All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.elasticsearch.client.MachineLearningClient Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to Elasticsearch under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.elasticsearch.client;

import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.support.master.AcknowledgedResponse;
import org.elasticsearch.client.ml.CloseJobRequest;
import org.elasticsearch.client.ml.CloseJobResponse;
import org.elasticsearch.client.ml.DeleteTrainedModelRequest;
import org.elasticsearch.client.ml.ExplainDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.ExplainDataFrameAnalyticsResponse;
import org.elasticsearch.client.ml.DeleteCalendarEventRequest;
import org.elasticsearch.client.ml.DeleteCalendarJobRequest;
import org.elasticsearch.client.ml.DeleteCalendarRequest;
import org.elasticsearch.client.ml.DeleteDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.DeleteDatafeedRequest;
import org.elasticsearch.client.ml.DeleteExpiredDataRequest;
import org.elasticsearch.client.ml.DeleteExpiredDataResponse;
import org.elasticsearch.client.ml.DeleteFilterRequest;
import org.elasticsearch.client.ml.DeleteForecastRequest;
import org.elasticsearch.client.ml.DeleteJobRequest;
import org.elasticsearch.client.ml.DeleteJobResponse;
import org.elasticsearch.client.ml.DeleteModelSnapshotRequest;
import org.elasticsearch.client.ml.EvaluateDataFrameRequest;
import org.elasticsearch.client.ml.EvaluateDataFrameResponse;
import org.elasticsearch.client.ml.FindFileStructureRequest;
import org.elasticsearch.client.ml.FindFileStructureResponse;
import org.elasticsearch.client.ml.FlushJobRequest;
import org.elasticsearch.client.ml.FlushJobResponse;
import org.elasticsearch.client.ml.ForecastJobRequest;
import org.elasticsearch.client.ml.ForecastJobResponse;
import org.elasticsearch.client.ml.GetBucketsRequest;
import org.elasticsearch.client.ml.GetBucketsResponse;
import org.elasticsearch.client.ml.GetCalendarEventsRequest;
import org.elasticsearch.client.ml.GetCalendarEventsResponse;
import org.elasticsearch.client.ml.GetCalendarsRequest;
import org.elasticsearch.client.ml.GetCalendarsResponse;
import org.elasticsearch.client.ml.GetCategoriesRequest;
import org.elasticsearch.client.ml.GetCategoriesResponse;
import org.elasticsearch.client.ml.GetDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.GetDataFrameAnalyticsResponse;
import org.elasticsearch.client.ml.GetDataFrameAnalyticsStatsRequest;
import org.elasticsearch.client.ml.GetDataFrameAnalyticsStatsResponse;
import org.elasticsearch.client.ml.GetDatafeedRequest;
import org.elasticsearch.client.ml.GetDatafeedResponse;
import org.elasticsearch.client.ml.GetDatafeedStatsRequest;
import org.elasticsearch.client.ml.GetDatafeedStatsResponse;
import org.elasticsearch.client.ml.GetFiltersRequest;
import org.elasticsearch.client.ml.GetFiltersResponse;
import org.elasticsearch.client.ml.GetInfluencersRequest;
import org.elasticsearch.client.ml.GetInfluencersResponse;
import org.elasticsearch.client.ml.GetJobRequest;
import org.elasticsearch.client.ml.GetJobResponse;
import org.elasticsearch.client.ml.GetJobStatsRequest;
import org.elasticsearch.client.ml.GetJobStatsResponse;
import org.elasticsearch.client.ml.GetModelSnapshotsRequest;
import org.elasticsearch.client.ml.GetModelSnapshotsResponse;
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
import org.elasticsearch.client.ml.GetOverallBucketsResponse;
import org.elasticsearch.client.ml.GetRecordsRequest;
import org.elasticsearch.client.ml.GetRecordsResponse;
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
import org.elasticsearch.client.ml.GetTrainedModelsResponse;
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
import org.elasticsearch.client.ml.GetTrainedModelsStatsResponse;
import org.elasticsearch.client.ml.MlInfoRequest;
import org.elasticsearch.client.ml.MlInfoResponse;
import org.elasticsearch.client.ml.OpenJobRequest;
import org.elasticsearch.client.ml.OpenJobResponse;
import org.elasticsearch.client.ml.PostCalendarEventRequest;
import org.elasticsearch.client.ml.PostCalendarEventResponse;
import org.elasticsearch.client.ml.PostDataRequest;
import org.elasticsearch.client.ml.PostDataResponse;
import org.elasticsearch.client.ml.PreviewDatafeedRequest;
import org.elasticsearch.client.ml.PreviewDatafeedResponse;
import org.elasticsearch.client.ml.PutCalendarJobRequest;
import org.elasticsearch.client.ml.PutCalendarRequest;
import org.elasticsearch.client.ml.PutCalendarResponse;
import org.elasticsearch.client.ml.PutDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.PutDataFrameAnalyticsResponse;
import org.elasticsearch.client.ml.PutDatafeedRequest;
import org.elasticsearch.client.ml.PutDatafeedResponse;
import org.elasticsearch.client.ml.PutFilterRequest;
import org.elasticsearch.client.ml.PutFilterResponse;
import org.elasticsearch.client.ml.PutJobRequest;
import org.elasticsearch.client.ml.PutJobResponse;
import org.elasticsearch.client.ml.PutTrainedModelRequest;
import org.elasticsearch.client.ml.PutTrainedModelResponse;
import org.elasticsearch.client.ml.RevertModelSnapshotRequest;
import org.elasticsearch.client.ml.RevertModelSnapshotResponse;
import org.elasticsearch.client.ml.SetUpgradeModeRequest;
import org.elasticsearch.client.ml.StartDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.StartDatafeedRequest;
import org.elasticsearch.client.ml.StartDatafeedResponse;
import org.elasticsearch.client.ml.StopDataFrameAnalyticsRequest;
import org.elasticsearch.client.ml.StopDataFrameAnalyticsResponse;
import org.elasticsearch.client.ml.StopDatafeedRequest;
import org.elasticsearch.client.ml.StopDatafeedResponse;
import org.elasticsearch.client.ml.UpdateDatafeedRequest;
import org.elasticsearch.client.ml.UpdateFilterRequest;
import org.elasticsearch.client.ml.UpdateJobRequest;
import org.elasticsearch.client.ml.UpdateModelSnapshotRequest;
import org.elasticsearch.client.ml.UpdateModelSnapshotResponse;
import org.elasticsearch.client.ml.job.stats.JobStats;

import java.io.IOException;
import java.util.Collections;


/**
 * Machine Learning API client wrapper for the {@link RestHighLevelClient}
 * 

* See the * X-Pack Machine Learning APIs for additional information. */ public final class MachineLearningClient { private final RestHighLevelClient restHighLevelClient; MachineLearningClient(RestHighLevelClient restHighLevelClient) { this.restHighLevelClient = restHighLevelClient; } /** * Creates a new Machine Learning Job *

* For additional info * see ML PUT job documentation * * @param request The PutJobRequest containing the {@link org.elasticsearch.client.ml.job.config.Job} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return PutJobResponse with enclosed {@link org.elasticsearch.client.ml.job.config.Job} object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutJobResponse putJob(PutJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putJob, options, PutJobResponse::fromXContent, Collections.emptySet()); } /** * Creates a new Machine Learning Job asynchronously and notifies listener on completion *

* For additional info * see ML PUT job documentation * @param request The request containing the {@link org.elasticsearch.client.ml.job.config.Job} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putJobAsync(PutJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putJob, options, PutJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets one or more Machine Learning job configuration info. *

* For additional info * see ML GET job documentation * * @param request {@link GetJobRequest} Request containing a list of jobId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetJobResponse} response object containing * the {@link org.elasticsearch.client.ml.job.config.Job} objects and the number of jobs found * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetJobResponse getJob(GetJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getJob, options, GetJobResponse::fromXContent, Collections.emptySet()); } /** * Gets one or more Machine Learning job configuration info, asynchronously. *

* For additional info * see ML GET job documentation * @param request {@link GetJobRequest} Request containing a list of jobId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified with {@link GetJobResponse} upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getJobAsync(GetJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getJob, options, GetJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets usage statistics for one or more Machine Learning jobs *

* For additional info * see Get job stats docs * * @param request {@link GetJobStatsRequest} Request containing a list of jobId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetJobStatsResponse} response object containing * the {@link JobStats} objects and the number of jobs found * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetJobStatsResponse getJobStats(GetJobStatsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getJobStats, options, GetJobStatsResponse::fromXContent, Collections.emptySet()); } /** * Gets usage statistics for one or more Machine Learning jobs, asynchronously. *

* For additional info * see Get job stats docs * @param request {@link GetJobStatsRequest} Request containing a list of jobId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified with {@link GetJobStatsResponse} upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getJobStatsAsync(GetJobStatsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getJobStats, options, GetJobStatsResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes expired data from Machine Learning Jobs *

* For additional info * see ML Delete Expired Data * documentation * * @param request The request to delete expired ML data * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The action response which contains the acknowledgement or the task id depending on whether the action was set to wait for * completion * @throws IOException when there is a serialization issue sending the request or receiving the response */ public DeleteExpiredDataResponse deleteExpiredData(DeleteExpiredDataRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteExpiredData, options, DeleteExpiredDataResponse::fromXContent, Collections.emptySet()); } /** * Deletes expired data from Machine Learning Jobs asynchronously and notifies the listener on completion *

* For additional info * see ML Delete Expired Data * documentation * @param request The request to delete expired ML data * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteExpiredDataAsync(DeleteExpiredDataRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteExpiredData, options, DeleteExpiredDataResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Machine Learning Job *

* For additional info * see ML Delete job documentation * * @param request The request to delete the job * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The action response which contains the acknowledgement or the task id depending on whether the action was set to wait for * completion * @throws IOException when there is a serialization issue sending the request or receiving the response */ public DeleteJobResponse deleteJob(DeleteJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteJob, options, DeleteJobResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Machine Learning Job asynchronously and notifies the listener on completion *

* For additional info * see ML Delete Job documentation * * @param request The request to delete the job * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteJobAsync(DeleteJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteJob, options, DeleteJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Opens a Machine Learning Job. * When you open a new job, it starts with an empty model. * When you open an existing job, the most recent model state is automatically loaded. * The job is ready to resume its analysis from where it left off, once new data is received. *

* For additional info * see ML Open Job documentation * * @param request Request containing job_id and additional optional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response containing if the job was successfully opened or not. * @throws IOException when there is a serialization issue sending the request or receiving the response */ public OpenJobResponse openJob(OpenJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::openJob, options, OpenJobResponse::fromXContent, Collections.emptySet()); } /** * Opens a Machine Learning Job asynchronously, notifies listener on completion. * When you open a new job, it starts with an empty model. * When you open an existing job, the most recent model state is automatically loaded. * The job is ready to resume its analysis from where it left off, once new data is received. *

* For additional info * see ML Open Job documentation * * @param request Request containing job_id and additional optional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable openJobAsync(OpenJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::openJob, options, OpenJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Closes one or more Machine Learning Jobs. A job can be opened and closed multiple times throughout its lifecycle. * A closed job cannot receive data or perform analysis operations, but you can still explore and navigate results. *

* For additional info * see ML Close Job documentation * * @param request Request containing job_ids and additional options. See {@link CloseJobRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response containing if the job was successfully closed or not. * @throws IOException when there is a serialization issue sending the request or receiving the response */ public CloseJobResponse closeJob(CloseJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::closeJob, options, CloseJobResponse::fromXContent, Collections.emptySet()); } /** * Closes one or more Machine Learning Jobs asynchronously, notifies listener on completion * A closed job cannot receive data or perform analysis operations, but you can still explore and navigate results. *

* For additional info * see ML Close Job documentation * * @param request Request containing job_ids and additional options. See {@link CloseJobRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable closeJobAsync(CloseJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::closeJob, options, CloseJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Flushes internally buffered data for the given Machine Learning Job ensuring all data sent to the has been processed. * This may cause new results to be calculated depending on the contents of the buffer * Both flush and close operations are similar, * however the flush is more efficient if you are expecting to send more data for analysis. * When flushing, the job remains open and is available to continue analyzing data. * A close operation additionally prunes and persists the model state to disk and the * job must be opened again before analyzing further data. *

* For additional info * see Flush ML job documentation * * @param request The {@link FlushJobRequest} object enclosing the `jobId` and additional request options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @throws IOException when there is a serialization issue sending the request or receiving the response */ public FlushJobResponse flushJob(FlushJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::flushJob, options, FlushJobResponse::fromXContent, Collections.emptySet()); } /** * Flushes internally buffered data for the given Machine Learning Job asynchronously ensuring all data sent to the has been processed. * This may cause new results to be calculated depending on the contents of the buffer * Both flush and close operations are similar, * however the flush is more efficient if you are expecting to send more data for analysis. * When flushing, the job remains open and is available to continue analyzing data. * A close operation additionally prunes and persists the model state to disk and the * job must be opened again before analyzing further data. *

* For additional info * see Flush ML job documentation * * @param request The {@link FlushJobRequest} object enclosing the `jobId` and additional request options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable flushJobAsync(FlushJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::flushJob, options, FlushJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Creates a forecast of an existing, opened Machine Learning Job * This predicts the future behavior of a time series by using its historical behavior. *

* For additional info * see Forecast ML Job Documentation * * @param request ForecastJobRequest with forecasting options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response containing forecast acknowledgement and new forecast's ID * @throws IOException when there is a serialization issue sending the request or receiving the response */ public ForecastJobResponse forecastJob(ForecastJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::forecastJob, options, ForecastJobResponse::fromXContent, Collections.emptySet()); } /** * Creates a forecast of an existing, opened Machine Learning Job asynchronously * This predicts the future behavior of a time series by using its historical behavior. *

* For additional info * see Forecast ML Job Documentation * * @param request ForecastJobRequest with forecasting options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable forecastJobAsync(ForecastJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::forecastJob, options, ForecastJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes Machine Learning Job Forecasts *

* For additional info * see Delete Job Forecast * Documentation * * @param request the {@link DeleteForecastRequest} object enclosing the desired jobId, forecastIDs, and other options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return a AcknowledgedResponse object indicating request success * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteForecast(DeleteForecastRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteForecast, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes Machine Learning Job Forecasts asynchronously *

* For additional info * see Delete Job Forecast * Documentation * * @param request the {@link DeleteForecastRequest} object enclosing the desired jobId, forecastIDs, and other options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteForecastAsync(DeleteForecastRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteForecast, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes Machine Learning Model Snapshots *

* For additional info * see * ML Delete Model Snapshot documentation * * @param request The request to delete the model snapshot * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteModelSnapshot(DeleteModelSnapshotRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteModelSnapshot, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes Machine Learning Model Snapshots asynchronously and notifies the listener on completion *

* For additional info * see * ML Delete Model Snapshot documentation * * @param request The request to delete the model snapshot * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteModelSnapshotAsync(DeleteModelSnapshotRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteModelSnapshot, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Reverts to a particular Machine Learning Model Snapshot *

* For additional info * see * ML Revert Model Snapshot documentation * * @param request The request to revert to a previous model snapshot * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public RevertModelSnapshotResponse revertModelSnapshot(RevertModelSnapshotRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::revertModelSnapshot, options, RevertModelSnapshotResponse::fromXContent, Collections.emptySet()); } /** * Reverts to a particular Machine Learning Model Snapshot asynchronously and notifies the listener on completion *

* For additional info * see * ML Revert Model Snapshot documentation * * @param request The request to revert to a previous model snapshot * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable revertModelSnapshotAsync(RevertModelSnapshotRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::revertModelSnapshot, options, RevertModelSnapshotResponse::fromXContent, listener, Collections.emptySet()); } /** * Creates a new Machine Learning Datafeed *

* For additional info * see ML PUT datafeed documentation * * @param request The PutDatafeedRequest containing the {@link org.elasticsearch.client.ml.datafeed.DatafeedConfig} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return PutDatafeedResponse with enclosed {@link org.elasticsearch.client.ml.datafeed.DatafeedConfig} object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutDatafeedResponse putDatafeed(PutDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putDatafeed, options, PutDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Creates a new Machine Learning Datafeed asynchronously and notifies listener on completion *

* For additional info * see ML PUT datafeed documentation * * @param request The request containing the {@link org.elasticsearch.client.ml.datafeed.DatafeedConfig} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putDatafeedAsync(PutDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putDatafeed, options, PutDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Updates a Machine Learning Datafeed *

* For additional info * see * ML Update datafeed documentation * * @param request The UpdateDatafeedRequest containing the {@link org.elasticsearch.client.ml.datafeed.DatafeedUpdate} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return PutDatafeedResponse with enclosed, updated {@link org.elasticsearch.client.ml.datafeed.DatafeedConfig} object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutDatafeedResponse updateDatafeed(UpdateDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::updateDatafeed, options, PutDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Updates a Machine Learning Datafeed asynchronously and notifies listener on completion *

* For additional info * see * ML Update datafeed documentation * * @param request The request containing the {@link org.elasticsearch.client.ml.datafeed.DatafeedUpdate} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable updateDatafeedAsync(UpdateDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::updateDatafeed, options, PutDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets one or more Machine Learning datafeed configuration info. * *

* For additional info * see ML GET datafeed documentation * * @param request {@link GetDatafeedRequest} Request containing a list of datafeedId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetDatafeedResponse} response object containing * the {@link org.elasticsearch.client.ml.datafeed.DatafeedConfig} objects and the number of jobs found * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetDatafeedResponse getDatafeed(GetDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getDatafeed, options, GetDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Gets one or more Machine Learning datafeed configuration info, asynchronously. * *

* For additional info * see ML GET datafeed documentation * * @param request {@link GetDatafeedRequest} Request containing a list of datafeedId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified with {@link GetDatafeedResponse} upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getDatafeedAsync(GetDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getDatafeed, options, GetDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Machine Learning Datafeed *

* For additional info * see * ML Delete Datafeed documentation * * @param request The request to delete the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteDatafeed(DeleteDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteDatafeed, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Machine Learning Datafeed asynchronously and notifies the listener on completion *

* For additional info * see * ML Delete Datafeed documentation * * @param request The request to delete the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteDatafeedAsync(DeleteDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteDatafeed, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Starts the given Machine Learning Datafeed *

* For additional info * see * ML Start Datafeed documentation * * @param request The request to start the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public StartDatafeedResponse startDatafeed(StartDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::startDatafeed, options, StartDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Starts the given Machine Learning Datafeed asynchronously and notifies the listener on completion *

* For additional info * see * ML Start Datafeed documentation * * @param request The request to start the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable startDatafeedAsync(StartDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::startDatafeed, options, StartDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Stops the given Machine Learning Datafeed *

* For additional info * see * ML Stop Datafeed documentation * * @param request The request to stop the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public StopDatafeedResponse stopDatafeed(StopDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::stopDatafeed, options, StopDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Stops the given Machine Learning Datafeed asynchronously and notifies the listener on completion *

* For additional info * see * ML Stop Datafeed documentation * * @param request The request to stop the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable stopDatafeedAsync(StopDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::stopDatafeed, options, StopDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets statistics for one or more Machine Learning datafeeds *

* For additional info * see Get datafeed stats docs * * @param request {@link GetDatafeedStatsRequest} Request containing a list of datafeedId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetDatafeedStatsResponse} response object containing * the {@link org.elasticsearch.client.ml.datafeed.DatafeedStats} objects and the number of datafeeds found * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetDatafeedStatsResponse getDatafeedStats(GetDatafeedStatsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getDatafeedStats, options, GetDatafeedStatsResponse::fromXContent, Collections.emptySet()); } /** * Previews the given Machine Learning Datafeed *

* For additional info * see * ML Preview Datafeed documentation * * @param request The request to preview the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link PreviewDatafeedResponse} object containing a {@link org.elasticsearch.common.bytes.BytesReference} of the data in * JSON format * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PreviewDatafeedResponse previewDatafeed(PreviewDatafeedRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::previewDatafeed, options, PreviewDatafeedResponse::fromXContent, Collections.emptySet()); } /** * Gets statistics for one or more Machine Learning datafeeds, asynchronously. *

* For additional info * see Get datafeed stats docs * * @param request {@link GetDatafeedStatsRequest} Request containing a list of datafeedId(s) and additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified with {@link GetDatafeedStatsResponse} upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getDatafeedStatsAsync(GetDatafeedStatsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getDatafeedStats, options, GetDatafeedStatsResponse::fromXContent, listener, Collections.emptySet()); } /** * Previews the given Machine Learning Datafeed asynchronously and notifies the listener on completion *

* For additional info * see * ML Preview Datafeed documentation * * @param request The request to preview the datafeed * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable previewDatafeedAsync(PreviewDatafeedRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::previewDatafeed, options, PreviewDatafeedResponse::fromXContent, listener, Collections.emptySet()); } /** * Updates a Machine Learning {@link org.elasticsearch.client.ml.job.config.Job} *

* For additional info * see ML Update Job Documentation * * @param request the {@link UpdateJobRequest} object enclosing the desired updates * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return a PutJobResponse object containing the updated job object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutJobResponse updateJob(UpdateJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::updateJob, options, PutJobResponse::fromXContent, Collections.emptySet()); } /** * Updates a Machine Learning {@link org.elasticsearch.client.ml.job.config.Job} asynchronously *

* For additional info * see ML Update Job Documentation * * @param request the {@link UpdateJobRequest} object enclosing the desired updates * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable updateJobAsync(UpdateJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::updateJob, options, PutJobResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the buckets for a Machine Learning Job. *

* For additional info * see ML GET buckets documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized */ public GetBucketsResponse getBuckets(GetBucketsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getBuckets, options, GetBucketsResponse::fromXContent, Collections.emptySet()); } /** * Gets the buckets for a Machine Learning Job, notifies listener once the requested buckets are retrieved. *

* For additional info * see ML GET buckets documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getBucketsAsync(GetBucketsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getBuckets, options, GetBucketsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the categories for a Machine Learning Job. *

* For additional info * see * ML GET categories documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetCategoriesResponse getCategories(GetCategoriesRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getCategories, options, GetCategoriesResponse::fromXContent, Collections.emptySet()); } /** * Gets the categories for a Machine Learning Job, notifies listener once the requested buckets are retrieved. *

* For additional info * see * ML GET categories documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getCategoriesAsync(GetCategoriesRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getCategories, options, GetCategoriesResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the snapshots for a Machine Learning Job. *

* For additional info * see * ML GET model snapshots documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetModelSnapshotsResponse getModelSnapshots(GetModelSnapshotsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getModelSnapshots, options, GetModelSnapshotsResponse::fromXContent, Collections.emptySet()); } /** * Gets the snapshots for a Machine Learning Job, notifies listener once the requested snapshots are retrieved. *

* For additional info * see * ML GET model snapshots documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getModelSnapshotsAsync(GetModelSnapshotsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getModelSnapshots, options, GetModelSnapshotsResponse::fromXContent, listener, Collections.emptySet()); } /** * Updates a snapshot for a Machine Learning Job. *

* For additional info * see * ML UPDATE model snapshots documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @throws IOException when there is a serialization issue sending the request or receiving the response */ public UpdateModelSnapshotResponse updateModelSnapshot(UpdateModelSnapshotRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::updateModelSnapshot, options, UpdateModelSnapshotResponse::fromXContent, Collections.emptySet()); } /** * Updates a snapshot for a Machine Learning Job, notifies listener once the requested snapshots are retrieved. *

* For additional info * see * ML UPDATE model snapshots documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable updateModelSnapshotAsync(UpdateModelSnapshotRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::updateModelSnapshot, options, UpdateModelSnapshotResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets overall buckets for a set of Machine Learning Jobs. *

* For additional info * see * ML GET overall buckets documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized */ public GetOverallBucketsResponse getOverallBuckets(GetOverallBucketsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getOverallBuckets, options, GetOverallBucketsResponse::fromXContent, Collections.emptySet()); } /** * Gets overall buckets for a set of Machine Learning Jobs, notifies listener once the requested buckets are retrieved. *

* For additional info * see * ML GET overall buckets documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getOverallBucketsAsync(GetOverallBucketsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getOverallBuckets, options, GetOverallBucketsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the records for a Machine Learning Job. *

* For additional info * see ML GET records documentation * * @param request the request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized */ public GetRecordsResponse getRecords(GetRecordsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getRecords, options, GetRecordsResponse::fromXContent, Collections.emptySet()); } /** * Gets the records for a Machine Learning Job, notifies listener once the requested records are retrieved. *

* For additional info * see ML GET records documentation * * @param request the request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getRecordsAsync(GetRecordsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getRecords, options, GetRecordsResponse::fromXContent, listener, Collections.emptySet()); } /** * Sends data to an anomaly detection job for analysis. *

* NOTE: The job must have a state of open to receive and process the data. *

* For additional info * see ML POST Data documentation * * @param request PostDataRequest containing the data to post and some additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response containing operational progress about the job * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PostDataResponse postData(PostDataRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::postData, options, PostDataResponse::fromXContent, Collections.emptySet()); } /** * Sends data to an anomaly detection job for analysis, asynchronously *

* NOTE: The job must have a state of open to receive and process the data. *

* For additional info * see ML POST Data documentation * * @param request PostDataRequest containing the data to post and some additional options * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable postDataAsync(PostDataRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::postData, options, PostDataResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets a single or multiple calendars. *

* For additional info * see ML GET calendars documentation * * @param request The calendars request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetCalendarsResponse} response object containing the {@link org.elasticsearch.client.ml.calendars.Calendar} * objects and the number of calendars found */ public GetCalendarsResponse getCalendars(GetCalendarsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getCalendars, options, GetCalendarsResponse::fromXContent, Collections.emptySet()); } /** * Gets a single or multiple calendars, notifies listener once the requested records are retrieved. *

* For additional info * see ML GET calendars documentation * * @param request The calendars request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getCalendarsAsync(GetCalendarsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getCalendars, options, GetCalendarsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the influencers for a Machine Learning Job. *

* For additional info * see * ML GET influencers documentation * * @param request the request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized */ public GetInfluencersResponse getInfluencers(GetInfluencersRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getInfluencers, options, GetInfluencersResponse::fromXContent, Collections.emptySet()); } /** * Gets the influencers for a Machine Learning Job, notifies listener once the requested influencers are retrieved. *

* For additional info * * see * ML GET influencers documentation * * @param request the request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getInfluencersAsync(GetInfluencersRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getInfluencers, options, GetInfluencersResponse::fromXContent, listener, Collections.emptySet()); } /** * Create a new machine learning calendar *

* For additional info * see * ML create calendar documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PutCalendarResponse} containing the calendar * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutCalendarResponse putCalendar(PutCalendarRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putCalendar, options, PutCalendarResponse::fromXContent, Collections.emptySet()); } /** * Create a new machine learning calendar, notifies listener with the created calendar *

* For additional info * see * ML create calendar documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putCalendarAsync(PutCalendarRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putCalendar, options, PutCalendarResponse::fromXContent, listener, Collections.emptySet()); } /** * Adds Machine Learning Job(s) to a calendar *

* For additional info * see * ML Put calendar job documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PutCalendarResponse} containing the updated calendar * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutCalendarResponse putCalendarJob(PutCalendarJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putCalendarJob, options, PutCalendarResponse::fromXContent, Collections.emptySet()); } /** * Adds Machine Learning Job(s) to a calendar, notifies listener when completed *

* For additional info * see * ML Put calendar job documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putCalendarJobAsync(PutCalendarJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putCalendarJob, options, PutCalendarResponse::fromXContent, listener, Collections.emptySet()); } /** * Removes Machine Learning Job(s) from a calendar *

* For additional info * see * ML Delete calendar job documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PutCalendarResponse} containing the updated calendar * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutCalendarResponse deleteCalendarJob(DeleteCalendarJobRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteCalendarJob, options, PutCalendarResponse::fromXContent, Collections.emptySet()); } /** * Removes Machine Learning Job(s) from a calendar, notifies listener when completed *

* For additional info * see * ML Delete calendar job documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteCalendarJobAsync(DeleteCalendarJobRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteCalendarJob, options, PutCalendarResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Machine Learning Calendar *

* For additional info see * * ML Delete calendar documentation * * @param request The request to delete the calendar * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteCalendar(DeleteCalendarRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteCalendar, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Machine Learning Job asynchronously and notifies the listener on completion *

* For additional info see * * ML Delete calendar documentation * * @param request The request to delete the calendar * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteCalendarAsync(DeleteCalendarRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteCalendar, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the events for a machine learning calendar *

* For additional info * see * GET Calendar Events API * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PostCalendarEventRequest} containing the scheduled events * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetCalendarEventsResponse getCalendarEvents(GetCalendarEventsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getCalendarEvents, options, GetCalendarEventsResponse::fromXContent, Collections.emptySet()); } /** * Gets the events for a a machine learning calendar asynchronously, notifies the listener on completion *

* For additional info * see * GET Calendar Events API * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getCalendarEventsAsync(GetCalendarEventsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getCalendarEvents, options, GetCalendarEventsResponse::fromXContent, listener, Collections.emptySet()); } /** * Creates new events for a a machine learning calendar *

* For additional info * see * Add Events to Calendar API * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PostCalendarEventRequest} containing the scheduled events * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PostCalendarEventResponse postCalendarEvent(PostCalendarEventRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::postCalendarEvents, options, PostCalendarEventResponse::fromXContent, Collections.emptySet()); } /** * Creates new events for a a machine learning calendar asynchronously, notifies the listener on completion *

* For additional info * see * Add Events to Calendar API * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable postCalendarEventAsync(PostCalendarEventRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::postCalendarEvents, options, PostCalendarEventResponse::fromXContent, listener, Collections.emptySet()); } /** * Removes a Scheduled Event from a calendar *

* For additional info * see * ML Delete calendar event documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PutCalendarResponse} containing the updated calendar * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteCalendarEvent(DeleteCalendarEventRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteCalendarEvent, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Removes a Scheduled Event from a calendar, notifies listener when completed *

* For additional info * see * ML Delete calendar event documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteCalendarEventAsync(DeleteCalendarEventRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteCalendarEvent, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Creates a new Machine Learning Filter *

* For additional info * see ML PUT Filter documentation * * @param request The PutFilterRequest containing the {@link org.elasticsearch.client.ml.job.config.MlFilter} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return PutFilterResponse with enclosed {@link org.elasticsearch.client.ml.job.config.MlFilter} object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutFilterResponse putFilter(PutFilterRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putFilter, options, PutFilterResponse::fromXContent, Collections.emptySet()); } /** * Creates a new Machine Learning Filter asynchronously and notifies listener on completion *

* For additional info * see ML PUT Filter documentation * * @param request The request containing the {@link org.elasticsearch.client.ml.job.config.MlFilter} settings * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putFilterAsync(PutFilterRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putFilter, options, PutFilterResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets Machine Learning Filters *

* For additional info * see ML GET Filter documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return GetFilterResponse with enclosed {@link org.elasticsearch.client.ml.job.config.MlFilter} objects * @throws IOException when there is a serialization issue sending the request or receiving the response */ public GetFiltersResponse getFilter(GetFiltersRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getFilter, options, GetFiltersResponse::fromXContent, Collections.emptySet()); } /** * Gets Machine Learning Filters asynchronously and notifies listener on completion *

* For additional info * see ML GET Filter documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getFilterAsync(GetFiltersRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getFilter, options, GetFiltersResponse::fromXContent, listener, Collections.emptySet()); } /** * Updates a Machine Learning Filter *

* For additional info * see * ML Update Filter documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return PutFilterResponse with the updated {@link org.elasticsearch.client.ml.job.config.MlFilter} object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutFilterResponse updateFilter(UpdateFilterRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::updateFilter, options, PutFilterResponse::fromXContent, Collections.emptySet()); } /** * Updates a Machine Learning Filter asynchronously and notifies listener on completion *

* For additional info * see * ML Update Filter documentation * * @param request The request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable updateFilterAsync(UpdateFilterRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::updateFilter, options, PutFilterResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Machine Learning filter *

* For additional info * see * ML Delete Filter documentation * * @param request The request to delete the filter * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteFilter(DeleteFilterRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteFilter, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Machine Learning filter asynchronously and notifies the listener on completion *

* For additional info * see * ML Delete Filter documentation * * @param request The request to delete the filter * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteFilterAsync(DeleteFilterRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteFilter, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets Machine Learning information about default values and limits. *

* For additional info * see Machine Learning info * * @param request The request of Machine Learning info * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response info about default values and limits * @throws IOException when there is a serialization issue sending the request or receiving the response */ public MlInfoResponse getMlInfo(MlInfoRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::mlInfo, options, MlInfoResponse::fromXContent, Collections.emptySet()); } /** * Gets Machine Learning information about default values and limits, asynchronously. *

* For additional info * see Machine Learning info * * @param request The request of Machine Learning info * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getMlInfoAsync(MlInfoRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::mlInfo, options, MlInfoResponse::fromXContent, listener, Collections.emptySet()); } /** * Finds the structure of a file *

* For additional info * see * ML Find File Structure documentation * * @param request The find file structure request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return the response containing details of the file structure * @throws IOException when there is a serialization issue sending the request or receiving the response */ public FindFileStructureResponse findFileStructure(FindFileStructureRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::findFileStructure, options, FindFileStructureResponse::fromXContent, Collections.emptySet()); } /** * Finds the structure of a file asynchronously and notifies the listener on completion *

* For additional info * see * ML Find File Structure documentation * * @param request The find file structure request * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable findFileStructureAsync(FindFileStructureRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::findFileStructure, options, FindFileStructureResponse::fromXContent, listener, Collections.emptySet()); } /** * Sets the ML cluster setting upgrade_mode *

* For additional info * see Set Upgrade Mode * * @param request The request to set upgrade mode * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return response * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse setUpgradeMode(SetUpgradeModeRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::setUpgradeMode, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Sets the ML cluster setting upgrade_mode asynchronously *

* For additional info * see Set Upgrade Mode * * @param request The request of Machine Learning info * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable setUpgradeModeAsync(SetUpgradeModeRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::setUpgradeMode, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Creates a new Data Frame Analytics config *

* For additional info * see * PUT Data Frame Analytics documentation * * @param request The {@link PutDataFrameAnalyticsRequest} containing the * {@link org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsConfig} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return The {@link PutDataFrameAnalyticsResponse} containing the created * {@link org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsConfig} * @throws IOException when there is a serialization issue sending the request or receiving the response */ public PutDataFrameAnalyticsResponse putDataFrameAnalytics(PutDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putDataFrameAnalytics, options, PutDataFrameAnalyticsResponse::fromXContent, Collections.emptySet()); } /** * Creates a new Data Frame Analytics config asynchronously and notifies listener upon completion *

* For additional info * see * PUT Data Frame Analytics documentation * * @param request The {@link PutDataFrameAnalyticsRequest} containing the * {@link org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsConfig} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putDataFrameAnalyticsAsync(PutDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putDataFrameAnalytics, options, PutDataFrameAnalyticsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets a single or multiple Data Frame Analytics configs *

* For additional info * see * GET Data Frame Analytics documentation * * @param request The {@link GetDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetDataFrameAnalyticsResponse} response object containing the * {@link org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsConfig} objects */ public GetDataFrameAnalyticsResponse getDataFrameAnalytics(GetDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getDataFrameAnalytics, options, GetDataFrameAnalyticsResponse::fromXContent, Collections.emptySet()); } /** * Gets a single or multiple Data Frame Analytics configs asynchronously and notifies listener upon completion *

* For additional info * see * GET Data Frame Analytics documentation * * @param request The {@link GetDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getDataFrameAnalyticsAsync(GetDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getDataFrameAnalytics, options, GetDataFrameAnalyticsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets the running statistics of a Data Frame Analytics *

* For additional info * see * GET Data Frame Analytics Stats documentation * * @param request The {@link GetDataFrameAnalyticsStatsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetDataFrameAnalyticsStatsResponse} response object */ public GetDataFrameAnalyticsStatsResponse getDataFrameAnalyticsStats(GetDataFrameAnalyticsStatsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getDataFrameAnalyticsStats, options, GetDataFrameAnalyticsStatsResponse::fromXContent, Collections.emptySet()); } /** * Gets the running statistics of a Data Frame Analytics asynchronously and notifies listener upon completion *

* For additional info * see * GET Data Frame Analytics Stats documentation * * @param request The {@link GetDataFrameAnalyticsStatsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getDataFrameAnalyticsStatsAsync(GetDataFrameAnalyticsStatsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getDataFrameAnalyticsStats, options, GetDataFrameAnalyticsStatsResponse::fromXContent, listener, Collections.emptySet()); } /** * Starts Data Frame Analytics *

* For additional info * see * Start Data Frame Analytics documentation * * @param request The {@link StartDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse startDataFrameAnalytics(StartDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::startDataFrameAnalytics, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Starts Data Frame Analytics asynchronously and notifies listener upon completion *

* For additional info * see * Start Data Frame Analytics documentation * * @param request The {@link StartDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable startDataFrameAnalyticsAsync(StartDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::startDataFrameAnalytics, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Stops Data Frame Analytics *

* For additional info * see * Stop Data Frame Analytics documentation * * @param request The {@link StopDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link StopDataFrameAnalyticsResponse} * @throws IOException when there is a serialization issue sending the request or receiving the response */ public StopDataFrameAnalyticsResponse stopDataFrameAnalytics(StopDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::stopDataFrameAnalytics, options, StopDataFrameAnalyticsResponse::fromXContent, Collections.emptySet()); } /** * Stops Data Frame Analytics asynchronously and notifies listener upon completion *

* For additional info * see * Stop Data Frame Analytics documentation * * @param request The {@link StopDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable stopDataFrameAnalyticsAsync(StopDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::stopDataFrameAnalytics, options, StopDataFrameAnalyticsResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Data Frame Analytics config *

* For additional info * see * DELETE Data Frame Analytics documentation * * @param request The {@link DeleteDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteDataFrameAnalytics(DeleteDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteDataFrameAnalytics, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Data Frame Analytics config asynchronously and notifies listener upon completion *

* For additional info * see * DELETE Data Frame Analytics documentation * * @param request The {@link DeleteDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteDataFrameAnalyticsAsync(DeleteDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteDataFrameAnalytics, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } /** * Evaluates the given Data Frame *

* For additional info * see * Evaluate Data Frame documentation * * @param request The {@link EvaluateDataFrameRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link EvaluateDataFrameResponse} response object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public EvaluateDataFrameResponse evaluateDataFrame(EvaluateDataFrameRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::evaluateDataFrame, options, EvaluateDataFrameResponse::fromXContent, Collections.emptySet()); } /** * Evaluates the given Data Frame asynchronously and notifies listener upon completion *

* For additional info * see * Evaluate Data Frame documentation * * @param request The {@link EvaluateDataFrameRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable evaluateDataFrameAsync(EvaluateDataFrameRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::evaluateDataFrame, options, EvaluateDataFrameResponse::fromXContent, listener, Collections.emptySet()); } /** * Explains the given Data Frame Analytics *

* For additional info * see * Explain Data Frame Analytics documentation * * @param request The {@link ExplainDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link ExplainDataFrameAnalyticsResponse} response object * @throws IOException when there is a serialization issue sending the request or receiving the response */ public ExplainDataFrameAnalyticsResponse explainDataFrameAnalytics(ExplainDataFrameAnalyticsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity( request, MLRequestConverters::explainDataFrameAnalytics, options, ExplainDataFrameAnalyticsResponse::fromXContent, Collections.emptySet()); } /** * Explains the given Data Frame Analytics asynchronously and notifies listener upon completion *

* For additional info * see * Explain Data Frame Analytics documentation * * @param request The {@link ExplainDataFrameAnalyticsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable explainDataFrameAnalyticsAsync(ExplainDataFrameAnalyticsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity( request, MLRequestConverters::explainDataFrameAnalytics, options, ExplainDataFrameAnalyticsResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets trained model configs *

* For additional info * see * GET Trained Model Configs documentation * * @param request The {@link GetTrainedModelsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetTrainedModelsResponse} response object */ public GetTrainedModelsResponse getTrainedModels(GetTrainedModelsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getTrainedModels, options, GetTrainedModelsResponse::fromXContent, Collections.emptySet()); } /** * Gets trained model configs asynchronously and notifies listener upon completion *

* For additional info * see * GET Trained Model Configs documentation * * @param request The {@link GetTrainedModelsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getTrainedModelsAsync(GetTrainedModelsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getTrainedModels, options, GetTrainedModelsResponse::fromXContent, listener, Collections.emptySet()); } /** * Put trained model config *

* For additional info * see * PUT Trained Model Config documentation * * @param request The {@link PutTrainedModelRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link PutTrainedModelResponse} response object */ public PutTrainedModelResponse putTrainedModel(PutTrainedModelRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::putTrainedModel, options, PutTrainedModelResponse::fromXContent, Collections.emptySet()); } /** * Put trained model config asynchronously and notifies listener upon completion *

* For additional info * see * PUT Trained Model Config documentation * * @param request The {@link PutTrainedModelRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable putTrainedModelAsync(PutTrainedModelRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::putTrainedModel, options, PutTrainedModelResponse::fromXContent, listener, Collections.emptySet()); } /** * Gets trained model stats *

* For additional info * see * GET Trained Model Stats documentation * * @param request The {@link GetTrainedModelsStatsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return {@link GetTrainedModelsStatsResponse} response object */ public GetTrainedModelsStatsResponse getTrainedModelsStats(GetTrainedModelsStatsRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::getTrainedModelsStats, options, GetTrainedModelsStatsResponse::fromXContent, Collections.emptySet()); } /** * Gets trained model stats asynchronously and notifies listener upon completion *

* For additional info * see * GET Trained Model Stats documentation * * @param request The {@link GetTrainedModelsStatsRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable getTrainedModelsStatsAsync(GetTrainedModelsStatsRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::getTrainedModelsStats, options, GetTrainedModelsStatsResponse::fromXContent, listener, Collections.emptySet()); } /** * Deletes the given Trained Model *

* For additional info * see * DELETE Trained Model documentation * * @param request The {@link DeleteTrainedModelRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @return action acknowledgement * @throws IOException when there is a serialization issue sending the request or receiving the response */ public AcknowledgedResponse deleteTrainedModel(DeleteTrainedModelRequest request, RequestOptions options) throws IOException { return restHighLevelClient.performRequestAndParseEntity(request, MLRequestConverters::deleteTrainedModel, options, AcknowledgedResponse::fromXContent, Collections.emptySet()); } /** * Deletes the given Trained Model asynchronously and notifies listener upon completion *

* For additional info * see * DELETE Trained Model documentation * * @param request The {@link DeleteTrainedModelRequest} * @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized * @param listener Listener to be notified upon request completion * @return cancellable that may be used to cancel the request */ public Cancellable deleteTrainedModelAsync(DeleteTrainedModelRequest request, RequestOptions options, ActionListener listener) { return restHighLevelClient.performRequestAsyncAndParseEntity(request, MLRequestConverters::deleteTrainedModel, options, AcknowledgedResponse::fromXContent, listener, Collections.emptySet()); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy