All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.vespa.airlift.zstd.FseCompressionTable Maven / Gradle / Ivy

Go to download

Fork of https://github.com/airlift/aircompressor (zstd only). This module is temporary until we get an official release that includes the ZstdInputStream API (which is already implemented by two different people but neither PR shows any progress).

There is a newer version: 8.251.23
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package ai.vespa.airlift.zstd;

import static ai.vespa.airlift.zstd.FiniteStateEntropy.MAX_SYMBOL;

class FseCompressionTable
{
    private final short[] nextState;
    private final int[] deltaNumberOfBits;
    private final int[] deltaFindState;

    private int log2Size;

    public FseCompressionTable(int maxTableLog, int maxSymbol)
    {
        nextState = new short[1 << maxTableLog];
        deltaNumberOfBits = new int[maxSymbol + 1];
        deltaFindState = new int[maxSymbol + 1];
    }

    public static FseCompressionTable newInstance(short[] normalizedCounts, int maxSymbol, int tableLog)
    {
        FseCompressionTable result = new FseCompressionTable(tableLog, maxSymbol);
        result.initialize(normalizedCounts, maxSymbol, tableLog);

        return result;
    }

    public void initializeRleTable(int symbol)
    {
        log2Size = 0;

        nextState[0] = 0;
        nextState[1] = 0;

        deltaFindState[symbol] = 0;
        deltaNumberOfBits[symbol] = 0;
    }

    public void initialize(short[] normalizedCounts, int maxSymbol, int tableLog)
    {
        int tableSize = 1 << tableLog;

        byte[] table = new byte[tableSize]; // TODO: allocate in workspace
        int highThreshold = tableSize - 1;

        // TODO: make sure FseCompressionTable has enough size
        log2Size = tableLog;

        // For explanations on how to distribute symbol values over the table:
        // http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html

        // symbol start positions
        int[] cumulative = new int[MAX_SYMBOL + 2]; // TODO: allocate in workspace
        cumulative[0] = 0;
        for (int i = 1; i <= maxSymbol + 1; i++) {
            if (normalizedCounts[i - 1] == -1) {  // Low probability symbol
                cumulative[i] = cumulative[i - 1] + 1;
                table[highThreshold--] = (byte) (i - 1);
            }
            else {
                cumulative[i] = cumulative[i - 1] + normalizedCounts[i - 1];
            }
        }
        cumulative[maxSymbol + 1] = tableSize + 1;

        // Spread symbols
        int position = spreadSymbols(normalizedCounts, maxSymbol, tableSize, highThreshold, table);

        if (position != 0) {
            throw new AssertionError("Spread symbols failed");
        }

        // Build table
        for (int i = 0; i < tableSize; i++) {
            byte symbol = table[i];
            nextState[cumulative[symbol]++] = (short) (tableSize + i);  /* TableU16 : sorted by symbol order; gives next state value */
        }

        // Build symbol transformation table
        int total = 0;
        for (int symbol = 0; symbol <= maxSymbol; symbol++) {
            switch (normalizedCounts[symbol]) {
                case 0:
                    deltaNumberOfBits[symbol] = ((tableLog + 1) << 16) - tableSize;
                    break;
                case -1:
                case 1:
                    deltaNumberOfBits[symbol] = (tableLog << 16) - tableSize;
                    deltaFindState[symbol] = total - 1;
                    total++;
                    break;
                default:
                    int maxBitsOut = tableLog - Util.highestBit(normalizedCounts[symbol] - 1);
                    int minStatePlus = normalizedCounts[symbol] << maxBitsOut;
                    deltaNumberOfBits[symbol] = (maxBitsOut << 16) - minStatePlus;
                    deltaFindState[symbol] = total - normalizedCounts[symbol];
                    total += normalizedCounts[symbol];
                    break;
            }
        }
    }

    public int begin(byte symbol)
    {
        int outputBits = (deltaNumberOfBits[symbol] + (1 << 15)) >>> 16;
        int base = ((outputBits << 16) - deltaNumberOfBits[symbol]) >>> outputBits;
        return nextState[base + deltaFindState[symbol]];
    }

    public int encode(BitOutputStream stream, int state, int symbol)
    {
        int outputBits = (state + deltaNumberOfBits[symbol]) >>> 16;
        stream.addBits(state, outputBits);
        return nextState[(state >>> outputBits) + deltaFindState[symbol]];
    }

    public void finish(BitOutputStream stream, int state)
    {
        stream.addBits(state, log2Size);
        stream.flush();
    }

    private static int calculateStep(int tableSize)
    {
        return (tableSize >>> 1) + (tableSize >>> 3) + 3;
    }

    public static int spreadSymbols(short[] normalizedCounters, int maxSymbolValue, int tableSize, int highThreshold, byte[] symbols)
    {
        int mask = tableSize - 1;
        int step = calculateStep(tableSize);

        int position = 0;
        for (byte symbol = 0; symbol <= maxSymbolValue; symbol++) {
            for (int i = 0; i < normalizedCounters[symbol]; i++) {
                symbols[position] = symbol;
                do {
                    position = (position + step) & mask;
                }
                while (position > highThreshold);
            }
        }
        return position;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy