com.whaleal.icefrog.cache.impl.AbstractCache Maven / Gradle / Ivy
package com.whaleal.icefrog.cache.impl;
import com.whaleal.icefrog.cache.Cache;
import com.whaleal.icefrog.cache.CacheListener;
import com.whaleal.icefrog.core.collection.CopiedIter;
import com.whaleal.icefrog.core.lang.func.Func0;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.LongAdder;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.StampedLock;
/**
* 超时和限制大小的缓存的默认实现
* 继承此抽象缓存需要:
*
* - 创建一个新的Map
* - 实现 {@code prune} 策略
*
*
* @param 键类型
* @param 值类型
* @author Looly
* @author wh
*/
public abstract class AbstractCache implements Cache {
private static final long serialVersionUID = 1L;
// 乐观锁,此处使用乐观锁解决读多写少的场景
// get时乐观读,再检查是否修改,修改则转入悲观读重新读一遍,可以有效解决在写时阻塞大量读操作的情况。
// see: https://www.cnblogs.com/jiagoushijuzi/p/13721319.html
protected final StampedLock lock = new StampedLock();
/**
* 写的时候每个key一把锁,降低锁的粒度
*/
protected final Map keyLockMap = new ConcurrentHashMap<>();
protected Map> cacheMap;
/**
* 返回缓存容量,{@code 0}表示无大小限制
*/
protected int capacity;
/**
* 缓存失效时长, {@code 0} 表示无限制,单位毫秒
*/
protected long timeout;
/**
* 每个对象是否有单独的失效时长,用于决定清理过期对象是否有必要。
*/
protected boolean existCustomTimeout;
/**
* 命中数,即命中缓存计数
*/
protected LongAdder hitCount = new LongAdder();
/**
* 丢失数,即未命中缓存计数
*/
protected LongAdder missCount = new LongAdder();
/**
* 缓存监听
*/
protected CacheListener listener;
// ---------------------------------------------------------------- put start
@Override
public void put( K key, V object ) {
put(key, object, timeout);
}
@Override
public void put( K key, V object, long timeout ) {
final long stamp = lock.writeLock();
try {
putWithoutLock(key, object, timeout);
} finally {
lock.unlockWrite(stamp);
}
}
/**
* 加入元素,无锁
*
* @param key 键
* @param object 值
* @param timeout 超时时长
* @since 1.0.0
*/
private void putWithoutLock( K key, V object, long timeout ) {
CacheObj co = new CacheObj<>(key, object, timeout);
if (timeout != 0) {
existCustomTimeout = true;
}
if (isFull()) {
pruneCache();
}
cacheMap.put(key, co);
}
// ---------------------------------------------------------------- put end
// ---------------------------------------------------------------- get start
@Override
public boolean containsKey( K key ) {
final long stamp = lock.readLock();
try {
// 不存在或已移除
final CacheObj co = cacheMap.get(key);
if (co == null) {
return false;
}
if (false == co.isExpired()) {
// 命中
return true;
}
} finally {
lock.unlockRead(stamp);
}
// 过期
remove(key, true);
return false;
}
/**
* @return 命中数
*/
public long getHitCount() {
return hitCount.sum();
}
/**
* @return 丢失数
*/
public long getMissCount() {
return missCount.sum();
}
@Override
public V get( K key, boolean isUpdateLastAccess, Func0 supplier ) {
V v = get(key, isUpdateLastAccess);
if (null == v && null != supplier) {
//每个key单独获取一把锁,降低锁的粒度提高并发能力,see pr#1385@Github
final Lock keyLock = keyLockMap.computeIfAbsent(key, k -> new ReentrantLock());
keyLock.lock();
try {
// 双重检查锁,防止在竞争锁的过程中已经有其它线程写入
final CacheObj co = cacheMap.get(key);
if (null == co || co.isExpired()) {
try {
v = supplier.apply();
} catch (Exception e) {
throw new RuntimeException(e);
}
put(key, v, this.timeout);
} else {
v = co.get(isUpdateLastAccess);
}
} finally {
keyLock.unlock();
keyLockMap.remove(key);
}
}
return v;
}
@Override
public V get( K key, boolean isUpdateLastAccess ) {
// 尝试读取缓存,使用乐观读锁
long stamp = lock.tryOptimisticRead();
CacheObj co = cacheMap.get(key);
if (false == lock.validate(stamp)) {
// 有写线程修改了此对象,悲观读
stamp = lock.readLock();
try {
co = cacheMap.get(key);
} finally {
lock.unlockRead(stamp);
}
}
// 未命中
if (null == co) {
missCount.increment();
return null;
} else if (false == co.isExpired()) {
hitCount.increment();
return co.get(isUpdateLastAccess);
}
// 过期,既不算命中也不算非命中
remove(key, true);
return null;
}
// ---------------------------------------------------------------- get end
@Override
public Iterator iterator() {
CacheObjIterator copiedIterator = (CacheObjIterator) this.cacheObjIterator();
return new CacheValuesIterator<>(copiedIterator);
}
@Override
public Iterator> cacheObjIterator() {
CopiedIter> copiedIterator;
final long stamp = lock.readLock();
try {
copiedIterator = CopiedIter.copyOf(this.cacheMap.values().iterator());
} finally {
lock.unlockRead(stamp);
}
return new CacheObjIterator<>(copiedIterator);
}
// ---------------------------------------------------------------- prune start
/**
* 清理实现
* 子类实现此方法时无需加锁
*
* @return 清理数
*/
protected abstract int pruneCache();
@Override
public final int prune() {
final long stamp = lock.writeLock();
try {
return pruneCache();
} finally {
lock.unlockWrite(stamp);
}
}
// ---------------------------------------------------------------- prune end
// ---------------------------------------------------------------- icefrog start
@Override
public int capacity() {
return capacity;
}
/**
* @return 默认缓存失效时长。
* 每个对象可以单独设置失效时长
*/
@Override
public long timeout() {
return timeout;
}
/**
* 只有设置公共缓存失效时长或每个对象单独的失效时长时清理可用
*
* @return 过期对象清理是否可用,内部使用
*/
protected boolean isPruneExpiredActive() {
return (timeout != 0) || existCustomTimeout;
}
@Override
public boolean isFull() {
return (capacity > 0) && (cacheMap.size() >= capacity);
}
@Override
public void remove( K key ) {
remove(key, false);
}
@Override
public void clear() {
final long stamp = lock.writeLock();
try {
cacheMap.clear();
} finally {
lock.unlockWrite(stamp);
}
}
@Override
public int size() {
return cacheMap.size();
}
@Override
public boolean isEmpty() {
return cacheMap.isEmpty();
}
@Override
public String toString() {
return this.cacheMap.toString();
}
// ---------------------------------------------------------------- icefrog end
/**
* 设置监听
*
* @param listener 监听
* @return this
* @since 1.0.0
*/
@Override
public AbstractCache setListener( CacheListener listener ) {
this.listener = listener;
return this;
}
/**
* 返回所有键
*
* @return 所有键
* @since 1.0.0
*/
public Set keySet() {
return this.cacheMap.keySet();
}
/**
* 对象移除回调。默认无动作
* 子类可重写此方法用于监听移除事件,如果重写,listener将无效
*
* @param key 键
* @param cachedObject 被缓存的对象
*/
protected void onRemove( K key, V cachedObject ) {
final CacheListener listener = this.listener;
if (null != listener) {
listener.onRemove(key, cachedObject);
}
}
/**
* 移除key对应的对象
*
* @param key 键
* @param withMissCount 是否计数丢失数
*/
private void remove( K key, boolean withMissCount ) {
final long stamp = lock.writeLock();
CacheObj co;
try {
co = removeWithoutLock(key, withMissCount);
} finally {
lock.unlockWrite(stamp);
}
if (null != co) {
onRemove(co.key, co.obj);
}
}
/**
* 移除key对应的对象,不加锁
*
* @param key 键
* @param withMissCount 是否计数丢失数
* @return 移除的对象,无返回null
*/
private CacheObj removeWithoutLock( K key, boolean withMissCount ) {
final CacheObj co = cacheMap.remove(key);
if (withMissCount) {
// 在丢失计数有效的情况下,移除一般为get时的超时操作,此处应该丢失数+1
this.missCount.increment();
}
return co;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy