com.xwc1125.chain5j.crypto.MnemonicUtils Maven / Gradle / Ivy
package com.xwc1125.chain5j.crypto;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.crypto.generators.PKCS5S2ParametersGenerator;
import org.bouncycastle.crypto.params.KeyParameter;
import static java.nio.charset.StandardCharsets.UTF_8;
/**
* Provides utility methods to generate random mnemonics and also generate
* seeds from mnemonics.
*
* @see Mnemonic code
* for generating deterministic keys
*/
public class MnemonicUtils {
private static final int SEED_ITERATIONS = 2048;
private static final int SEED_KEY_SIZE = 512;
private static List WORD_LIST = null;
/**
* The mnemonic must encode entropy in a multiple of 32 bits. With more entropy security is
* improved but the sentence length increases. We refer to the initial entropy length as ENT.
* The allowed size of ENT is 128-256 bits.
*
* Mnemonic generation algorithm
* Given a randomly generated initial entropy of size ENT, first a checksum is generated by
* taking the first {@code ENT / 32} bits of its SHA256 hash. This checksum is appended to
* the end of the initial entropy. Next, these concatenated bits are split into groups of
* 11 bits, each encoding a number from 0-2047, serving as an index into a wordlist. Finally,
* we convert these numbers into words and use the joined words as a mnemonic sentence.
*
* @param initialEntropy The initial entropy to generate mnemonic from
* @return The generated mnemonic
* @throws IllegalArgumentException If the given entropy is invalid
* @throws IllegalStateException If the word list has not been loaded
*/
public static String generateMnemonic(byte[] initialEntropy) {
validateEntropy(initialEntropy);
final List words = getWords();
int ent = initialEntropy.length * 8;
int checksumLength = ent / 32;
byte checksum = calculateChecksum(initialEntropy);
boolean[] bits = convertToBits(initialEntropy, checksum);
int iterations = (ent + checksumLength) / 11;
StringBuilder mnemonicBuilder = new StringBuilder();
for (int i = 0; i < iterations; i++) {
int index = toInt(nextElevenBits(bits, i));
mnemonicBuilder.append(words.get(index));
boolean notLastIteration = i < iterations - 1;
if (notLastIteration) {
mnemonicBuilder.append(" ");
}
}
return mnemonicBuilder.toString();
}
/**
* Create entropy from the mnemonic.
* @param mnemonic The input mnemonic which should be 128-160 bits in length containing
* only valid words
* @return Byte array representation of the entropy
*/
public static byte[] generateEntropy(String mnemonic) {
final BitSet bits = new BitSet();
final int size = mnemonicToBits(mnemonic, bits);
if (size == 0) {
throw new IllegalArgumentException("Empty mnemonic");
}
final int ent = 32 * size / 33;
if (ent % 8 != 0) {
throw new IllegalArgumentException("Wrong mnemonic size");
}
final byte[] entropy = new byte[ent / 8];
for (int i = 0; i < entropy.length; i++) {
entropy[i] = readByte(bits, i);
}
validateEntropy(entropy);
final byte expectedChecksum = calculateChecksum(entropy);
final byte actualChecksum = readByte(bits, entropy.length);
if (expectedChecksum != actualChecksum) {
throw new IllegalArgumentException("Wrong checksum");
}
return entropy;
}
public static List getWords() {
if (WORD_LIST == null) {
WORD_LIST = Collections.unmodifiableList(populateWordList());
}
return WORD_LIST;
}
/**
* To create a binary seed from the mnemonic, we use the PBKDF2 function with a
* mnemonic sentence (in UTF-8 NFKD) used as the password and the string "mnemonic"
* + passphrase (again in UTF-8 NFKD) used as the salt. The iteration count is set
* to 2048 and HMAC-SHA512 is used as the pseudo-random function. The length of the
* derived key is 512 bits (= 64 bytes).
*
* @param mnemonic The input mnemonic which should be 128-160 bits in length containing
* only valid words
* @param passphrase The passphrase which will be used as part of salt for PBKDF2
* function
* @return Byte array representation of the generated seed
*/
public static byte[] generateSeed(String mnemonic, String passphrase) {
if (isMnemonicEmpty(mnemonic)) {
throw new IllegalArgumentException("Mnemonic is required to generate a seed");
}
passphrase = passphrase == null ? "" : passphrase;
String salt = String.format("mnemonic%s", passphrase);
PKCS5S2ParametersGenerator gen = new PKCS5S2ParametersGenerator(new SHA512Digest());
gen.init(mnemonic.getBytes(UTF_8), salt.getBytes(UTF_8), SEED_ITERATIONS);
return ((KeyParameter) gen.generateDerivedParameters(SEED_KEY_SIZE)).getKey();
}
public static boolean validateMnemonic(String mnemonic) {
try {
generateEntropy(mnemonic);
return true;
} catch (Exception ex) {
return false;
}
}
private static boolean isMnemonicEmpty(String mnemonic) {
return mnemonic == null || mnemonic.trim().isEmpty();
}
private static boolean[] nextElevenBits(boolean[] bits, int i) {
int from = i * 11;
int to = from + 11;
return Arrays.copyOfRange(bits, from, to);
}
private static void validateEntropy(byte[] entropy) {
if (entropy == null) {
throw new IllegalArgumentException("Entropy is required");
}
int ent = entropy.length * 8;
if (ent < 128 || ent > 256 || ent % 32 != 0) {
throw new IllegalArgumentException("The allowed size of ENT is 128-256 bits of "
+ "multiples of 32");
}
}
private static boolean[] convertToBits(byte[] initialEntropy, byte checksum) {
int ent = initialEntropy.length * 8;
int checksumLength = ent / 32;
int totalLength = ent + checksumLength;
boolean[] bits = new boolean[totalLength];
for (int i = 0; i < initialEntropy.length; i++) {
for (int j = 0; j < 8; j++) {
byte b = initialEntropy[i];
bits[8 * i + j] = toBit(b, j);
}
}
for (int i = 0; i < checksumLength; i++) {
bits[ent + i] = toBit(checksum, i);
}
return bits;
}
private static boolean toBit(byte value, int index) {
return ((value >>> (7 - index)) & 1) > 0;
}
private static int toInt(boolean[] bits) {
int value = 0;
for (int i = 0; i < bits.length; i++) {
boolean isSet = bits[i];
if (isSet) {
value += 1 << bits.length - i - 1;
}
}
return value;
}
private static int mnemonicToBits(String mnemonic, BitSet bits) {
int bit = 0;
final List vocabulary = getWords();
final StringTokenizer tokenizer = new StringTokenizer(mnemonic, " ");
while (tokenizer.hasMoreTokens()) {
final String word = tokenizer.nextToken();
final int index = vocabulary.indexOf(word);
if (index < 0) {
throw new IllegalArgumentException(String.format(
"Mnemonic word '%s' should be in the word list", word));
}
for (int k = 0; k < 11; k++) {
bits.set(bit++, isBitSet(index, 10 - k));
}
}
return bit;
}
private static byte readByte(BitSet bits, int startByte) {
byte res = 0;
for (int k = 0; k < 8; k++) {
if (bits.get(startByte * 8 + k)) {
res = (byte) (res | (1 << (7 - k)));
}
}
return res;
}
private static boolean isBitSet(int n, int k) {
return ((n >> k) & 1) == 1;
}
public static byte calculateChecksum(byte[] initialEntropy) {
int ent = initialEntropy.length * 8;
byte mask = (byte) (0xff << 8 - ent / 32);
byte[] bytes = Hash.sha256(initialEntropy);
return (byte) (bytes[0] & mask);
}
private static List populateWordList() {
InputStream inputStream = Thread.currentThread().getContextClassLoader()
.getResourceAsStream("en-mnemonic-word-list.txt");
try {
return readAllLines(inputStream);
} catch (Exception e) {
throw new IllegalStateException(e);
}
}
private static List readAllLines(InputStream inputStream) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(inputStream));
List data = new ArrayList<>();
for (String line; (line = br.readLine()) != null; ) {
data.add(line);
}
return data;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy