All Downloads are FREE. Search and download functionalities are using the official Maven repository.

onnx.Onnx Maven / Gradle / Ivy

There is a newer version: 8.458.13
Show newest version
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: onnx.proto

// Protobuf Java Version: 3.25.5
package onnx;

public final class Onnx {
  private Onnx() {}
  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistryLite registry) {
  }

  public static void registerAllExtensions(
      com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions(
        (com.google.protobuf.ExtensionRegistryLite) registry);
  }
  /**
   * 
   * Versioning
   *
   * ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
   *
   * To be compatible with both proto2 and proto3, we will use a version number
   * that is not defined by the default value but an explicit enum number.
   * 
* * Protobuf enum {@code onnx.Version} */ public enum Version implements com.google.protobuf.ProtocolMessageEnum { /** *
     * proto3 requires the first enum value to be zero.
     * We add this just to appease the compiler.
     * 
* * _START_VERSION = 0; */ _START_VERSION(0), /** *
     * The version field is always serialized and we will use it to store the
     * version that the  graph is generated from. This helps us set up version
     * control.
     * For the IR, we are using simple numbers starting with 0x00000001,
     * which was the version we published on Oct 10, 2017.
     * 
* * IR_VERSION_2017_10_10 = 1; */ IR_VERSION_2017_10_10(1), /** *
     * IR_VERSION 2 published on Oct 30, 2017
     * - Added type discriminator to AttributeProto to support proto3 users
     * 
* * IR_VERSION_2017_10_30 = 2; */ IR_VERSION_2017_10_30(2), /** *
     * IR VERSION 3 published on Nov 3, 2017
     * - For operator versioning:
     *    - Added new message OperatorSetIdProto
     *    - Added opset_import in ModelProto
     * - For vendor extensions, added domain in NodeProto
     * 
* * IR_VERSION_2017_11_3 = 3; */ IR_VERSION_2017_11_3(3), /** *
     * IR VERSION 4 published on Jan 22, 2019
     * - Relax constraint that initializers should be a subset of graph inputs
     * - Add type BFLOAT16
     * 
* * IR_VERSION_2019_1_22 = 4; */ IR_VERSION_2019_1_22(4), /** *
     * IR VERSION 5 published on March 18, 2019
     * - Add message TensorAnnotation.
     * - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
     * 
* * IR_VERSION_2019_3_18 = 5; */ IR_VERSION_2019_3_18(5), /** *
     * IR VERSION 6 published on Sep 19, 2019
     * - Add support for sparse tensor constants stored in model.
     *   - Add message SparseTensorProto
     *   - Add sparse initializers
     * 
* * IR_VERSION_2019_9_19 = 6; */ IR_VERSION_2019_9_19(6), /** *
     * IR VERSION 7 published on May 8, 2020
     * - Add support to allow function body graph to rely on multiple external opreator sets.
     * - Add a list to promote inference graph's initializers to global and
     *   mutable variables. Global variables are visible in all graphs of the
     *   stored models.
     * - Add message TrainingInfoProto to store initialization
     *   method and training algorithm. The execution of TrainingInfoProto
     *   can modify the values of mutable variables.
     * - Implicitly add inference graph into each TrainingInfoProto's algorithm.
     * 
* * IR_VERSION_2020_5_8 = 7; */ IR_VERSION_2020_5_8(7), /** *
     * IR VERSION 8 published on July 30, 2021
     * Introduce TypeProto.SparseTensor
     * Introduce TypeProto.Optional
     * Added a list of FunctionProtos local to the model
     * Deprecated since_version and operator status from FunctionProto
     * 
* * IR_VERSION_2021_7_30 = 8; */ IR_VERSION_2021_7_30(8), /** *
     * IR VERSION 9 published on May 5, 2023
     * Added AttributeProto to FunctionProto so that default attribute values can be set.
     * Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ.
     * 
* * IR_VERSION = 9; */ IR_VERSION(9), ; /** *
     * proto3 requires the first enum value to be zero.
     * We add this just to appease the compiler.
     * 
* * _START_VERSION = 0; */ public static final int _START_VERSION_VALUE = 0; /** *
     * The version field is always serialized and we will use it to store the
     * version that the  graph is generated from. This helps us set up version
     * control.
     * For the IR, we are using simple numbers starting with 0x00000001,
     * which was the version we published on Oct 10, 2017.
     * 
* * IR_VERSION_2017_10_10 = 1; */ public static final int IR_VERSION_2017_10_10_VALUE = 1; /** *
     * IR_VERSION 2 published on Oct 30, 2017
     * - Added type discriminator to AttributeProto to support proto3 users
     * 
* * IR_VERSION_2017_10_30 = 2; */ public static final int IR_VERSION_2017_10_30_VALUE = 2; /** *
     * IR VERSION 3 published on Nov 3, 2017
     * - For operator versioning:
     *    - Added new message OperatorSetIdProto
     *    - Added opset_import in ModelProto
     * - For vendor extensions, added domain in NodeProto
     * 
* * IR_VERSION_2017_11_3 = 3; */ public static final int IR_VERSION_2017_11_3_VALUE = 3; /** *
     * IR VERSION 4 published on Jan 22, 2019
     * - Relax constraint that initializers should be a subset of graph inputs
     * - Add type BFLOAT16
     * 
* * IR_VERSION_2019_1_22 = 4; */ public static final int IR_VERSION_2019_1_22_VALUE = 4; /** *
     * IR VERSION 5 published on March 18, 2019
     * - Add message TensorAnnotation.
     * - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
     * 
* * IR_VERSION_2019_3_18 = 5; */ public static final int IR_VERSION_2019_3_18_VALUE = 5; /** *
     * IR VERSION 6 published on Sep 19, 2019
     * - Add support for sparse tensor constants stored in model.
     *   - Add message SparseTensorProto
     *   - Add sparse initializers
     * 
* * IR_VERSION_2019_9_19 = 6; */ public static final int IR_VERSION_2019_9_19_VALUE = 6; /** *
     * IR VERSION 7 published on May 8, 2020
     * - Add support to allow function body graph to rely on multiple external opreator sets.
     * - Add a list to promote inference graph's initializers to global and
     *   mutable variables. Global variables are visible in all graphs of the
     *   stored models.
     * - Add message TrainingInfoProto to store initialization
     *   method and training algorithm. The execution of TrainingInfoProto
     *   can modify the values of mutable variables.
     * - Implicitly add inference graph into each TrainingInfoProto's algorithm.
     * 
* * IR_VERSION_2020_5_8 = 7; */ public static final int IR_VERSION_2020_5_8_VALUE = 7; /** *
     * IR VERSION 8 published on July 30, 2021
     * Introduce TypeProto.SparseTensor
     * Introduce TypeProto.Optional
     * Added a list of FunctionProtos local to the model
     * Deprecated since_version and operator status from FunctionProto
     * 
* * IR_VERSION_2021_7_30 = 8; */ public static final int IR_VERSION_2021_7_30_VALUE = 8; /** *
     * IR VERSION 9 published on May 5, 2023
     * Added AttributeProto to FunctionProto so that default attribute values can be set.
     * Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ.
     * 
* * IR_VERSION = 9; */ public static final int IR_VERSION_VALUE = 9; public final int getNumber() { return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static Version valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static Version forNumber(int value) { switch (value) { case 0: return _START_VERSION; case 1: return IR_VERSION_2017_10_10; case 2: return IR_VERSION_2017_10_30; case 3: return IR_VERSION_2017_11_3; case 4: return IR_VERSION_2019_1_22; case 5: return IR_VERSION_2019_3_18; case 6: return IR_VERSION_2019_9_19; case 7: return IR_VERSION_2020_5_8; case 8: return IR_VERSION_2021_7_30; case 9: return IR_VERSION; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< Version> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public Version findValueByNumber(int number) { return Version.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return onnx.Onnx.getDescriptor().getEnumTypes().get(0); } private static final Version[] VALUES = values(); public static Version valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } return VALUES[desc.getIndex()]; } private final int value; private Version(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:onnx.Version) } /** *
   * Operator/function status.
   * 
* * Protobuf enum {@code onnx.OperatorStatus} */ public enum OperatorStatus implements com.google.protobuf.ProtocolMessageEnum { /** * EXPERIMENTAL = 0; */ EXPERIMENTAL(0), /** * STABLE = 1; */ STABLE(1), ; /** * EXPERIMENTAL = 0; */ public static final int EXPERIMENTAL_VALUE = 0; /** * STABLE = 1; */ public static final int STABLE_VALUE = 1; public final int getNumber() { return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static OperatorStatus valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static OperatorStatus forNumber(int value) { switch (value) { case 0: return EXPERIMENTAL; case 1: return STABLE; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< OperatorStatus> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public OperatorStatus findValueByNumber(int number) { return OperatorStatus.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return onnx.Onnx.getDescriptor().getEnumTypes().get(1); } private static final OperatorStatus[] VALUES = values(); public static OperatorStatus valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } return VALUES[desc.getIndex()]; } private final int value; private OperatorStatus(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:onnx.OperatorStatus) } public interface AttributeProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.AttributeProto) com.google.protobuf.MessageOrBuilder { /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ boolean hasName(); /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return The name. */ java.lang.String getName(); /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return Whether the refAttrName field is set. */ boolean hasRefAttrName(); /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return The refAttrName. */ java.lang.String getRefAttrName(); /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return The bytes for refAttrName. */ com.google.protobuf.ByteString getRefAttrNameBytes(); /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); /** *
     * The type field MUST be present for this version of the IR.
     * For 0.0.1 versions of the IR, this field was not defined, and
     * implementations needed to use has_field heuristics to determine
     * which value field was in use.  For IR_VERSION 0.0.2 or later, this
     * field MUST be set and match the f|i|s|t|... field in use.  This
     * change was made to accommodate proto3 implementations.
     * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return Whether the type field is set. */ boolean hasType(); /** *
     * The type field MUST be present for this version of the IR.
     * For 0.0.1 versions of the IR, this field was not defined, and
     * implementations needed to use has_field heuristics to determine
     * which value field was in use.  For IR_VERSION 0.0.2 or later, this
     * field MUST be set and match the f|i|s|t|... field in use.  This
     * change was made to accommodate proto3 implementations.
     * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return The type. */ onnx.Onnx.AttributeProto.AttributeType getType(); /** *
     * Exactly ONE of the following fields must be present for this version of the IR
     * 
* * optional float f = 2; * @return Whether the f field is set. */ boolean hasF(); /** *
     * Exactly ONE of the following fields must be present for this version of the IR
     * 
* * optional float f = 2; * @return The f. */ float getF(); /** *
     * int
     * 
* * optional int64 i = 3; * @return Whether the i field is set. */ boolean hasI(); /** *
     * int
     * 
* * optional int64 i = 3; * @return The i. */ long getI(); /** *
     * UTF-8 string
     * 
* * optional bytes s = 4; * @return Whether the s field is set. */ boolean hasS(); /** *
     * UTF-8 string
     * 
* * optional bytes s = 4; * @return The s. */ com.google.protobuf.ByteString getS(); /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; * @return Whether the t field is set. */ boolean hasT(); /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; * @return The t. */ onnx.Onnx.TensorProto getT(); /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; */ onnx.Onnx.TensorProtoOrBuilder getTOrBuilder(); /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; * @return Whether the g field is set. */ boolean hasG(); /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; * @return The g. */ onnx.Onnx.GraphProto getG(); /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; */ onnx.Onnx.GraphProtoOrBuilder getGOrBuilder(); /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return Whether the sparseTensor field is set. */ boolean hasSparseTensor(); /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return The sparseTensor. */ onnx.Onnx.SparseTensorProto getSparseTensor(); /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorOrBuilder(); /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; * @return Whether the tp field is set. */ boolean hasTp(); /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; * @return The tp. */ onnx.Onnx.TypeProto getTp(); /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; */ onnx.Onnx.TypeProtoOrBuilder getTpOrBuilder(); /** *
     * list of floats
     * 
* * repeated float floats = 7; * @return A list containing the floats. */ java.util.List getFloatsList(); /** *
     * list of floats
     * 
* * repeated float floats = 7; * @return The count of floats. */ int getFloatsCount(); /** *
     * list of floats
     * 
* * repeated float floats = 7; * @param index The index of the element to return. * @return The floats at the given index. */ float getFloats(int index); /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @return A list containing the ints. */ java.util.List getIntsList(); /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @return The count of ints. */ int getIntsCount(); /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @param index The index of the element to return. * @return The ints at the given index. */ long getInts(int index); /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @return A list containing the strings. */ java.util.List getStringsList(); /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @return The count of strings. */ int getStringsCount(); /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @param index The index of the element to return. * @return The strings at the given index. */ com.google.protobuf.ByteString getStrings(int index); /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ java.util.List getTensorsList(); /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ onnx.Onnx.TensorProto getTensors(int index); /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ int getTensorsCount(); /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ java.util.List getTensorsOrBuilderList(); /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ onnx.Onnx.TensorProtoOrBuilder getTensorsOrBuilder( int index); /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ java.util.List getGraphsList(); /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ onnx.Onnx.GraphProto getGraphs(int index); /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ int getGraphsCount(); /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ java.util.List getGraphsOrBuilderList(); /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ onnx.Onnx.GraphProtoOrBuilder getGraphsOrBuilder( int index); /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ java.util.List getSparseTensorsList(); /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ onnx.Onnx.SparseTensorProto getSparseTensors(int index); /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ int getSparseTensorsCount(); /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ java.util.List getSparseTensorsOrBuilderList(); /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorsOrBuilder( int index); /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ java.util.List getTypeProtosList(); /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ onnx.Onnx.TypeProto getTypeProtos(int index); /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ int getTypeProtosCount(); /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ java.util.List getTypeProtosOrBuilderList(); /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ onnx.Onnx.TypeProtoOrBuilder getTypeProtosOrBuilder( int index); } /** *
   * Attributes
   *
   * A named attribute containing either singular float, integer, string, graph,
   * and tensor values, or repeated float, integer, string, graph, and tensor values.
   * An AttributeProto MUST contain the name field, and *only one* of the
   * following content fields, effectively enforcing a C/C++ union equivalent.
   * 
* * Protobuf type {@code onnx.AttributeProto} */ public static final class AttributeProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.AttributeProto) AttributeProtoOrBuilder { private static final long serialVersionUID = 0L; // Use AttributeProto.newBuilder() to construct. private AttributeProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private AttributeProto() { name_ = ""; refAttrName_ = ""; docString_ = ""; type_ = 0; s_ = com.google.protobuf.ByteString.EMPTY; floats_ = emptyFloatList(); ints_ = emptyLongList(); strings_ = emptyList(com.google.protobuf.ByteString.class); tensors_ = java.util.Collections.emptyList(); graphs_ = java.util.Collections.emptyList(); sparseTensors_ = java.util.Collections.emptyList(); typeProtos_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new AttributeProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_AttributeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_AttributeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.AttributeProto.class, onnx.Onnx.AttributeProto.Builder.class); } /** *
     * Note: this enum is structurally identical to the OpSchema::AttrType
     * enum defined in schema.h.  If you rev one, you likely need to rev the other.
     * 
* * Protobuf enum {@code onnx.AttributeProto.AttributeType} */ public enum AttributeType implements com.google.protobuf.ProtocolMessageEnum { /** * UNDEFINED = 0; */ UNDEFINED(0), /** * FLOAT = 1; */ FLOAT(1), /** * INT = 2; */ INT(2), /** * STRING = 3; */ STRING(3), /** * TENSOR = 4; */ TENSOR(4), /** * GRAPH = 5; */ GRAPH(5), /** * SPARSE_TENSOR = 11; */ SPARSE_TENSOR(11), /** * TYPE_PROTO = 13; */ TYPE_PROTO(13), /** * FLOATS = 6; */ FLOATS(6), /** * INTS = 7; */ INTS(7), /** * STRINGS = 8; */ STRINGS(8), /** * TENSORS = 9; */ TENSORS(9), /** * GRAPHS = 10; */ GRAPHS(10), /** * SPARSE_TENSORS = 12; */ SPARSE_TENSORS(12), /** * TYPE_PROTOS = 14; */ TYPE_PROTOS(14), ; /** * UNDEFINED = 0; */ public static final int UNDEFINED_VALUE = 0; /** * FLOAT = 1; */ public static final int FLOAT_VALUE = 1; /** * INT = 2; */ public static final int INT_VALUE = 2; /** * STRING = 3; */ public static final int STRING_VALUE = 3; /** * TENSOR = 4; */ public static final int TENSOR_VALUE = 4; /** * GRAPH = 5; */ public static final int GRAPH_VALUE = 5; /** * SPARSE_TENSOR = 11; */ public static final int SPARSE_TENSOR_VALUE = 11; /** * TYPE_PROTO = 13; */ public static final int TYPE_PROTO_VALUE = 13; /** * FLOATS = 6; */ public static final int FLOATS_VALUE = 6; /** * INTS = 7; */ public static final int INTS_VALUE = 7; /** * STRINGS = 8; */ public static final int STRINGS_VALUE = 8; /** * TENSORS = 9; */ public static final int TENSORS_VALUE = 9; /** * GRAPHS = 10; */ public static final int GRAPHS_VALUE = 10; /** * SPARSE_TENSORS = 12; */ public static final int SPARSE_TENSORS_VALUE = 12; /** * TYPE_PROTOS = 14; */ public static final int TYPE_PROTOS_VALUE = 14; public final int getNumber() { return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static AttributeType valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static AttributeType forNumber(int value) { switch (value) { case 0: return UNDEFINED; case 1: return FLOAT; case 2: return INT; case 3: return STRING; case 4: return TENSOR; case 5: return GRAPH; case 11: return SPARSE_TENSOR; case 13: return TYPE_PROTO; case 6: return FLOATS; case 7: return INTS; case 8: return STRINGS; case 9: return TENSORS; case 10: return GRAPHS; case 12: return SPARSE_TENSORS; case 14: return TYPE_PROTOS; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< AttributeType> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public AttributeType findValueByNumber(int number) { return AttributeType.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return onnx.Onnx.AttributeProto.getDescriptor().getEnumTypes().get(0); } private static final AttributeType[] VALUES = values(); public static AttributeType valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } return VALUES[desc.getIndex()]; } private final int value; private AttributeType(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:onnx.AttributeProto.AttributeType) } private int bitField0_; public static final int NAME_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * The name field MUST be present for this version of the IR.
     * 
* * optional string name = 1; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int REF_ATTR_NAME_FIELD_NUMBER = 21; @SuppressWarnings("serial") private volatile java.lang.Object refAttrName_ = ""; /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return Whether the refAttrName field is set. */ @java.lang.Override public boolean hasRefAttrName() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return The refAttrName. */ @java.lang.Override public java.lang.String getRefAttrName() { java.lang.Object ref = refAttrName_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { refAttrName_ = s; } return s; } } /** *
     * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
     * In this case, this AttributeProto does not contain data, and it's a reference of attribute
     * in parent scope.
     * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
     * 
* * optional string ref_attr_name = 21; * @return The bytes for refAttrName. */ @java.lang.Override public com.google.protobuf.ByteString getRefAttrNameBytes() { java.lang.Object ref = refAttrName_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); refAttrName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int DOC_STRING_FIELD_NUMBER = 13; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this attribute. Markdown is allowed.
     * 
* * optional string doc_string = 13; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TYPE_FIELD_NUMBER = 20; private int type_ = 0; /** *
     * The type field MUST be present for this version of the IR.
     * For 0.0.1 versions of the IR, this field was not defined, and
     * implementations needed to use has_field heuristics to determine
     * which value field was in use.  For IR_VERSION 0.0.2 or later, this
     * field MUST be set and match the f|i|s|t|... field in use.  This
     * change was made to accommodate proto3 implementations.
     * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return Whether the type field is set. */ @java.lang.Override public boolean hasType() { return ((bitField0_ & 0x00000008) != 0); } /** *
     * The type field MUST be present for this version of the IR.
     * For 0.0.1 versions of the IR, this field was not defined, and
     * implementations needed to use has_field heuristics to determine
     * which value field was in use.  For IR_VERSION 0.0.2 or later, this
     * field MUST be set and match the f|i|s|t|... field in use.  This
     * change was made to accommodate proto3 implementations.
     * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return The type. */ @java.lang.Override public onnx.Onnx.AttributeProto.AttributeType getType() { onnx.Onnx.AttributeProto.AttributeType result = onnx.Onnx.AttributeProto.AttributeType.forNumber(type_); return result == null ? onnx.Onnx.AttributeProto.AttributeType.UNDEFINED : result; } public static final int F_FIELD_NUMBER = 2; private float f_ = 0F; /** *
     * Exactly ONE of the following fields must be present for this version of the IR
     * 
* * optional float f = 2; * @return Whether the f field is set. */ @java.lang.Override public boolean hasF() { return ((bitField0_ & 0x00000010) != 0); } /** *
     * Exactly ONE of the following fields must be present for this version of the IR
     * 
* * optional float f = 2; * @return The f. */ @java.lang.Override public float getF() { return f_; } public static final int I_FIELD_NUMBER = 3; private long i_ = 0L; /** *
     * int
     * 
* * optional int64 i = 3; * @return Whether the i field is set. */ @java.lang.Override public boolean hasI() { return ((bitField0_ & 0x00000020) != 0); } /** *
     * int
     * 
* * optional int64 i = 3; * @return The i. */ @java.lang.Override public long getI() { return i_; } public static final int S_FIELD_NUMBER = 4; private com.google.protobuf.ByteString s_ = com.google.protobuf.ByteString.EMPTY; /** *
     * UTF-8 string
     * 
* * optional bytes s = 4; * @return Whether the s field is set. */ @java.lang.Override public boolean hasS() { return ((bitField0_ & 0x00000040) != 0); } /** *
     * UTF-8 string
     * 
* * optional bytes s = 4; * @return The s. */ @java.lang.Override public com.google.protobuf.ByteString getS() { return s_; } public static final int T_FIELD_NUMBER = 5; private onnx.Onnx.TensorProto t_; /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; * @return Whether the t field is set. */ @java.lang.Override public boolean hasT() { return ((bitField0_ & 0x00000080) != 0); } /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; * @return The t. */ @java.lang.Override public onnx.Onnx.TensorProto getT() { return t_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : t_; } /** *
     * tensor value
     * 
* * optional .onnx.TensorProto t = 5; */ @java.lang.Override public onnx.Onnx.TensorProtoOrBuilder getTOrBuilder() { return t_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : t_; } public static final int G_FIELD_NUMBER = 6; private onnx.Onnx.GraphProto g_; /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; * @return Whether the g field is set. */ @java.lang.Override public boolean hasG() { return ((bitField0_ & 0x00000100) != 0); } /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; * @return The g. */ @java.lang.Override public onnx.Onnx.GraphProto getG() { return g_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : g_; } /** *
     * graph
     * 
* * optional .onnx.GraphProto g = 6; */ @java.lang.Override public onnx.Onnx.GraphProtoOrBuilder getGOrBuilder() { return g_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : g_; } public static final int SPARSE_TENSOR_FIELD_NUMBER = 22; private onnx.Onnx.SparseTensorProto sparseTensor_; /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return Whether the sparseTensor field is set. */ @java.lang.Override public boolean hasSparseTensor() { return ((bitField0_ & 0x00000200) != 0); } /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return The sparseTensor. */ @java.lang.Override public onnx.Onnx.SparseTensorProto getSparseTensor() { return sparseTensor_ == null ? onnx.Onnx.SparseTensorProto.getDefaultInstance() : sparseTensor_; } /** *
     * sparse tensor value
     * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ @java.lang.Override public onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorOrBuilder() { return sparseTensor_ == null ? onnx.Onnx.SparseTensorProto.getDefaultInstance() : sparseTensor_; } public static final int TP_FIELD_NUMBER = 14; private onnx.Onnx.TypeProto tp_; /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; * @return Whether the tp field is set. */ @java.lang.Override public boolean hasTp() { return ((bitField0_ & 0x00000400) != 0); } /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; * @return The tp. */ @java.lang.Override public onnx.Onnx.TypeProto getTp() { return tp_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : tp_; } /** *
     * Do not use field below, it's deprecated.
     * optional ValueProto v = 12;         // value - subsumes everything but graph
     * 
* * optional .onnx.TypeProto tp = 14; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getTpOrBuilder() { return tp_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : tp_; } public static final int FLOATS_FIELD_NUMBER = 7; @SuppressWarnings("serial") private com.google.protobuf.Internal.FloatList floats_ = emptyFloatList(); /** *
     * list of floats
     * 
* * repeated float floats = 7; * @return A list containing the floats. */ @java.lang.Override public java.util.List getFloatsList() { return floats_; } /** *
     * list of floats
     * 
* * repeated float floats = 7; * @return The count of floats. */ public int getFloatsCount() { return floats_.size(); } /** *
     * list of floats
     * 
* * repeated float floats = 7; * @param index The index of the element to return. * @return The floats at the given index. */ public float getFloats(int index) { return floats_.getFloat(index); } public static final int INTS_FIELD_NUMBER = 8; @SuppressWarnings("serial") private com.google.protobuf.Internal.LongList ints_ = emptyLongList(); /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @return A list containing the ints. */ @java.lang.Override public java.util.List getIntsList() { return ints_; } /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @return The count of ints. */ public int getIntsCount() { return ints_.size(); } /** *
     * list of ints
     * 
* * repeated int64 ints = 8; * @param index The index of the element to return. * @return The ints at the given index. */ public long getInts(int index) { return ints_.getLong(index); } public static final int STRINGS_FIELD_NUMBER = 9; @SuppressWarnings("serial") private com.google.protobuf.Internal.ProtobufList strings_ = emptyList(com.google.protobuf.ByteString.class); /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @return A list containing the strings. */ @java.lang.Override public java.util.List getStringsList() { return strings_; } /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @return The count of strings. */ public int getStringsCount() { return strings_.size(); } /** *
     * list of UTF-8 strings
     * 
* * repeated bytes strings = 9; * @param index The index of the element to return. * @return The strings at the given index. */ public com.google.protobuf.ByteString getStrings(int index) { return strings_.get(index); } public static final int TENSORS_FIELD_NUMBER = 10; @SuppressWarnings("serial") private java.util.List tensors_; /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ @java.lang.Override public java.util.List getTensorsList() { return tensors_; } /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ @java.lang.Override public java.util.List getTensorsOrBuilderList() { return tensors_; } /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ @java.lang.Override public int getTensorsCount() { return tensors_.size(); } /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ @java.lang.Override public onnx.Onnx.TensorProto getTensors(int index) { return tensors_.get(index); } /** *
     * list of tensors
     * 
* * repeated .onnx.TensorProto tensors = 10; */ @java.lang.Override public onnx.Onnx.TensorProtoOrBuilder getTensorsOrBuilder( int index) { return tensors_.get(index); } public static final int GRAPHS_FIELD_NUMBER = 11; @SuppressWarnings("serial") private java.util.List graphs_; /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ @java.lang.Override public java.util.List getGraphsList() { return graphs_; } /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ @java.lang.Override public java.util.List getGraphsOrBuilderList() { return graphs_; } /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ @java.lang.Override public int getGraphsCount() { return graphs_.size(); } /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ @java.lang.Override public onnx.Onnx.GraphProto getGraphs(int index) { return graphs_.get(index); } /** *
     * list of graph
     * 
* * repeated .onnx.GraphProto graphs = 11; */ @java.lang.Override public onnx.Onnx.GraphProtoOrBuilder getGraphsOrBuilder( int index) { return graphs_.get(index); } public static final int SPARSE_TENSORS_FIELD_NUMBER = 23; @SuppressWarnings("serial") private java.util.List sparseTensors_; /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ @java.lang.Override public java.util.List getSparseTensorsList() { return sparseTensors_; } /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ @java.lang.Override public java.util.List getSparseTensorsOrBuilderList() { return sparseTensors_; } /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ @java.lang.Override public int getSparseTensorsCount() { return sparseTensors_.size(); } /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ @java.lang.Override public onnx.Onnx.SparseTensorProto getSparseTensors(int index) { return sparseTensors_.get(index); } /** *
     * list of sparse tensors
     * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ @java.lang.Override public onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorsOrBuilder( int index) { return sparseTensors_.get(index); } public static final int TYPE_PROTOS_FIELD_NUMBER = 15; @SuppressWarnings("serial") private java.util.List typeProtos_; /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ @java.lang.Override public java.util.List getTypeProtosList() { return typeProtos_; } /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ @java.lang.Override public java.util.List getTypeProtosOrBuilderList() { return typeProtos_; } /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ @java.lang.Override public int getTypeProtosCount() { return typeProtos_.size(); } /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ @java.lang.Override public onnx.Onnx.TypeProto getTypeProtos(int index) { return typeProtos_.get(index); } /** *
     * list of type protos
     * 
* * repeated .onnx.TypeProto type_protos = 15; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getTypeProtosOrBuilder( int index) { return typeProtos_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, name_); } if (((bitField0_ & 0x00000010) != 0)) { output.writeFloat(2, f_); } if (((bitField0_ & 0x00000020) != 0)) { output.writeInt64(3, i_); } if (((bitField0_ & 0x00000040) != 0)) { output.writeBytes(4, s_); } if (((bitField0_ & 0x00000080) != 0)) { output.writeMessage(5, getT()); } if (((bitField0_ & 0x00000100) != 0)) { output.writeMessage(6, getG()); } for (int i = 0; i < floats_.size(); i++) { output.writeFloat(7, floats_.getFloat(i)); } for (int i = 0; i < ints_.size(); i++) { output.writeInt64(8, ints_.getLong(i)); } for (int i = 0; i < strings_.size(); i++) { output.writeBytes(9, strings_.get(i)); } for (int i = 0; i < tensors_.size(); i++) { output.writeMessage(10, tensors_.get(i)); } for (int i = 0; i < graphs_.size(); i++) { output.writeMessage(11, graphs_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 13, docString_); } if (((bitField0_ & 0x00000400) != 0)) { output.writeMessage(14, getTp()); } for (int i = 0; i < typeProtos_.size(); i++) { output.writeMessage(15, typeProtos_.get(i)); } if (((bitField0_ & 0x00000008) != 0)) { output.writeEnum(20, type_); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 21, refAttrName_); } if (((bitField0_ & 0x00000200) != 0)) { output.writeMessage(22, getSparseTensor()); } for (int i = 0; i < sparseTensors_.size(); i++) { output.writeMessage(23, sparseTensors_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, name_); } if (((bitField0_ & 0x00000010) != 0)) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(2, f_); } if (((bitField0_ & 0x00000020) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(3, i_); } if (((bitField0_ & 0x00000040) != 0)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(4, s_); } if (((bitField0_ & 0x00000080) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, getT()); } if (((bitField0_ & 0x00000100) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(6, getG()); } { int dataSize = 0; dataSize = 4 * getFloatsList().size(); size += dataSize; size += 1 * getFloatsList().size(); } { int dataSize = 0; for (int i = 0; i < ints_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt64SizeNoTag(ints_.getLong(i)); } size += dataSize; size += 1 * getIntsList().size(); } { int dataSize = 0; for (int i = 0; i < strings_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeBytesSizeNoTag(strings_.get(i)); } size += dataSize; size += 1 * getStringsList().size(); } for (int i = 0; i < tensors_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(10, tensors_.get(i)); } for (int i = 0; i < graphs_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(11, graphs_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(13, docString_); } if (((bitField0_ & 0x00000400) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(14, getTp()); } for (int i = 0; i < typeProtos_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(15, typeProtos_.get(i)); } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(20, type_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(21, refAttrName_); } if (((bitField0_ & 0x00000200) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(22, getSparseTensor()); } for (int i = 0; i < sparseTensors_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(23, sparseTensors_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.AttributeProto)) { return super.equals(obj); } onnx.Onnx.AttributeProto other = (onnx.Onnx.AttributeProto) obj; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (hasRefAttrName() != other.hasRefAttrName()) return false; if (hasRefAttrName()) { if (!getRefAttrName() .equals(other.getRefAttrName())) return false; } if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (hasType() != other.hasType()) return false; if (hasType()) { if (type_ != other.type_) return false; } if (hasF() != other.hasF()) return false; if (hasF()) { if (java.lang.Float.floatToIntBits(getF()) != java.lang.Float.floatToIntBits( other.getF())) return false; } if (hasI() != other.hasI()) return false; if (hasI()) { if (getI() != other.getI()) return false; } if (hasS() != other.hasS()) return false; if (hasS()) { if (!getS() .equals(other.getS())) return false; } if (hasT() != other.hasT()) return false; if (hasT()) { if (!getT() .equals(other.getT())) return false; } if (hasG() != other.hasG()) return false; if (hasG()) { if (!getG() .equals(other.getG())) return false; } if (hasSparseTensor() != other.hasSparseTensor()) return false; if (hasSparseTensor()) { if (!getSparseTensor() .equals(other.getSparseTensor())) return false; } if (hasTp() != other.hasTp()) return false; if (hasTp()) { if (!getTp() .equals(other.getTp())) return false; } if (!getFloatsList() .equals(other.getFloatsList())) return false; if (!getIntsList() .equals(other.getIntsList())) return false; if (!getStringsList() .equals(other.getStringsList())) return false; if (!getTensorsList() .equals(other.getTensorsList())) return false; if (!getGraphsList() .equals(other.getGraphsList())) return false; if (!getSparseTensorsList() .equals(other.getSparseTensorsList())) return false; if (!getTypeProtosList() .equals(other.getTypeProtosList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (hasRefAttrName()) { hash = (37 * hash) + REF_ATTR_NAME_FIELD_NUMBER; hash = (53 * hash) + getRefAttrName().