com.yahoo.sketches.performance.ProcessStats Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sketches-misc Show documentation
Show all versions of sketches-misc Show documentation
Data Sketches Miscellaneous
The newest version!
/*
* Copyright 2016, Yahoo! Inc.
* Licensed under the terms of the Apache License 2.0. See LICENSE file at the project root for terms.
*/
package com.yahoo.sketches.performance;
import static java.lang.Math.abs;
import static java.lang.Math.sqrt;
import java.util.Arrays;
//CHECKSTYLE.OFF: JavadocMethod
//CHECKSTYLE.OFF: WhitespaceAround
/**
* Processes the statistics collected from an array of Stats objects from a trial set
* and creates an output row
*
* @author Lee Rhodes
*/
public class ProcessStats {
private static final char TAB = '\t';
//Quantile fractions computed from the standard normal cumulative distribution.
private static final double M2SD = 0.022750131948179; //minus 2 StdDev
private static final double M1SD = 0.158655253931457; //minus 1 StdDev
private static final double P1SD = 0.841344746068543; //plus 1 StdDev
private static final double P2SD = 0.977249868051821; //plus 2 StdDev
/**
* Process the Stats[] array and place the output row into the dataStr.
* @param statsArr the input Stats array
* @param uPerTrial the number of uniques per trial for this trial set.
* @param lgK log base 2 of configured nominal entries, or k.
* @param p the probability sampling rate. 0 < p ≤ 1.0.
* @param dataStr The StringBuilder object that is reused for each row of output
*/
public static void process(Stats[] statsArr, int uPerTrial, int lgK, double p, StringBuilder dataStr) {
int k = 1 << lgK;
int trials = statsArr.length;
Arrays.sort(statsArr, 0, trials);
//Computing the quantiles from the sorted array.
double min = statsArr[0].re;
double qM2SD = statsArr[quantileIndex(M2SD,trials)].re;
double qM1SD = statsArr[quantileIndex(M1SD,trials)].re;
double q50 = statsArr[quantileIndex(.5,trials)].re;
double qP1SD = statsArr[quantileIndex(P1SD,trials)].re;
double qP2SD = statsArr[quantileIndex(P2SD,trials)].re;
double max = statsArr[trials-1].re;
int cntLB2 = 0, cntLB1 = 0, cntUB1 = 0, cntUB2 = 0;
// double sumLB2 = 0, sumLB1 = 0, sumUB1 = 0, sumUB2 = 0;
double sumEst = 0, sumEstErr = 0, sumSqEstErr = 0;
double sumUpdateTimePerU_nS = 0;
//Scan the sorted statsArr
for (int i=0; i stats.ub2est) { cntUB2++; } //should be < 2.275%; under estimate
if (uPerTrial > stats.ub1est) { cntUB1++; } //should be < 15.866%; under estimate
if (uPerTrial < stats.lb1est) { cntLB1++; } //should be < 15.866%; over estimate
if (uPerTrial < stats.lb2est) { cntLB2++; } //should be < 2.275%; over estimate
// sumLB2 += stats.lb2est;
// sumLB1 += stats.lb1est;
// sumUB1 += stats.ub1est;
// sumUB2 += stats.ub2est;
//divide by uPerTrial to normalize betweeen 0 and 1.0, sum over all trials
//Components for the mean and variance of the estimate error
sumEst += statsArr[i].estimate;
double estErr = statsArr[i].re;
sumEstErr += estErr;
sumSqEstErr += estErr*estErr;
sumUpdateTimePerU_nS += statsArr[i].updateTimePerU_nS;
}
//normalize counts
double fracTgtUB2 = (double)cntUB2/trials;
double fracTgtUB1 = (double)cntUB1/trials;
double fracTltLB1 = (double)cntLB1/trials;
double fracTltLB2 = (double)cntLB2/trials;
//Compute the average results over the trial set
double meanEst = sumEst/trials;
double meanEstErr = sumEstErr/trials;
double deltaSqEstErr = abs(sumSqEstErr - (sumEstErr*sumEstErr)/trials);
double varEstErr = (trials == 1)? deltaSqEstErr/trials : deltaSqEstErr/(trials-1);
double rse = sqrt(varEstErr);
//compute theoretical sketch RSE
double invKm1 = 1.0/(k-1);
double oneMinusKoverN = 1.0 - (double)k/uPerTrial;
double thrse = (sumEstErr == 0.0)? 0.0 : sqrt(invKm1 * oneMinusKoverN);
//compute Bernoulli RSE
double invUperTrial = 1.0/uPerTrial;
double varOverN = (p == 1.0)? 0.0 : 1.0/p - 1.0;
double prse = (p == 1.0)? 0.0 : sqrt(invUperTrial * varOverN);
//Compute average of each of the bounds estimates
// double meanLB2est = sumLB2/(uPerTrial*trials) -1;
// double meanLB1est = sumLB1/(uPerTrial*trials) -1;
// double meanUB1est = sumUB1/(uPerTrial*trials) -1;
// double meanUB2est = sumUB2/(uPerTrial*trials) -1;
//Speed
double meanUpdateTimePerU_nS = sumUpdateTimePerU_nS/trials;
//OUTPUT
dataStr.setLength(0);
dataStr.append(uPerTrial).append(TAB)
//Sketch estimates, mean, variance
.append(meanEst).append(TAB)
.append(meanEstErr).append(TAB)
.append(rse).append(TAB)
.append(thrse).append(TAB)
.append(prse).append(TAB)
//Quantiles measured from the actual distribution of values from all trials.
//Because of quantization effects these values will be noisier than the values
//computed statistically above.
.append(min).append(TAB)
.append(qM2SD).append(TAB)
.append(qM1SD).append(TAB)
.append(q50).append(TAB)
.append(qP1SD).append(TAB)
.append(qP2SD).append(TAB)
.append(max).append(TAB)
//Fractional Bounds measurements
.append(fracTltLB2).append(TAB)
.append(fracTltLB1).append(TAB)
.append(fracTgtUB1).append(TAB)
.append(fracTgtUB2).append(TAB)
//The bounds estimates are computed mathematically based on the sketch
// estimate, the number of valid values in the cache and the value of theta.
// Because of this thes values will be relatively smooth from point to point along the
// unique value axis.
// append(meanLB2est).append(TAB).
// append(meanLB1est).append(TAB).
// append(meanUB1est).append(TAB).
// append(meanUB2est).append(TAB).
//Trials
.append(trials).append(TAB)
//Speed
.append(meanUpdateTimePerU_nS);
}
/**
* Returns a column header row
* @return a column header row
*/
public static String getHeader() {
StringBuilder sb = new StringBuilder();
sb. append("InU").append(TAB)
//Estimates
.append("MeanEst").append(TAB)
.append("MeanErr").append(TAB)
.append("RSE").append(TAB)
.append("thRSE").append(TAB)
.append("pRSE").append(TAB)
//Quantiles
.append("Min").append(TAB)
.append("QM2SD").append(TAB)
.append("QM1SD").append(TAB)
.append("Q50").append(TAB)
.append("QP1SD").append(TAB)
.append("QP2SD").append(TAB)
.append("Max").append(TAB)
//Fractional Bounds measurements
.append("FracTltLB2").append(TAB)
.append("FracTltLB1").append(TAB)
.append("FracTgtUB1").append(TAB)
.append("FracTgtUB2").append(TAB)
//Trials
.append("Trials").append(TAB)
//Speed
.append("nS/u");
return sb.toString();
}
/**
* Returns the trial index = floor(quantile-fraction, #trials)
* @param frac the desired quantile fraction (0.0 - 1.0)
* @param trials the number of total trials
* @return the trial index
*/
private static int quantileIndex(double frac, int trials) {
int idx1 = (int) Math.floor(frac*trials);
return (idx1 >= trials)? trials-1: idx1;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy