com.xenoamess.commons.primitive.collections.lists.AbstractDoubleList Maven / Gradle / Ivy
Show all versions of commonx Show documentation
package com.xenoamess.commons.primitive.collections.lists;
import com.xenoamess.commons.primitive.Primitive;
import com.xenoamess.commons.primitive.collections.AbstractDoubleCollection;
import com.xenoamess.commons.primitive.collections.DoubleCollection;
import com.xenoamess.commons.primitive.functions.DoubleConsumer;
import com.xenoamess.commons.primitive.iterators.DoubleIterator;
import com.xenoamess.commons.primitive.iterators.DoubleListIterator;
import com.xenoamess.commons.primitive.iterators.DoubleSpliterator;
import java.util.*;
import java.util.function.Consumer;
/**
* This class provides a skeletal implementation of the {@link java.util.List}
* interface to minimize the effort required to implement this interface
* backed by a "random access" data store (such as an array). For sequential
* access data (such as a linked list), {@link java.util.AbstractSequentialList} should
* be used in preference to this class.
*
* To implement an unmodifiable list, the programmer needs only to extend
* this class and provide implementations for the {@link #get(int)} and
* {@link java.util.List#size() size()} methods.
*
*
To implement a modifiable list, the programmer must additionally
* override the {@link #set(int, Double) set(int, E)} method (which otherwise
* throws an {@code UnsupportedOperationException}). If the list is
* variable-size the programmer must additionally override the
* {@link #add(int, Double) add(int, E)} and {@link #remove(int)} methods.
*
*
The programmer should generally provide a void (no argument) and collection
* constructor, as per the recommendation in the {@link java.util.Collection} interface
* specification.
*
*
Unlike the other abstract collection implementations, the programmer does
* not have to provide an iterator implementation; the iterator and
* list iterator are implemented by this class, on top of the "random access"
* methods:
* {@link #get(int)},
* {@link #set(int, Double) set(int, E)},
* {@link #add(int, Double) add(int, E)} and
* {@link #remove(int)}.
*
*
The documentation for each non-abstract method in this class describes its
* implementation in detail. Each of these methods may be overridden if the
* collection being implemented admits a more efficient implementation.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @author Josh Bloch
* @author Neal Gafter
* @author XenoAmess
* @version 0.8.0
* @see AbstractList
* @since 1.2
*/
public abstract class AbstractDoubleList extends AbstractList implements AbstractDoubleCollection, DoubleList
, Primitive {
/**
* Sole constructor. (For invocation by subclass constructors, typically
* implicit.)
*/
public AbstractDoubleList() {
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return AbstractDoubleCollection.toString(this);
}
/**
* {@inheritDoc}
*/
@Override
public final Double get(int index) {
return this.getPrimitive(index);
}
/**
* {@inheritDoc}
*
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @implSpec This implementation iterates over the collection looking for the
* specified element. If it finds the element, it removes the element
* from the collection using the iterator's remove method.
*
* Note that this implementation throws an
* {@code UnsupportedOperationException} if the iterator returned by this
* collection's iterator method does not implement the {@code remove}
* method and this collection contains the specified object.
*/
@Override
public final boolean remove(Object o) {
if (o == null) {
return false;
}
if (!(o instanceof Double)) {
return false;
}
return this.removeByContentPrimitive((Double) o);
}
/**
* {@inheritDoc}
*
* @implSpec This implementation always throws an
* {@code UnsupportedOperationException}.
*/
@Override
public final Double remove(int index) {
return this.removeByIndex(index);
}
/**
* {@inheritDoc}
*
* @implSpec This implementation iterates over the elements in the collection,
* checking each element in turn for equality with the specified element.
*/
@Override
public final boolean contains(Object o) {
return DoubleList.super.contains(o);
}
/**
* {@inheritDoc}
*
* @implSpec This implementation iterates over the elements in the collection,
* checking each element in turn for equality with the specified element.
*/
@Override
public final boolean contains(double o) {
return DoubleList.super.contains(o);
}
/**
* {@inheritDoc}
*
* @implSpec This implementation returns an array containing all the elements
* returned by this collection's iterator, in the same order, stored in
* consecutive elements of the array, starting with index {@code 0}.
* The length of the returned array is equal to the number of elements
* returned by the iterator, even if the size of this collection changes
* during iteration, as might happen if the collection permits
* concurrent modification during iteration. The {@code size} method is
* called only as an optimization hint; the correct result is returned
* even if the iterator returns a different number of elements.
*
*
This method is equivalent to:
*
*
{@code
* List list = new ArrayList(size());
* for (E e : this)
* list.add(e);
* return list.toArray();
* }
*/
@Override
public double[] toArrayPrimitive() {
return AbstractDoubleCollection.super.toArrayPrimitive();
}
//----------
/**
* {@inheritDoc}
*
* Appends the specified element to the end of this list (optional
* operation).
*
*
Lists that support this operation may place limitations on what
* elements may be added to this list. In particular, some
* lists will refuse to add null elements, and others will impose
* restrictions on the type of elements that may be added. List
* classes should clearly specify in their documentation any restrictions
* on what elements may be added.
*
* @implSpec This implementation calls {@code add(size(), e)}.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Double) add(int, E)} is overridden.
*/
@Override
public final boolean add(Double e) {
return this.addPrimitive(e);
}
/**
* {@inheritDoc}
*
* Primitive replacement of add(Double e)
*
* @see #add(Double e)
*/
@Override
public final boolean add(double e) {
return addPrimitive(e);
}
/**
* {@inheritDoc}
*
* Primitive replacement of add(Double e)
*
* @implSpec This implementation calls {@code add(size(), e)}.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Double) add(int, E)} is overridden.
* @see #add(Double e)
*/
@Override
public boolean addPrimitive(double e) {
this.add(size(), e);
return true;
}
/**
* {@inheritDoc}
*
* @implSpec This implementation always throws an
* {@code UnsupportedOperationException}.
*/
@Override
public final Double set(int index, Double element) {
return this.setPrimitive(index, element);
}
/**
* {@inheritDoc}
*
* Primitive replacement of set(int index, Double element)
*
* @implSpec This implementation always throws an
* {@code UnsupportedOperationException}.
*/
@Override
public final double set(int index, double element) {
return this.setPrimitive(index, element);
}
/**
* {@inheritDoc}
*
* Primitive replacement of set(int index, Double element)
*
* @implSpec This implementation always throws an
* {@code UnsupportedOperationException}.
*/
@Override
public double setPrimitive(int index, double element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* @implSpec This implementation always throws an
* {@code UnsupportedOperationException}.
*/
@Override
public final void add(int index, Double element) {
this.addPrimitive(index, element);
}
/**
* {@inheritDoc}
*
* Primitive replacement of add(int index, Double element)
*
* @see #add(int index, Double element)
*/
@Override
public final void add(int index, double element) {
this.addPrimitive(index, element);
}
/**
* {@inheritDoc}
*
* Primitive replacement of add(int index, Double element)
*
* @see #add(int index, Double element)
*/
@Override
public void addPrimitive(int index, double element) {
throw new UnsupportedOperationException();
}
/**
* {@inheritDoc}
*
* Primitive replacement of remove(int index)
*
* @see #remove(int index)
*/
public final Double removeByIndex(int index) {
return this.removeByIndexPrimitive(index);
}
/**
* {@inheritDoc}
*
* Primitive replacement of remove(int index)
*
* @see #remove(int index)
*/
@Override
public double removeByIndexPrimitive(int index) {
throw new UnsupportedOperationException();
}
// Search Operations
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index {@code i} such that
* {@code Objects.equals(o, get(i))},
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this list, or -1 if this list does not contain the element
* @throws ClassCastException if the type of the specified element
* is incompatible with this list
* (optional)
* @throws NullPointerException if the specified element is null and this
* list does not permit null elements
* (optional)
*/
@Override
public final int indexOf(Object o) {
return DoubleList.super.indexOf(o);
}
/**
* {@inheritDoc}
*
* Primitive replacement of indexOf(Object o)
*
* @see #indexOf(Object o)
*/
@Override
public final int indexOf(double o) {
return DoubleList.super.indexOf(o);
}
/**
* {@inheritDoc}
*
* Primitive replacement of indexOf(Object o)
*
* @see #indexOf(Object o)
*/
@Override
public int indexOfPrimitive(double o) {
DoubleListIterator it = listIterator();
while (it.hasNext()) {
if (o == it.nextPrimitive()) {
return it.previousIndex();
}
}
return -1;
}
/**
* {@inheritDoc}
*
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index {@code i} such that
* {@code Objects.equals(o, get(i))},
* or -1 if there is no such index.
*/
@Override
public final int lastIndexOf(Object o) {
return DoubleList.super.lastIndexOf(o);
}
/**
* {@inheritDoc}
*
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index {@code i} such that
* {@code Objects.equals(o, get(i))},
* or -1 if there is no such index.
*/
@Override
public final int lastIndexOf(double o) {
return DoubleList.super.lastIndexOf(o);
}
/**
* {@inheritDoc}
*
* Primitive replacement of lastIndexOf(Object o)
*
* @see #lastIndexOf(Object o)
*/
@Override
public int lastIndexOfPrimitive(double o) {
DoubleListIterator it = listIterator(size());
while (it.hasPrevious()) {
if (o == it.previousPrimitive()) {
return it.nextIndex();
}
}
return -1;
}
// Bulk Operations
/**
* {@inheritDoc}
*
* Removes all of the elements from this list (optional operation).
* The list will be empty after this call returns.
*
* @implSpec This implementation calls {@code removeRange(0, size())}.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless {@code remove(int
* index)} or {@code removeRange(int fromIndex, int toIndex)} is
* overridden.
*/
@Override
public void clear() {
removeRange(0, size());
}
/**
* {@inheritDoc}
*
* @implSpec This implementation gets an iterator over the specified collection
* and iterates over it, inserting the elements obtained from the
* iterator into this list at the appropriate position, one at a time,
* using {@code add(int, E)}.
* Many implementations will override this method for efficiency.
*
*
Note that this implementation throws an
* {@code UnsupportedOperationException} unless
* {@link #add(int, Double) add(int, E)} is overridden.
*/
@Override
public boolean addAll(int index, Collection extends Double> c) {
rangeCheckForAdd(index);
boolean modified = false;
if (c instanceof DoubleCollection) {
DoubleCollection cDoubleCollection = (DoubleCollection) c;
DoubleIterator cDoubleCollectionIterator = cDoubleCollection.iterator();
while (cDoubleCollectionIterator.hasNext()) {
addPrimitive(index++, cDoubleCollectionIterator.nextPrimitive());
modified = true;
}
} else {
for (Double e : c) {
add(index++, e);
modified = true;
}
}
return modified;
}
// Iterators
/**
* {@inheritDoc}
*
* Returns an iterator over the elements in this list in proper sequence.
*
* @implSpec This implementation returns a straightforward implementation of the
* iterator interface, relying on the backing list's {@code size()},
* {@code get(int)}, and {@code remove(int)} methods.
*
*
Note that the iterator returned by this method will throw an
* {@link java.lang.UnsupportedOperationException} in response to its
* {@code remove} method unless the list's {@code remove(int)} method is
* overridden.
*
*
This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification
* for the (protected) {@link #modCount} field.
*/
@Override
public DoubleIterator iterator() {
return new AbstractDoubleList.Itr();
}
/**
* {@inheritDoc}
*
* @implSpec This implementation returns {@code listIterator(0)}.
* @see #listIterator(int)
*/
@Override
public DoubleListIterator listIterator() {
return listIterator(0);
}
/**
* {@inheritDoc}
*
* @implSpec This implementation returns a straightforward implementation of the
* {@code ListIterator} interface that extends the implementation of the
* {@code Iterator} interface returned by the {@code iterator()} method.
* The {@code ListIterator} implementation relies on the backing list's
* {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
* and {@code remove(int)} methods.
*
*
Note that the list iterator returned by this implementation will
* throw an {@link java.lang.UnsupportedOperationException} in response to its
* {@code remove}, {@code set} and {@code add} methods unless the
* list's {@code remove(int)}, {@code set(int, E)}, and
* {@code add(int, E)} methods are overridden.
*
*
This implementation can be made to throw runtime exceptions in the
* face of concurrent modification, as described in the specification for
* the (protected) {@link #modCount} field.
*/
@Override
public DoubleListIterator listIterator(final int index) {
rangeCheckForAdd(index);
return new AbstractDoubleList.ListItr(index);
}
private class Itr implements DoubleIterator {
/**
* Index of element to be returned by subsequent call to next.
*/
int cursor = 0;
/**
* Index of element returned by most recent call to next or
* previous. Reset to -1 if this element is deleted by a call
* to remove.
*/
int lastRet = -1;
/**
* The modCount value that the iterator believes that the backing
* List should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
int expectedModCount = modCount;
@Override
public boolean hasNext() {
return cursor != size();
}
@Override
public double nextPrimitive() {
checkForComodification();
try {
int i = cursor;
double next = getPrimitive(i);
lastRet = i;
cursor = i + 1;
return next;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
@Override
public void remove() {
if (lastRet < 0) {
throw new IllegalStateException();
}
checkForComodification();
try {
AbstractDoubleList.this.removeByIndexPrimitive(lastRet);
if (lastRet < cursor) {
cursor--;
}
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException e) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
}
private class ListItr extends AbstractDoubleList.Itr implements DoubleListIterator {
ListItr(int index) {
cursor = index;
}
@Override
public boolean hasPrevious() {
return cursor != 0;
}
@Override
public double previousPrimitive() {
checkForComodification();
try {
int i = cursor - 1;
double previous = getPrimitive(i);
lastRet = cursor = i;
return previous;
} catch (IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
@Override
public int nextIndex() {
return cursor;
}
@Override
public int previousIndex() {
return cursor - 1;
}
@Override
public void setPrimitive(double e) {
if (lastRet < 0) {
throw new IllegalStateException();
}
checkForComodification();
try {
AbstractDoubleList.this.setPrimitive(lastRet, e);
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
public void addPrimitive(double e) {
checkForComodification();
try {
int i = cursor;
AbstractDoubleList.this.addPrimitive(i, e);
lastRet = -1;
cursor = i + 1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**
* {@inheritDoc}
*
* @implSpec This implementation returns a list that subclasses
* {@code AbstractList}. The subclass stores, in private fields, the
* size of the subList (which can change over its lifetime), and the
* expected {@code modCount} value of the backing list. There are two
* variants of the subclass, one of which implements {@code RandomAccess}.
* If this list implements {@code RandomAccess} the returned list will
* be an instance of the subclass that implements {@code RandomAccess}.
*
*
The subclass's {@code set(int, E)}, {@code get(int)},
* {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
* Collection)} and {@code removeRange(int, int)} methods all
* delegate to the corresponding methods on the backing abstract list,
* after bounds-checking the index and adjusting for the offset. The
* {@code addAll(Collection c)} method merely returns {@code addAll(size,
* c)}.
*
*
The {@code listIterator(int)} method returns a "wrapper object"
* over a list iterator on the backing list, which is created with the
* corresponding method on the backing list. The {@code iterator} method
* merely returns {@code listIterator()}, and the {@code size} method
* merely returns the subclass's {@code size} field.
*
*
All methods first check to see if the actual {@code modCount} of
* the backing list is equal to its expected value, and throw a
* {@code ConcurrentModificationException} if it is not.
*/
@Override
public DoubleList subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size());
return (this instanceof RandomAccess ?
new AbstractDoubleList.DoubleRandomAccessSubList(this, fromIndex, toIndex) :
new AbstractDoubleList.DoubleSubList(this, fromIndex, toIndex));
}
/**
* {@inheritDoc}
*
* A copy of AbstractList.subListRangeCheck(int fromIndex, int toIndex, int size)
* I just cannot understand why they choose to make it package private, so I have to copy it.
* But anyway, they might have their reasons.
*/
public static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0) {
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
}
if (toIndex > size) {
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
}
if (fromIndex > toIndex) {
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
}
// Comparison and hashing
/**
* {@inheritDoc}
*
* Compares the specified object with this list for equality. Returns
* {@code true} if and only if the specified object is also a list, both
* lists have the same size, and all corresponding pairs of elements in
* the two lists are equal. (Two elements {@code e1} and
* {@code e2} are equal if {@code (e1==null ? e2==null :
* e1.equals(e2))}.) In other words, two lists are defined to be
* equal if they contain the same elements in the same order.
*
* @implSpec This implementation first checks if the specified object is this
* list. If so, it returns {@code true}; if not, it checks if the
* specified object is a list. If not, it returns {@code false}; if so,
* it iterates over both lists, comparing corresponding pairs of elements.
* If any comparison returns {@code false}, this method returns
* {@code false}. If either iterator runs out of elements before the
* other it returns {@code false} (as the lists are of unequal length);
* otherwise it returns {@code true} when the iterations complete.
*/
@Override
public boolean equals(Object o) {
if (o == this) {
return true;
}
if (!(o instanceof List)) {
return false;
}
DoubleListIterator e1 = listIterator();
List> oList = (List>) o;
if (oList instanceof DoubleList) {
DoubleList oDoubleList = (DoubleList) oList;
DoubleListIterator e2 = oDoubleList.listIterator();
while (e1.hasNext() && e2.hasNext()) {
double o1 = e1.nextPrimitive();
double o2 = e2.nextPrimitive();
if (o1 != o2) {
return false;
}
}
return !(e1.hasNext() || e2.hasNext());
} else {
ListIterator> e2 = ((List>) o).listIterator();
while (e1.hasNext() && e2.hasNext()) {
double o1 = e1.nextPrimitive();
Object o2 = e2.next();
if (o2 == null || !o2.equals(o1)) {
return false;
}
}
return !(e1.hasNext() || e2.hasNext());
}
}
/**
* {@inheritDoc}
*
* Returns the hash code value for this list.
*
* @implSpec This implementation uses exactly the code that is used to define the
* list hash function in the documentation for the {@link java.util.List#hashCode}
* method.
*/
@Override
public int hashCode() {
int hashCode = 1;
DoubleIterator iterator = this.iterator();
while (iterator.hasNext()) {
double e = iterator.nextPrimitive();
hashCode = 31 * hashCode + Double.hashCode(e);
}
return hashCode;
}
/**
* {@inheritDoc}
*
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
*
This method is called by the {@code clear} operation on this list
* and its subLists. Overriding this method to take advantage of
* the internals of the list implementation can substantially
* improve the performance of the {@code clear} operation on this list
* and its subLists.
*
* @implSpec This implementation gets a list iterator positioned before
* {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
* followed by {@code ListIterator.remove} until the entire range has
* been removed. Note: if {@code ListIterator.remove} requires linear
* time, this implementation requires quadratic time.
*/
@Override
protected void removeRange(int fromIndex, int toIndex) {
DoubleListIterator it = listIterator(fromIndex);
for (int i = 0, n = toIndex - fromIndex; i < n; i++) {
it.nextPrimitive();
it.remove();
}
}
/**
* The number of times this list has been structurally modified.
* Structural modifications are those that change the size of the
* list, or otherwise perturb it in such a fashion that iterations in
* progress may yield incorrect results.
*
*
This field is used by the iterator and list iterator implementation
* returned by the {@code iterator} and {@code listIterator} methods.
* If the value of this field changes unexpectedly, the iterator (or list
* iterator) will throw a {@code ConcurrentModificationException} in
* response to the {@code next}, {@code remove}, {@code previous},
* {@code set} or {@code add} operations. This provides
* fail-fast behavior, rather than non-deterministic behavior in
* the face of concurrent modification during iteration.
*
*
Use of this field by subclasses is optional. If a subclass
* wishes to provide fail-fast iterators (and list iterators), then it
* merely has to increment this field in its {@code add(int, E)} and
* {@code remove(int)} methods (and any other methods that it overrides
* that result in structural modifications to the list). A single call to
* {@code add(int, E)} or {@code remove(int)} must add no more than
* one to this field, or the iterators (and list iterators) will throw
* bogus {@code ConcurrentModificationExceptions}. If an implementation
* does not wish to provide fail-fast iterators, this field may be
* ignored.
*/
public transient int modCount = 0;
public void rangeCheckForAdd(int index) {
if (index < 0 || index > size()) {
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
}
private String outOfBoundsMsg(int index) {
return "Index: " + index + ", Size: " + size();
}
/**
* An index-based split-by-two, lazily initialized Spliterator covering
* a List that access elements via {@link List#get}.
*
* If access results in an IndexOutOfBoundsException then a
* ConcurrentModificationException is thrown instead (since the list has
* been structurally modified while traversing).
*
* If the List is an instance of AbstractList then concurrent modification
* checking is performed using the AbstractList's modCount field.
*/
static final class DoubleRandomAccessSpliterator implements DoubleSpliterator {
private final DoubleList list;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
// The following fields are valid if covering an AbstractList
private final AbstractDoubleList alist;
private int expectedModCount; // initialized when fence set
DoubleRandomAccessSpliterator(DoubleList list) {
assert list instanceof RandomAccess;
this.list = list;
this.index = 0;
this.fence = -1;
this.alist = list instanceof AbstractDoubleList ? (AbstractDoubleList) list : null;
this.expectedModCount = alist != null ? alist.modCount : 0;
}
/**
* Create new spliterator covering the given range
*/
private DoubleRandomAccessSpliterator(AbstractDoubleList.DoubleRandomAccessSpliterator parent,
int origin, int fence) {
this.list = parent.list;
this.index = origin;
this.fence = fence;
this.alist = parent.alist;
this.expectedModCount = parent.expectedModCount;
}
private int getFence() { // initialize fence to size on first use
int hi;
DoubleList lst = list;
if ((hi = fence) < 0) {
if (alist != null) {
expectedModCount = alist.modCount;
}
hi = fence = lst.size();
}
return hi;
}
@Override
public DoubleSpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null : // divide range in half unless too small
new AbstractDoubleList.DoubleRandomAccessSpliterator(this, lo, index = mid);
}
@Override
public boolean tryAdvance(Consumer super Double> action) {
if (action == null) {
throw new NullPointerException();
}
int hi = getFence(), i = index;
if (i < hi) {
index = i + 1;
if (action instanceof DoubleConsumer) {
((DoubleConsumer) action).acceptPrimitive(getPrimitive(list, i));
} else {
action.accept(getPrimitive(list, i));
}
checkAbstractListModCount(alist, expectedModCount);
return true;
}
return false;
}
@Override
public void forEachRemaining(Consumer super Double> action) {
Objects.requireNonNull(action);
DoubleList lst = list;
int hi = getFence();
int i = index;
index = hi;
if (action instanceof DoubleConsumer) {
DoubleConsumer actionDoubleConsumer = (DoubleConsumer) action;
for (; i < hi; i++) {
actionDoubleConsumer.acceptPrimitive(getPrimitive(lst, i));
}
} else {
for (; i < hi; i++) {
action.accept(getPrimitive(lst, i));
}
}
checkAbstractListModCount(alist, expectedModCount);
}
@Override
public long estimateSize() {
return (long) (getFence() - index);
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
private static double getPrimitive(DoubleList list, int i) {
try {
return list.getPrimitive(i);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
static void checkAbstractListModCount(AbstractDoubleList alist, int expectedModCount) {
if (alist != null && alist.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
}
private static class DoubleSubList extends AbstractDoubleList {
private final AbstractDoubleList root;
private final AbstractDoubleList.DoubleSubList parent;
private final int offset;
protected int size;
/**
* Constructs a sublist of an arbitrary AbstractList, which is
* not a SubList itself.
*/
public DoubleSubList(AbstractDoubleList root, int fromIndex, int toIndex) {
this.root = root;
this.parent = null;
this.offset = fromIndex;
this.size = toIndex - fromIndex;
this.modCount = root.modCount;
}
/**
* Constructs a sublist of another SubList.
*/
protected DoubleSubList(AbstractDoubleList.DoubleSubList parent, int fromIndex, int toIndex) {
this.root = parent.root;
this.parent = parent;
this.offset = parent.offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = root.modCount;
}
@Override
public double setPrimitive(int index, double element) {
AbstractDoubleList.checkIndex(index, size);
checkForComodification();
return root.setPrimitive(offset + index, element);
}
@Override
public double getPrimitive(int index) {
AbstractDoubleList.checkIndex(index, size);
checkForComodification();
return root.getPrimitive(offset + index);
}
@Override
public int size() {
checkForComodification();
return size;
}
@Override
public void addPrimitive(int index, double element) {
rangeCheckForAdd(index);
checkForComodification();
root.addPrimitive(offset + index, element);
updateSizeAndModCount(1);
}
@Override
public double removeByIndexPrimitive(int index) {
AbstractDoubleList.checkIndex(index, size);
checkForComodification();
double result = root.removeByIndexPrimitive(offset + index);
updateSizeAndModCount(-1);
return result;
}
@Override
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
root.removeRange(offset + fromIndex, offset + toIndex);
updateSizeAndModCount(fromIndex - toIndex);
}
@Override
public boolean addAll(Collection extends Double> c) {
return addAll(size, c);
}
@Override
public boolean addAll(int index, Collection extends Double> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize == 0) {
return false;
}
checkForComodification();
root.addAll(offset + index, c);
updateSizeAndModCount(cSize);
return true;
}
@Override
public DoubleIterator iterator() {
return listIterator();
}
@Override
public DoubleListIterator listIterator(int index) {
checkForComodification();
rangeCheckForAdd(index);
return new DoubleListIterator() {
private final DoubleListIterator i =
root.listIterator(offset + index);
@Override
public boolean hasNext() {
return nextIndex() < size;
}
@Override
public double nextPrimitive() {
if (hasNext()) {
return i.nextPrimitive();
} else {
throw new NoSuchElementException();
}
}
@Override
public boolean hasPrevious() {
return previousIndex() >= 0;
}
@Override
public double previousPrimitive() {
if (hasPrevious()) {
return i.previousPrimitive();
} else {
throw new NoSuchElementException();
}
}
@Override
public int nextIndex() {
return i.nextIndex() - offset;
}
@Override
public int previousIndex() {
return i.previousIndex() - offset;
}
@Override
public void remove() {
i.remove();
updateSizeAndModCount(-1);
}
@Override
public void setPrimitive(double e) {
i.setPrimitive(e);
}
@Override
public void addPrimitive(double e) {
i.addPrimitive(e);
updateSizeAndModCount(1);
}
};
}
@Override
public DoubleList subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new AbstractDoubleList.DoubleSubList(this, fromIndex, toIndex);
}
public void rangeCheckForAdd(int index) {
if (index < 0 || index > size) {
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
}
private String outOfBoundsMsg(int index) {
return "Index: " + index + ", Size: " + size;
}
private void checkForComodification() {
if (root.modCount != this.modCount) {
throw new ConcurrentModificationException();
}
}
private void updateSizeAndModCount(int sizeChange) {
AbstractDoubleList.DoubleSubList slist = this;
do {
slist.size += sizeChange;
slist.modCount = root.modCount;
slist = slist.parent;
} while (slist != null);
}
}
private static class DoubleRandomAccessSubList
extends AbstractDoubleList.DoubleSubList implements RandomAccess {
/**
* Constructs a sublist of an arbitrary AbstractList, which is
* not a RandomAccessSubList itself.
*/
DoubleRandomAccessSubList(AbstractDoubleList root,
int fromIndex, int toIndex) {
super(root, fromIndex, toIndex);
}
/**
* Constructs a sublist of another RandomAccessSubList.
*/
DoubleRandomAccessSubList(AbstractDoubleList.DoubleRandomAccessSubList parent,
int fromIndex, int toIndex) {
super(parent, fromIndex, toIndex);
}
@Override
public DoubleList subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new AbstractDoubleList.DoubleRandomAccessSubList(this, fromIndex, toIndex);
}
}
/**
* Checks if the {@code index} is within the bounds of the range from
* {@code 0} (inclusive) to {@code length} (exclusive).
*
* This function is used here in replacement of java.util.AbstractDoubleList.checkIndex(int index, int length),
* as it is
* only since java 9.
*
*
The {@code index} is defined to be out of bounds if any of the
* following inequalities is true:
*
* - {@code index < 0}
* - {@code index >= length}
* - {@code length < 0}, which is implied from the former inequalities
*
*
* @param index the index
* @param length the upper-bound (exclusive) of the range
* @return {@code index} if it is within bounds of the range
* @throws java.lang.IndexOutOfBoundsException if the {@code index} is out of bounds
* @see java.util.Objects#checkIndex(int index, int length)
* @since 8
*/
public static int checkIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new IndexOutOfBoundsException("Index out of range: " + index);
}
return index;
}
}