY, leftLoc, rightLoc)); curveList.add(e); } private void add(Geometry g) { if (g.isEmpty()) return; if (g instanceof Polygon) addPolygon((Polygon) g); // LineString also handles LinearRings else if (g instanceof LineString) addLineString((LineString) g); else if (g instanceof Point) addPoint((Point) g); else if (g instanceof MultiPoint) addCollection((MultiPoint) g); else if (g instanceof MultiLineString) addCollection((MultiLineString) g); else if (g instanceof MultiPolygon) addCollection((MultiPolygon) g); else if (g instanceof GeometryCollection) addCollection((GeometryCollection) g); else throw new UnsupportedOperationException(g.getClass().getName()); } private void addCollection(GeometryCollection gc) { for (int i = 0; i < gc.getNumGeometries(); i++) { Geometry g = gc.getGeometryN(i); add(g); } } /** * Add a Point to the graph. */ private void addPoint(Point p) { // a zero or negative width buffer of a line/point is empty if (distance <= 0.0) return; Coordinate[] coord = p.getCoordinates(); Coordinate[] curve = curveBuilder.getLineCurve(coord, distance); addCurve(curve, Location.EXTERIOR, Location.INTERIOR); } private void addLineString(LineString line) { // a zero or negative width buffer of a line/point is empty if (distance <= 0.0 && ! curveBuilder.getBufferParameters().isSingleSided()) return; Coordinate[] coord = CoordinateArrays.removeRepeatedPoints(line.getCoordinates()); Coordinate[] curve = curveBuilder.getLineCurve(coord, distance); addCurve(curve, Location.EXTERIOR, Location.INTERIOR); // TESTING //Coordinate[] curveTrim = BufferCurveLoopPruner.prune(curve); //addCurve(curveTrim, Location.EXTERIOR, Location.INTERIOR); } private void addPolygon(Polygon p) { double offsetDistance = distance; int offsetSide = Position.LEFT; if (distance < 0.0) { offsetDistance = -distance; offsetSide = Position.RIGHT; } LinearRing shell = (LinearRing) p.getExteriorRing(); Coordinate[] shellCoord = CoordinateArrays.removeRepeatedPoints(shell.getCoordinates()); // optimization - don't bother computing buffer // if the polygon would be completely eroded if (distance < 0.0 && isErodedCompletely(shell, distance)) return; // don't attemtp to buffer a polygon with too few distinct vertices if (distance <= 0.0 && shellCoord.length < 3) return; addPolygonRing( shellCoord, offsetDistance, offsetSide, Location.EXTERIOR, Location.INTERIOR); for (int i = 0; i < p.getNumInteriorRing(); i++) { LinearRing hole = (LinearRing) p.getInteriorRingN(i); Coordinate[] holeCoord = CoordinateArrays.removeRepeatedPoints(hole.getCoordinates()); // optimization - don't bother computing buffer for this hole // if the hole would be completely covered if (distance > 0.0 && isErodedCompletely(hole, -distance)) continue; // Holes are topologically labelled opposite to the shell, since // the interior of the polygon lies on their opposite side // (on the left, if the hole is oriented CCW) addPolygonRing( holeCoord, offsetDistance, Position.opposite(offsetSide), Location.INTERIOR, Location.EXTERIOR); } } /** * Adds an offset curve for a polygon ring. * The side and left and right topological location arguments * assume that the ring is oriented CW. * If the ring is in the opposite orientation, * the left and right locations must be interchanged and the side flipped. * * @param coord the coordinates of the ring (must not contain repeated points) * @param offsetDistance the distance at which to create the buffer * @param side the side of the ring on which to construct the buffer line * @param cwLeftLoc the location on the L side of the ring (if it is CW) * @param cwRightLoc the location on the R side of the ring (if it is CW) */ private void addPolygonRing(Coordinate[] coord, double offsetDistance, int side, int cwLeftLoc, int cwRightLoc) { // don't bother adding ring if it is "flat" and will disappear in the output if (offsetDistance == 0.0 && coord.length < LinearRing.MINIMUM_VALID_SIZE) return; int leftLoc = cwLeftLoc; int rightLoc = cwRightLoc; if (coord.length >= LinearRing.MINIMUM_VALID_SIZE && CGAlgorithms.isCCW(coord)) { leftLoc = cwRightLoc; rightLoc = cwLeftLoc; side = Position.opposite(side); } Coordinate[] curve = curveBuilder.getRingCurve(coord, side, offsetDistance); addCurve(curve, leftLoc, rightLoc); } /** * The ringCoord is assumed to contain no repeated points. * It may be degenerate (i.e. contain only 1, 2, or 3 points). * In this case it has no area, and hence has a minimum diameter of 0. * * @param ringCoord * @param offsetDistance * @return */ private boolean isErodedCompletely(LinearRing ring, double bufferDistance) { Coordinate[] ringCoord = ring.getCoordinates(); double minDiam = 0.0; // degenerate ring has no area if (ringCoord.length < 4) return bufferDistance < 0; // important test to eliminate inverted triangle bug // also optimizes erosion test for triangles if (ringCoord.length == 4) return isTriangleErodedCompletely(ringCoord, bufferDistance); // if envelope is narrower than twice the buffer distance, ring is eroded Envelope env = ring.getEnvelopeInternal(); double envMinDimension = Math.min(env.getHeight(), env.getWidth()); if (bufferDistance < 0.0 && 2 * Math.abs(bufferDistance) > envMinDimension) return true; return false; /** * The following is a heuristic test to determine whether an * inside buffer will be eroded completely. * It is based on the fact that the minimum diameter of the ring pointset * provides an upper bound on the buffer distance which would erode the * ring. * If the buffer distance is less than the minimum diameter, the ring * may still be eroded, but this will be determined by * a full topological computation. * */ //System.out.println(ring); /* MD 7 Feb 2005 - there's an unknown bug in the MD code, so disable this for now MinimumDiameter md = new MinimumDiameter(ring); minDiam = md.getLength(); //System.out.println(md.getDiameter()); return minDiam < 2 * Math.abs(bufferDistance); */ } /** * Tests whether a triangular ring would be eroded completely by the given * buffer distance. * This is a precise test. It uses the fact that the inner buffer of a * triangle converges on the inCentre of the triangle (the point * equidistant from all sides). If the buffer distance is greater than the * distance of the inCentre from a side, the triangle will be eroded completely. * * This test is important, since it removes a problematic case where * the buffer distance is slightly larger than the inCentre distance. * In this case the triangle buffer curve "inverts" with incorrect topology, * producing an incorrect hole in the buffer. * * @param triangleCoord * @param bufferDistance * @return */ private boolean isTriangleErodedCompletely( Coordinate[] triangleCoord, double bufferDistance) { Triangle tri = new Triangle(triangleCoord[0], triangleCoord[1], triangleCoord[2]); Coordinate inCentre = tri.inCentre(); double distToCentre = CGAlgorithms.distancePointLine(inCentre, tri.p0, tri.p1); return distToCentre < Math.abs(bufferDistance); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy