All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.vwo.bucketing.Murmur3 Maven / Gradle / Ivy

There is a newer version: 1.66.0
Show newest version
package com.vwo.bucketing;

public class Murmur3 {
  /*
   * Licensed to the Apache Software Foundation (ASF) under one
   * or more contributor license agreements.  See the NOTICE file
   * distributed with this work for additional information
   * regarding copyright ownership.  The ASF licenses this file
   * to you under the Apache License, Version 2.0 (the
   * "License"); you may not use this file except in compliance
   * with the License.  You may obtain a copy of the License at
   *
   *     http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */

  /**
   * Murmur3 is successor to Murmur2 fast non-crytographic hash algorithms.
   * 

* Murmur3 32 and 128 bit variants. * 32-bit Java port of https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp#94 * 128-bit Java port of https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp#255 *

* This is a public domain code with no copyrights. * From homepage of MurmurHash (https://code.google.com/p/smhasher/), * "All MurmurHash versions are public domain software, and the author disclaims all copyright * to their code." */ // from 64-bit linear congruential generator public static final long NULL_HASHCODE = 2862933555777941757L; // Constants for 32 bit variant private static final int C1_32 = 0xcc9e2d51; private static final int C2_32 = 0x1b873593; private static final int R1_32 = 15; private static final int R2_32 = 13; private static final int M_32 = 5; private static final int N_32 = 0xe6546b64; // Constants for 128 bit variant private static final long C1 = 0x87c37b91114253d5L; private static final long C2 = 0x4cf5ad432745937fL; private static final int R1 = 31; private static final int R2 = 27; private static final int R3 = 33; private static final int M = 5; private static final int N1 = 0x52dce729; private static final int N2 = 0x38495ab5; public static final int DEFAULT_SEED = 104729; public static int hash32(long l0, long l1) { return hash32(l0, l1, DEFAULT_SEED); } public static int hash32(long l0) { return hash32(l0, DEFAULT_SEED); } /** * Murmur3 32-bit variant. * * @param l0 - Bytes * @param seed - Seed value * @return - Hash 32 value */ public static int hash32(long l0, int seed) { int hash = seed; final long r0 = Long.reverseBytes(l0); hash = mix32((int) r0, hash); hash = mix32((int) (r0 >>> 32), hash); return fmix32(Long.BYTES, hash); } /** * Murmur3 32-bit variant. * * @param l0 - Bytes * @param l1 - Bytes * @param seed - Seed value * @return - Hash 32 value */ public static int hash32(long l0, long l1, int seed) { int hash = seed; final long r0 = Long.reverseBytes(l0); final long r1 = Long.reverseBytes(l1); hash = mix32((int) r0, hash); hash = mix32((int) (r0 >>> 32), hash); hash = mix32((int) (r1), hash); hash = mix32((int) (r1 >>> 32), hash); return fmix32(Long.BYTES * 2, hash); } /** * Murmur3 32-bit variant. * * @param data - input byte array * @return - hashcode */ public static int hash32(byte[] data) { return hash32(data, 0, data.length, DEFAULT_SEED); } /** * Murmur3 32-bit variant. * * @param data - input byte array * @param length - length of array * @return - hashcode */ public static int hash32(byte[] data, int length) { return hash32(data, 0, length, DEFAULT_SEED); } /** * Murmur3 32-bit variant. * * @param data - input byte array * @param length - length of array * @param seed - seed. (default 0) * @return - hashcode */ public static int hash32(byte[] data, int length, int seed) { return hash32(data, 0, length, seed); } /** * Murmur3 32-bit variant. * * @param data - input byte array * @param offset - offset of data * @param length - length of array * @param seed - seed. (default 0) * @return - hashcode */ public static int hash32(byte[] data, int offset, int length, int seed) { int hash = seed; final int nblocks = length >> 2; // body for (int i = 0; i < nblocks; i++) { int i_4 = i << 2; int k = (data[offset + i_4] & 0xff) | ((data[offset + i_4 + 1] & 0xff) << 8) | ((data[offset + i_4 + 2] & 0xff) << 16) | ((data[offset + i_4 + 3] & 0xff) << 24); hash = mix32(k, hash); } // tail int idx = nblocks << 2; int k1 = 0; switch (length - idx) { case 3: k1 ^= data[offset + idx + 2] << 16; case 2: k1 ^= data[offset + idx + 1] << 8; case 1: k1 ^= data[offset + idx]; // mix functions k1 *= C1_32; k1 = Integer.rotateLeft(k1, R1_32); k1 *= C2_32; hash ^= k1; } return fmix32(length, hash); } private static int mix32(int k, int hash) { k *= C1_32; k = Integer.rotateLeft(k, R1_32); k *= C2_32; hash ^= k; return Integer.rotateLeft(hash, R2_32) * M_32 + N_32; } private static int fmix32(int length, int hash) { hash ^= length; hash ^= (hash >>> 16); hash *= 0x85ebca6b; hash ^= (hash >>> 13); hash *= 0xc2b2ae35; hash ^= (hash >>> 16); return hash; } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input byte array * @return - hashcode */ public static long hash64(byte[] data) { return hash64(data, 0, data.length, DEFAULT_SEED); } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input long data * @return - hashcode */ public static long hash64(long data) { long hash = DEFAULT_SEED; long k = Long.reverseBytes(data); int length = Long.BYTES; // mix functions k *= C1; k = Long.rotateLeft(k, R1); k *= C2; hash ^= k; hash = Long.rotateLeft(hash, R2) * M + N1; // finalization hash ^= length; hash = fmix64(hash); return hash; } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input int data * @return - hashcode */ public static long hash64(int data) { long k1 = Integer.reverseBytes(data) & (-1L >>> 32); int length = Integer.BYTES; long hash = DEFAULT_SEED; k1 *= C1; k1 = Long.rotateLeft(k1, R1); k1 *= C2; hash ^= k1; // finalization hash ^= length; hash = fmix64(hash); return hash; } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input short data * @return - hashcode */ public static long hash64(short data) { long hash = DEFAULT_SEED; long k1 = 0; k1 ^= ((long) data & 0xff) << 8; k1 ^= ((long) ((data & 0xFF00) >> 8) & 0xff); k1 *= C1; k1 = Long.rotateLeft(k1, R1); k1 *= C2; hash ^= k1; // finalization hash ^= Short.BYTES; hash = fmix64(hash); return hash; } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input byte array * @param offset - offset value * @param length - length of array * @return - hashcode */ public static long hash64(byte[] data, int offset, int length) { return hash64(data, offset, length, DEFAULT_SEED); } /** * Murmur3 64-bit variant. This is essentially MSB 8 bytes of Murmur3 128-bit variant. * * @param data - input byte array * @param length - length of array * @param seed - seed. (default is 0) * @return - hashcode */ public static long hash64(byte[] data, int offset, int length, int seed) { long hash = seed; final int nblocks = length >> 3; // body for (int i = 0; i < nblocks; i++) { final int i8 = i << 3; long k = ((long) data[offset + i8] & 0xff) | (((long) data[offset + i8 + 1] & 0xff) << 8) | (((long) data[offset + i8 + 2] & 0xff) << 16) | (((long) data[offset + i8 + 3] & 0xff) << 24) | (((long) data[offset + i8 + 4] & 0xff) << 32) | (((long) data[offset + i8 + 5] & 0xff) << 40) | (((long) data[offset + i8 + 6] & 0xff) << 48) | (((long) data[offset + i8 + 7] & 0xff) << 56); // mix functions k *= C1; k = Long.rotateLeft(k, R1); k *= C2; hash ^= k; hash = Long.rotateLeft(hash, R2) * M + N1; } // tail long k1 = 0; int tailStart = nblocks << 3; switch (length - tailStart) { case 7: k1 ^= ((long) data[offset + tailStart + 6] & 0xff) << 48; case 6: k1 ^= ((long) data[offset + tailStart + 5] & 0xff) << 40; case 5: k1 ^= ((long) data[offset + tailStart + 4] & 0xff) << 32; case 4: k1 ^= ((long) data[offset + tailStart + 3] & 0xff) << 24; case 3: k1 ^= ((long) data[offset + tailStart + 2] & 0xff) << 16; case 2: k1 ^= ((long) data[offset + tailStart + 1] & 0xff) << 8; case 1: k1 ^= ((long) data[offset + tailStart] & 0xff); k1 *= C1; k1 = Long.rotateLeft(k1, R1); k1 *= C2; hash ^= k1; } // finalization hash ^= length; hash = fmix64(hash); return hash; } /** * Murmur3 128-bit variant. * * @param data - input byte array * @return - hashcode (2 longs) */ public static long[] hash128(byte[] data) { return hash128(data, 0, data.length, DEFAULT_SEED); } /** * Murmur3 128-bit variant. * * @param data - input byte array * @param offset - the first element of array * @param length - length of array * @param seed - seed. (default is 0) * @return - hashcode (2 longs) */ public static long[] hash128(byte[] data, int offset, int length, int seed) { long h1 = seed; long h2 = seed; final int nblocks = length >> 4; // body for (int i = 0; i < nblocks; i++) { final int i16 = i << 4; long k1 = ((long) data[offset + i16] & 0xff) | (((long) data[offset + i16 + 1] & 0xff) << 8) | (((long) data[offset + i16 + 2] & 0xff) << 16) | (((long) data[offset + i16 + 3] & 0xff) << 24) | (((long) data[offset + i16 + 4] & 0xff) << 32) | (((long) data[offset + i16 + 5] & 0xff) << 40) | (((long) data[offset + i16 + 6] & 0xff) << 48) | (((long) data[offset + i16 + 7] & 0xff) << 56); long k2 = ((long) data[offset + i16 + 8] & 0xff) | (((long) data[offset + i16 + 9] & 0xff) << 8) | (((long) data[offset + i16 + 10] & 0xff) << 16) | (((long) data[offset + i16 + 11] & 0xff) << 24) | (((long) data[offset + i16 + 12] & 0xff) << 32) | (((long) data[offset + i16 + 13] & 0xff) << 40) | (((long) data[offset + i16 + 14] & 0xff) << 48) | (((long) data[offset + i16 + 15] & 0xff) << 56); // mix functions for k1 k1 *= C1; k1 = Long.rotateLeft(k1, R1); k1 *= C2; h1 ^= k1; h1 = Long.rotateLeft(h1, R2); h1 += h2; h1 = h1 * M + N1; // mix functions for k2 k2 *= C2; k2 = Long.rotateLeft(k2, R3); k2 *= C1; h2 ^= k2; h2 = Long.rotateLeft(h2, R1); h2 += h1; h2 = h2 * M + N2; } // tail long k1 = 0; long k2 = 0; int tailStart = nblocks << 4; switch (length - tailStart) { case 15: k2 ^= (long) (data[offset + tailStart + 14] & 0xff) << 48; case 14: k2 ^= (long) (data[offset + tailStart + 13] & 0xff) << 40; case 13: k2 ^= (long) (data[offset + tailStart + 12] & 0xff) << 32; case 12: k2 ^= (long) (data[offset + tailStart + 11] & 0xff) << 24; case 11: k2 ^= (long) (data[offset + tailStart + 10] & 0xff) << 16; case 10: k2 ^= (long) (data[offset + tailStart + 9] & 0xff) << 8; case 9: k2 ^= (long) (data[offset + tailStart + 8] & 0xff); k2 *= C2; k2 = Long.rotateLeft(k2, R3); k2 *= C1; h2 ^= k2; case 8: k1 ^= (long) (data[offset + tailStart + 7] & 0xff) << 56; case 7: k1 ^= (long) (data[offset + tailStart + 6] & 0xff) << 48; case 6: k1 ^= (long) (data[offset + tailStart + 5] & 0xff) << 40; case 5: k1 ^= (long) (data[offset + tailStart + 4] & 0xff) << 32; case 4: k1 ^= (long) (data[offset + tailStart + 3] & 0xff) << 24; case 3: k1 ^= (long) (data[offset + tailStart + 2] & 0xff) << 16; case 2: k1 ^= (long) (data[offset + tailStart + 1] & 0xff) << 8; case 1: k1 ^= (long) (data[offset + tailStart] & 0xff); k1 *= C1; k1 = Long.rotateLeft(k1, R1); k1 *= C2; h1 ^= k1; } // finalization h1 ^= length; h2 ^= length; h1 += h2; h2 += h1; h1 = fmix64(h1); h2 = fmix64(h2); h1 += h2; h2 += h1; return new long[]{h1, h2}; } private static long fmix64(long h) { h ^= (h >>> 33); h *= 0xff51afd7ed558ccdL; h ^= (h >>> 33); h *= 0xc4ceb9fe1a85ec53L; h ^= (h >>> 33); return h; } public static class IncrementalHash32 { byte[] tail = new byte[3]; int tailLen; int totalLen; int hash; public final void start(int hash) { tailLen = totalLen = 0; this.hash = hash; } public final void add(byte[] data, int offset, int length) { if (length == 0) return; totalLen += length; if (tailLen + length < 4) { System.arraycopy(data, offset, tail, tailLen, length); tailLen += length; return; } int offset2 = 0; if (tailLen > 0) { offset2 = (4 - tailLen); int k = -1; switch (tailLen) { case 1: k = orBytes(tail[0], data[offset], data[offset + 1], data[offset + 2]); break; case 2: k = orBytes(tail[0], tail[1], data[offset], data[offset + 1]); break; case 3: k = orBytes(tail[0], tail[1], tail[2], data[offset]); break; default: throw new AssertionError(tailLen); } // mix functions k *= C1_32; k = Integer.rotateLeft(k, R1_32); k *= C2_32; hash ^= k; hash = Integer.rotateLeft(hash, R2_32) * M_32 + N_32; } int length2 = length - offset2; offset += offset2; final int nblocks = length2 >> 2; for (int i = 0; i < nblocks; i++) { int i_4 = (i << 2) + offset; int k = orBytes(data[i_4], data[i_4 + 1], data[i_4 + 2], data[i_4 + 3]); // mix functions k *= C1_32; k = Integer.rotateLeft(k, R1_32); k *= C2_32; hash ^= k; hash = Integer.rotateLeft(hash, R2_32) * M_32 + N_32; } int consumed = (nblocks << 2); tailLen = length2 - consumed; if (consumed == length2) return; System.arraycopy(data, offset + consumed, tail, 0, tailLen); } public final int end() { int k1 = 0; switch (tailLen) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; // mix functions k1 *= C1_32; k1 = Integer.rotateLeft(k1, R1_32); k1 *= C2_32; hash ^= k1; } // finalization hash ^= totalLen; hash ^= (hash >>> 16); hash *= 0x85ebca6b; hash ^= (hash >>> 13); hash *= 0xc2b2ae35; hash ^= (hash >>> 16); return hash; } } private static int orBytes(byte b1, byte b2, byte b3, byte b4) { return (b1 & 0xff) | ((b2 & 0xff) << 8) | ((b3 & 0xff) << 16) | ((b4 & 0xff) << 24); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy