com.vividsolutions.jts.triangulate.quadedge.Vertex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jts Show documentation
Show all versions of jts Show documentation
The JTS Topology Suite is an API for modelling and
manipulating 2-dimensional linear geometry. It provides
numerous geometric predicates and functions. JTS
conforms to the Simple Features Specification for
SQL published by the Open GIS Consortium.
/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* For more information, contact:
*
* Vivid Solutions
* Suite #1A
* 2328 Government Street
* Victoria BC V8T 5G5
* Canada
*
* (250)385-6040
* www.vividsolutions.com
*/
package com.vividsolutions.jts.triangulate.quadedge;
import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.Triangle;
import com.vividsolutions.jts.geom.impl.CoordinateArraySequence;
import com.vividsolutions.jts.io.WKTWriter;
import com.vividsolutions.jts.algorithm.*;
/**
* Models a site (node) in a {@link QuadEdgeSubdivision}.
* The sites can be points on a lineString representing a
* linear site.
* The vertex can be considered as a vector with a norm, length, inner product, cross
* product, etc. Additionally, point relations (e.g., is a point to the left of a line, the circle
* defined by this point and two others, etc.) are also defined in this class.
*
* @author David Skea
* @author Martin Davis
*/
public class Vertex
{
public static final int LEFT = 0;
public static final int RIGHT = 1;
public static final int BEYOND = 2;
public static final int BEHIND = 3;
public static final int BETWEEN = 4;
public static final int ORIGIN = 5;
public static final int DESTINATION = 6;
private Coordinate p;
// private int edgeNumber = -1;
public Vertex(double _x, double _y) {
p = new Coordinate(_x, _y);
}
public Vertex(double _x, double _y, double _z) {
p = new Coordinate(_x, _y, _z);
}
public Vertex(Coordinate _p) {
p = new Coordinate(_p);
}
public double getX() {
return p.x;
}
public double getY() {
return p.y;
}
public double getZ() {
return p.z;
}
public void setZ(double _z) {
p.z = _z;
}
public Coordinate getCoordinate() {
return p;
}
public String toString() {
return "POINT (" + p.x + " " + p.y + ")";
}
public boolean equals(Vertex _x) {
if (p.x == _x.getX() && p.y == _x.getY()) {
return true;
} else {
return false;
}
}
public boolean equals(Vertex _x, double tolerance) {
if (p.distance(_x.getCoordinate()) < tolerance) {
return true;
} else {
return false;
}
}
public int classify(Vertex p0, Vertex p1) {
Vertex p2 = this;
Vertex a = p1.sub(p0);
Vertex b = p2.sub(p0);
double sa = a.crossProduct(b);
if (sa > 0.0)
return LEFT;
if (sa < 0.0)
return RIGHT;
if ((a.getX() * b.getX() < 0.0) || (a.getY() * b.getY() < 0.0))
return BEHIND;
if (a.magn() < b.magn())
return BEYOND;
if (p0.equals(p2))
return ORIGIN;
if (p1.equals(p2))
return DESTINATION;
return BETWEEN;
}
/**
* Computes the cross product k = u X v.
*
* @param v a vertex
* @return returns the magnitude of u X v
*/
double crossProduct(Vertex v) {
return (p.x * v.getY() - p.y * v.getX());
}
/**
* Computes the inner or dot product
*
* @param v, a vertex
* @return returns the dot product u.v
*/
double dot(Vertex v) {
return (p.x * v.getX() + p.y * v.getY());
}
/**
* Computes the scalar product c(v)
*
* @param v, a vertex
* @return returns the scaled vector
*/
Vertex times(double c) {
return (new Vertex(c * p.x, c * p.y));
}
/* Vector addition */
Vertex sum(Vertex v) {
return (new Vertex(p.x + v.getX(), p.y + v.getY()));
}
/* and subtraction */
Vertex sub(Vertex v) {
return (new Vertex(p.x - v.getX(), p.y - v.getY()));
}
/* magnitude of vector */
double magn() {
return (Math.sqrt(p.x * p.x + p.y * p.y));
}
/* returns k X v (cross product). this is a vector perpendicular to v */
Vertex cross() {
return (new Vertex(p.y, -p.x));
}
/** ************************************************************* */
/***********************************************************************************************
* Geometric primitives /
**********************************************************************************************/
/**
* Tests if the vertex is inside the circle defined by
* the triangle with vertices a, b, c (oriented counter-clockwise).
*
* @param a a vertex of the triangle
* @param b a vertex of the triangle
* @param c a vertex of the triangle
* @return true if this vertex is in the circumcircle of (a,b,c)
*/
public boolean isInCircle(Vertex a, Vertex b, Vertex c)
{
return TrianglePredicate.isInCircleRobust(a.p, b.p, c.p, this.p);
// non-robust - best to not use
//return TrianglePredicate.isInCircle(a.p, b.p, c.p, this.p);
}
/**
* Tests whether the triangle formed by this vertex and two
* other vertices is in CCW orientation.
*
* @param b a vertex
* @param c a vertex
* @returns true if the triangle is oriented CCW
*/
public final boolean isCCW(Vertex b, Vertex c)
{
/*
// test code used to check for robustness of triArea
boolean isCCW = (b.p.x - p.x) * (c.p.y - p.y)
- (b.p.y - p.y) * (c.p.x - p.x) > 0;
//boolean isCCW = triArea(this, b, c) > 0;
boolean isCCWRobust = CGAlgorithms.orientationIndex(p, b.p, c.p) == CGAlgorithms.COUNTERCLOCKWISE;
if (isCCWRobust != isCCW)
System.out.println("CCW failure");
//*/
// is equal to the signed area of the triangle
return (b.p.x - p.x) * (c.p.y - p.y)
- (b.p.y - p.y) * (c.p.x - p.x) > 0;
// original rolled code
//boolean isCCW = triArea(this, b, c) > 0;
//return isCCW;
}
public final boolean rightOf(QuadEdge e) {
return isCCW(e.dest(), e.orig());
}
public final boolean leftOf(QuadEdge e) {
return isCCW(e.orig(), e.dest());
}
private HCoordinate bisector(Vertex a, Vertex b) {
// returns the perpendicular bisector of the line segment ab
double dx = b.getX() - a.getX();
double dy = b.getY() - a.getY();
HCoordinate l1 = new HCoordinate(a.getX() + dx / 2.0, a.getY() + dy / 2.0, 1.0);
HCoordinate l2 = new HCoordinate(a.getX() - dy + dx / 2.0, a.getY() + dx + dy / 2.0, 1.0);
return new HCoordinate(l1, l2);
}
private double distance(Vertex v1, Vertex v2) {
return Math.sqrt(Math.pow(v2.getX() - v1.getX(), 2.0)
+ Math.pow(v2.getY() - v1.getY(), 2.0));
}
/**
* Computes the value of the ratio of the circumradius to shortest edge. If smaller than some
* given tolerance B, the associated triangle is considered skinny. For an equal lateral
* triangle this value is 0.57735. The ratio is related to the minimum triangle angle theta by:
* circumRadius/shortestEdge = 1/(2sin(theta)).
*
* @param b second vertex of the triangle
* @param c third vertex of the triangle
* @return ratio of circumradius to shortest edge.
*/
public double circumRadiusRatio(Vertex b, Vertex c) {
Vertex x = this.circleCenter(b, c);
double radius = distance(x, b);
double edgeLength = distance(this, b);
double el = distance(b, c);
if (el < edgeLength) {
edgeLength = el;
}
el = distance(c, this);
if (el < edgeLength) {
edgeLength = el;
}
return radius / edgeLength;
}
/**
* returns a new vertex that is mid-way between this vertex and another end point.
*
* @param a the other end point.
* @return the point mid-way between this and that.
*/
public Vertex midPoint(Vertex a) {
double xm = (p.x + a.getX()) / 2.0;
double ym = (p.y + a.getY()) / 2.0;
double zm = (p.z + a.getZ()) / 2.0;
return new Vertex(xm, ym, zm);
}
/**
* Computes the centre of the circumcircle of this vertex and two others.
*
* @param b
* @param c
* @return the Coordinate which is the circumcircle of the 3 points.
*/
public Vertex circleCenter(Vertex b, Vertex c) {
Vertex a = new Vertex(this.getX(), this.getY());
// compute the perpendicular bisector of cord ab
HCoordinate cab = bisector(a, b);
// compute the perpendicular bisector of cord bc
HCoordinate cbc = bisector(b, c);
// compute the intersection of the bisectors (circle radii)
HCoordinate hcc = new HCoordinate(cab, cbc);
Vertex cc = null;
try {
cc = new Vertex(hcc.getX(), hcc.getY());
} catch (NotRepresentableException nre) {
System.err.println("a: " + a + " b: " + b + " c: " + c);
System.err.println(nre);
}
return cc;
}
/**
* For this vertex enclosed in a triangle defined by three verticies v0, v1 and v2, interpolate
* a z value from the surrounding vertices.
*/
public double interpolateZValue(Vertex v0, Vertex v1, Vertex v2) {
double x0 = v0.getX();
double y0 = v0.getY();
double a = v1.getX() - x0;
double b = v2.getX() - x0;
double c = v1.getY() - y0;
double d = v2.getY() - y0;
double det = a * d - b * c;
double dx = this.getX() - x0;
double dy = this.getY() - y0;
double t = (d * dx - b * dy) / det;
double u = (-c * dx + a * dy) / det;
double z = v0.getZ() + t * (v1.getZ() - v0.getZ()) + u * (v2.getZ() - v0.getZ());
return z;
}
/**
* Interpolates the Z value of a point enclosed in a 3D triangle.
*/
public static double interpolateZ(Coordinate p, Coordinate v0, Coordinate v1, Coordinate v2) {
double x0 = v0.x;
double y0 = v0.y;
double a = v1.x - x0;
double b = v2.x - x0;
double c = v1.y - y0;
double d = v2.y - y0;
double det = a * d - b * c;
double dx = p.x - x0;
double dy = p.y - y0;
double t = (d * dx - b * dy) / det;
double u = (-c * dx + a * dy) / det;
double z = v0.z + t * (v1.z - v0.z) + u * (v2.z - v0.z);
return z;
}
/**
* Computes the interpolated Z-value for a point p lying on the segment p0-p1
*
* @param p
* @param p0
* @param p1
* @return
*/
public static double interpolateZ(Coordinate p, Coordinate p0, Coordinate p1) {
double segLen = p0.distance(p1);
double ptLen = p.distance(p0);
double dz = p1.z - p0.z;
double pz = p0.z + dz * (ptLen / segLen);
return pz;
}
}