commonMain.com.xebia.functional.openai.generated.model.CreateEmbeddingRequest.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of xef-openai-client Show documentation
Show all versions of xef-openai-client Show documentation
Building applications with LLMs through composability in Kotlin
The newest version!
/**
*
* Please note:
* This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).
* Do not edit this file manually.
*
*/
@file:Suppress(
"ArrayInDataClass",
"EnumEntryName",
"RemoveRedundantQualifierName",
"UnusedImport"
)
package com.xebia.functional.openai.generated.model
import com.xebia.functional.openai.generated.model.CreateEmbeddingRequestInput
import com.xebia.functional.openai.generated.model.CreateEmbeddingRequestModel
import kotlinx.serialization.Serializable
import kotlinx.serialization.SerialName
import kotlinx.serialization.Contextual
import kotlin.js.JsName
import kotlinx.serialization.json.*
/**
*
*
* @param input
* @param model
* @param encodingFormat The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/).
* @param dimensions The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models.
* @param user A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](/docs/guides/safety-best-practices/end-user-ids).
*/
@Serializable
data class CreateEmbeddingRequest (
@SerialName(value = "input") val input: CreateEmbeddingRequestInput,
@SerialName(value = "model") val model: CreateEmbeddingRequestModel,
/* The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). */
@SerialName(value = "encoding_format") val encodingFormat: CreateEmbeddingRequest.EncodingFormat? = EncodingFormat.float,
/* The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. */
@SerialName(value = "dimensions") val dimensions: kotlin.Int? = null,
/* A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](/docs/guides/safety-best-practices/end-user-ids). */
@SerialName(value = "user") val user: kotlin.String? = null
) {
/**
* The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/).
*
* Values: float,base64
*/
@Serializable
enum class EncodingFormat(val value: kotlin.String) {
@SerialName(value = "float") float("float"),
@SerialName(value = "base64") base64("base64");
}
}