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } if (hasType()) { hash = (37 * hash) + TYPE_FIELD_NUMBER; hash = (53 * hash) + type_; } if (hasF()) { hash = (37 * hash) + F_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getF()); } if (hasI()) { hash = (37 * hash) + I_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getI()); } if (hasS()) { hash = (37 * hash) + S_FIELD_NUMBER; hash = (53 * hash) + getS().hashCode(); } if (hasT()) { hash = (37 * hash) + T_FIELD_NUMBER; hash = (53 * hash) + getT().hashCode(); } if (hasG()) { hash = (37 * hash) + G_FIELD_NUMBER; hash = (53 * hash) + getG().hashCode(); } if (hasSparseTensor()) { hash = (37 * hash) + SPARSE_TENSOR_FIELD_NUMBER; hash = (53 * hash) + getSparseTensor().hashCode(); } if (hasTp()) { hash = (37 * hash) + TP_FIELD_NUMBER; hash = (53 * hash) + getTp().hashCode(); } if (getFloatsCount() > 0) { hash = (37 * hash) + FLOATS_FIELD_NUMBER; hash = (53 * hash) + getFloatsList().hashCode(); } if (getIntsCount() > 0) { hash = (37 * hash) + INTS_FIELD_NUMBER; hash = (53 * hash) + getIntsList().hashCode(); } if (getStringsCount() > 0) { hash = (37 * hash) + STRINGS_FIELD_NUMBER; hash = (53 * hash) + getStringsList().hashCode(); } if (getTensorsCount() > 0) { hash = (37 * hash) + TENSORS_FIELD_NUMBER; hash = (53 * hash) + getTensorsList().hashCode(); } if (getGraphsCount() > 0) { hash = (37 * hash) + GRAPHS_FIELD_NUMBER; hash = (53 * hash) + getGraphsList().hashCode(); } if (getSparseTensorsCount() > 0) { hash = (37 * hash) + SPARSE_TENSORS_FIELD_NUMBER; hash = (53 * hash) + getSparseTensorsList().hashCode(); } if (getTypeProtosCount() > 0) { hash = (37 * hash) + TYPE_PROTOS_FIELD_NUMBER; hash = (53 * hash) + getTypeProtosList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.AttributeProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.AttributeProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.AttributeProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.AttributeProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.AttributeProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.AttributeProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.AttributeProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.AttributeProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.AttributeProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.AttributeProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.AttributeProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.AttributeProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.AttributeProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Attributes
     *
     * A named attribute containing either singular float, integer, string, graph,
     * and tensor values, or repeated float, integer, string, graph, and tensor values.
     * An AttributeProto MUST contain the name field, and *only one* of the
     * following content fields, effectively enforcing a C/C++ union equivalent.
     * 
* * Protobuf type {@code onnx.AttributeProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.AttributeProto) onnx.Onnx.AttributeProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_AttributeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_AttributeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.AttributeProto.class, onnx.Onnx.AttributeProto.Builder.class); } // Construct using onnx.Onnx.AttributeProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getTFieldBuilder(); getGFieldBuilder(); getSparseTensorFieldBuilder(); getTpFieldBuilder(); getTensorsFieldBuilder(); getGraphsFieldBuilder(); getSparseTensorsFieldBuilder(); getTypeProtosFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; name_ = ""; refAttrName_ = ""; docString_ = ""; type_ = 0; f_ = 0F; i_ = 0L; s_ = com.google.protobuf.ByteString.EMPTY; t_ = null; if (tBuilder_ != null) { tBuilder_.dispose(); tBuilder_ = null; } g_ = null; if (gBuilder_ != null) { gBuilder_.dispose(); gBuilder_ = null; } sparseTensor_ = null; if (sparseTensorBuilder_ != null) { sparseTensorBuilder_.dispose(); sparseTensorBuilder_ = null; } tp_ = null; if (tpBuilder_ != null) { tpBuilder_.dispose(); tpBuilder_ = null; } floats_ = emptyFloatList(); ints_ = emptyLongList(); strings_ = emptyList(com.google.protobuf.ByteString.class); if (tensorsBuilder_ == null) { tensors_ = java.util.Collections.emptyList(); } else { tensors_ = null; tensorsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00004000); if (graphsBuilder_ == null) { graphs_ = java.util.Collections.emptyList(); } else { graphs_ = null; graphsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00008000); if (sparseTensorsBuilder_ == null) { sparseTensors_ = java.util.Collections.emptyList(); } else { sparseTensors_ = null; sparseTensorsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00010000); if (typeProtosBuilder_ == null) { typeProtos_ = java.util.Collections.emptyList(); } else { typeProtos_ = null; typeProtosBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00020000); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_AttributeProto_descriptor; } @java.lang.Override public onnx.Onnx.AttributeProto getDefaultInstanceForType() { return onnx.Onnx.AttributeProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.AttributeProto build() { onnx.Onnx.AttributeProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.AttributeProto buildPartial() { onnx.Onnx.AttributeProto result = new onnx.Onnx.AttributeProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.AttributeProto result) { if (tensorsBuilder_ == null) { if (((bitField0_ & 0x00004000) != 0)) { tensors_ = java.util.Collections.unmodifiableList(tensors_); bitField0_ = (bitField0_ & ~0x00004000); } result.tensors_ = tensors_; } else { result.tensors_ = tensorsBuilder_.build(); } if (graphsBuilder_ == null) { if (((bitField0_ & 0x00008000) != 0)) { graphs_ = java.util.Collections.unmodifiableList(graphs_); bitField0_ = (bitField0_ & ~0x00008000); } result.graphs_ = graphs_; } else { result.graphs_ = graphsBuilder_.build(); } if (sparseTensorsBuilder_ == null) { if (((bitField0_ & 0x00010000) != 0)) { sparseTensors_ = java.util.Collections.unmodifiableList(sparseTensors_); bitField0_ = (bitField0_ & ~0x00010000); } result.sparseTensors_ = sparseTensors_; } else { result.sparseTensors_ = sparseTensorsBuilder_.build(); } if (typeProtosBuilder_ == null) { if (((bitField0_ & 0x00020000) != 0)) { typeProtos_ = java.util.Collections.unmodifiableList(typeProtos_); bitField0_ = (bitField0_ & ~0x00020000); } result.typeProtos_ = typeProtos_; } else { result.typeProtos_ = typeProtosBuilder_.build(); } } private void buildPartial0(onnx.Onnx.AttributeProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.refAttrName_ = refAttrName_; to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000004) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000008) != 0)) { result.type_ = type_; to_bitField0_ |= 0x00000008; } if (((from_bitField0_ & 0x00000010) != 0)) { result.f_ = f_; to_bitField0_ |= 0x00000010; } if (((from_bitField0_ & 0x00000020) != 0)) { result.i_ = i_; to_bitField0_ |= 0x00000020; } if (((from_bitField0_ & 0x00000040) != 0)) { result.s_ = s_; to_bitField0_ |= 0x00000040; } if (((from_bitField0_ & 0x00000080) != 0)) { result.t_ = tBuilder_ == null ? t_ : tBuilder_.build(); to_bitField0_ |= 0x00000080; } if (((from_bitField0_ & 0x00000100) != 0)) { result.g_ = gBuilder_ == null ? g_ : gBuilder_.build(); to_bitField0_ |= 0x00000100; } if (((from_bitField0_ & 0x00000200) != 0)) { result.sparseTensor_ = sparseTensorBuilder_ == null ? sparseTensor_ : sparseTensorBuilder_.build(); to_bitField0_ |= 0x00000200; } if (((from_bitField0_ & 0x00000400) != 0)) { result.tp_ = tpBuilder_ == null ? tp_ : tpBuilder_.build(); to_bitField0_ |= 0x00000400; } if (((from_bitField0_ & 0x00000800) != 0)) { floats_.makeImmutable(); result.floats_ = floats_; } if (((from_bitField0_ & 0x00001000) != 0)) { ints_.makeImmutable(); result.ints_ = ints_; } if (((from_bitField0_ & 0x00002000) != 0)) { strings_.makeImmutable(); result.strings_ = strings_; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.AttributeProto) { return mergeFrom((onnx.Onnx.AttributeProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.AttributeProto other) { if (other == onnx.Onnx.AttributeProto.getDefaultInstance()) return this; if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000001; onChanged(); } if (other.hasRefAttrName()) { refAttrName_ = other.refAttrName_; bitField0_ |= 0x00000002; onChanged(); } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000004; onChanged(); } if (other.hasType()) { setType(other.getType()); } if (other.hasF()) { setF(other.getF()); } if (other.hasI()) { setI(other.getI()); } if (other.hasS()) { setS(other.getS()); } if (other.hasT()) { mergeT(other.getT()); } if (other.hasG()) { mergeG(other.getG()); } if (other.hasSparseTensor()) { mergeSparseTensor(other.getSparseTensor()); } if (other.hasTp()) { mergeTp(other.getTp()); } if (!other.floats_.isEmpty()) { if (floats_.isEmpty()) { floats_ = other.floats_; floats_.makeImmutable(); bitField0_ |= 0x00000800; } else { ensureFloatsIsMutable(); floats_.addAll(other.floats_); } onChanged(); } if (!other.ints_.isEmpty()) { if (ints_.isEmpty()) { ints_ = other.ints_; ints_.makeImmutable(); bitField0_ |= 0x00001000; } else { ensureIntsIsMutable(); ints_.addAll(other.ints_); } onChanged(); } if (!other.strings_.isEmpty()) { if (strings_.isEmpty()) { strings_ = other.strings_; strings_.makeImmutable(); bitField0_ |= 0x00002000; } else { ensureStringsIsMutable(); strings_.addAll(other.strings_); } onChanged(); } if (tensorsBuilder_ == null) { if (!other.tensors_.isEmpty()) { if (tensors_.isEmpty()) { tensors_ = other.tensors_; bitField0_ = (bitField0_ & ~0x00004000); } else { ensureTensorsIsMutable(); tensors_.addAll(other.tensors_); } onChanged(); } } else { if (!other.tensors_.isEmpty()) { if (tensorsBuilder_.isEmpty()) { tensorsBuilder_.dispose(); tensorsBuilder_ = null; tensors_ = other.tensors_; bitField0_ = (bitField0_ & ~0x00004000); tensorsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getTensorsFieldBuilder() : null; } else { tensorsBuilder_.addAllMessages(other.tensors_); } } } if (graphsBuilder_ == null) { if (!other.graphs_.isEmpty()) { if (graphs_.isEmpty()) { graphs_ = other.graphs_; bitField0_ = (bitField0_ & ~0x00008000); } else { ensureGraphsIsMutable(); graphs_.addAll(other.graphs_); } onChanged(); } } else { if (!other.graphs_.isEmpty()) { if (graphsBuilder_.isEmpty()) { graphsBuilder_.dispose(); graphsBuilder_ = null; graphs_ = other.graphs_; bitField0_ = (bitField0_ & ~0x00008000); graphsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getGraphsFieldBuilder() : null; } else { graphsBuilder_.addAllMessages(other.graphs_); } } } if (sparseTensorsBuilder_ == null) { if (!other.sparseTensors_.isEmpty()) { if (sparseTensors_.isEmpty()) { sparseTensors_ = other.sparseTensors_; bitField0_ = (bitField0_ & ~0x00010000); } else { ensureSparseTensorsIsMutable(); sparseTensors_.addAll(other.sparseTensors_); } onChanged(); } } else { if (!other.sparseTensors_.isEmpty()) { if (sparseTensorsBuilder_.isEmpty()) { sparseTensorsBuilder_.dispose(); sparseTensorsBuilder_ = null; sparseTensors_ = other.sparseTensors_; bitField0_ = (bitField0_ & ~0x00010000); sparseTensorsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getSparseTensorsFieldBuilder() : null; } else { sparseTensorsBuilder_.addAllMessages(other.sparseTensors_); } } } if (typeProtosBuilder_ == null) { if (!other.typeProtos_.isEmpty()) { if (typeProtos_.isEmpty()) { typeProtos_ = other.typeProtos_; bitField0_ = (bitField0_ & ~0x00020000); } else { ensureTypeProtosIsMutable(); typeProtos_.addAll(other.typeProtos_); } onChanged(); } } else { if (!other.typeProtos_.isEmpty()) { if (typeProtosBuilder_.isEmpty()) { typeProtosBuilder_.dispose(); typeProtosBuilder_ = null; typeProtos_ = other.typeProtos_; bitField0_ = (bitField0_ & ~0x00020000); typeProtosBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getTypeProtosFieldBuilder() : null; } else { typeProtosBuilder_.addAllMessages(other.typeProtos_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { name_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 21: { f_ = input.readFloat(); bitField0_ |= 0x00000010; break; } // case 21 case 24: { i_ = input.readInt64(); bitField0_ |= 0x00000020; break; } // case 24 case 34: { s_ = input.readBytes(); bitField0_ |= 0x00000040; break; } // case 34 case 42: { input.readMessage( getTFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000080; break; } // case 42 case 50: { input.readMessage( getGFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000100; break; } // case 50 case 61: { float v = input.readFloat(); ensureFloatsIsMutable(); floats_.addFloat(v); break; } // case 61 case 58: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); int alloc = length > 4096 ? 4096 : length; ensureFloatsIsMutable(alloc / 4); while (input.getBytesUntilLimit() > 0) { floats_.addFloat(input.readFloat()); } input.popLimit(limit); break; } // case 58 case 64: { long v = input.readInt64(); ensureIntsIsMutable(); ints_.addLong(v); break; } // case 64 case 66: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureIntsIsMutable(); while (input.getBytesUntilLimit() > 0) { ints_.addLong(input.readInt64()); } input.popLimit(limit); break; } // case 66 case 74: { com.google.protobuf.ByteString v = input.readBytes(); ensureStringsIsMutable(); strings_.add(v); break; } // case 74 case 82: { onnx.Onnx.TensorProto m = input.readMessage( onnx.Onnx.TensorProto.PARSER, extensionRegistry); if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); tensors_.add(m); } else { tensorsBuilder_.addMessage(m); } break; } // case 82 case 90: { onnx.Onnx.GraphProto m = input.readMessage( onnx.Onnx.GraphProto.PARSER, extensionRegistry); if (graphsBuilder_ == null) { ensureGraphsIsMutable(); graphs_.add(m); } else { graphsBuilder_.addMessage(m); } break; } // case 90 case 106: { docString_ = input.readBytes(); bitField0_ |= 0x00000004; break; } // case 106 case 114: { input.readMessage( getTpFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000400; break; } // case 114 case 122: { onnx.Onnx.TypeProto m = input.readMessage( onnx.Onnx.TypeProto.PARSER, extensionRegistry); if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); typeProtos_.add(m); } else { typeProtosBuilder_.addMessage(m); } break; } // case 122 case 160: { int tmpRaw = input.readEnum(); onnx.Onnx.AttributeProto.AttributeType tmpValue = onnx.Onnx.AttributeProto.AttributeType.forNumber(tmpRaw); if (tmpValue == null) { mergeUnknownVarintField(20, tmpRaw); } else { type_ = tmpRaw; bitField0_ |= 0x00000008; } break; } // case 160 case 170: { refAttrName_ = input.readBytes(); bitField0_ |= 0x00000002; break; } // case 170 case 178: { input.readMessage( getSparseTensorFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000200; break; } // case 178 case 186: { onnx.Onnx.SparseTensorProto m = input.readMessage( onnx.Onnx.SparseTensorProto.PARSER, extensionRegistry); if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); sparseTensors_.add(m); } else { sparseTensorsBuilder_.addMessage(m); } break; } // case 186 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object name_ = ""; /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** *
       * The name field MUST be present for this version of the IR.
       * 
* * optional string name = 1; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private java.lang.Object refAttrName_ = ""; /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @return Whether the refAttrName field is set. */ public boolean hasRefAttrName() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @return The refAttrName. */ public java.lang.String getRefAttrName() { java.lang.Object ref = refAttrName_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { refAttrName_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @return The bytes for refAttrName. */ public com.google.protobuf.ByteString getRefAttrNameBytes() { java.lang.Object ref = refAttrName_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); refAttrName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @param value The refAttrName to set. * @return This builder for chaining. */ public Builder setRefAttrName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } refAttrName_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @return This builder for chaining. */ public Builder clearRefAttrName() { refAttrName_ = getDefaultInstance().getRefAttrName(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** *
       * if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
       * In this case, this AttributeProto does not contain data, and it's a reference of attribute
       * in parent scope.
       * NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
       * 
* * optional string ref_attr_name = 21; * @param value The bytes for refAttrName to set. * @return This builder for chaining. */ public Builder setRefAttrNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } refAttrName_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000004) != 0); } /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
       * A human-readable documentation for this attribute. Markdown is allowed.
       * 
* * optional string doc_string = 13; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } private int type_ = 0; /** *
       * The type field MUST be present for this version of the IR.
       * For 0.0.1 versions of the IR, this field was not defined, and
       * implementations needed to use has_field heuristics to determine
       * which value field was in use.  For IR_VERSION 0.0.2 or later, this
       * field MUST be set and match the f|i|s|t|... field in use.  This
       * change was made to accommodate proto3 implementations.
       * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return Whether the type field is set. */ @java.lang.Override public boolean hasType() { return ((bitField0_ & 0x00000008) != 0); } /** *
       * The type field MUST be present for this version of the IR.
       * For 0.0.1 versions of the IR, this field was not defined, and
       * implementations needed to use has_field heuristics to determine
       * which value field was in use.  For IR_VERSION 0.0.2 or later, this
       * field MUST be set and match the f|i|s|t|... field in use.  This
       * change was made to accommodate proto3 implementations.
       * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return The type. */ @java.lang.Override public onnx.Onnx.AttributeProto.AttributeType getType() { onnx.Onnx.AttributeProto.AttributeType result = onnx.Onnx.AttributeProto.AttributeType.forNumber(type_); return result == null ? onnx.Onnx.AttributeProto.AttributeType.UNDEFINED : result; } /** *
       * The type field MUST be present for this version of the IR.
       * For 0.0.1 versions of the IR, this field was not defined, and
       * implementations needed to use has_field heuristics to determine
       * which value field was in use.  For IR_VERSION 0.0.2 or later, this
       * field MUST be set and match the f|i|s|t|... field in use.  This
       * change was made to accommodate proto3 implementations.
       * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @param value The type to set. * @return This builder for chaining. */ public Builder setType(onnx.Onnx.AttributeProto.AttributeType value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000008; type_ = value.getNumber(); onChanged(); return this; } /** *
       * The type field MUST be present for this version of the IR.
       * For 0.0.1 versions of the IR, this field was not defined, and
       * implementations needed to use has_field heuristics to determine
       * which value field was in use.  For IR_VERSION 0.0.2 or later, this
       * field MUST be set and match the f|i|s|t|... field in use.  This
       * change was made to accommodate proto3 implementations.
       * 
* * optional .onnx.AttributeProto.AttributeType type = 20; * @return This builder for chaining. */ public Builder clearType() { bitField0_ = (bitField0_ & ~0x00000008); type_ = 0; onChanged(); return this; } private float f_ ; /** *
       * Exactly ONE of the following fields must be present for this version of the IR
       * 
* * optional float f = 2; * @return Whether the f field is set. */ @java.lang.Override public boolean hasF() { return ((bitField0_ & 0x00000010) != 0); } /** *
       * Exactly ONE of the following fields must be present for this version of the IR
       * 
* * optional float f = 2; * @return The f. */ @java.lang.Override public float getF() { return f_; } /** *
       * Exactly ONE of the following fields must be present for this version of the IR
       * 
* * optional float f = 2; * @param value The f to set. * @return This builder for chaining. */ public Builder setF(float value) { f_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * Exactly ONE of the following fields must be present for this version of the IR
       * 
* * optional float f = 2; * @return This builder for chaining. */ public Builder clearF() { bitField0_ = (bitField0_ & ~0x00000010); f_ = 0F; onChanged(); return this; } private long i_ ; /** *
       * int
       * 
* * optional int64 i = 3; * @return Whether the i field is set. */ @java.lang.Override public boolean hasI() { return ((bitField0_ & 0x00000020) != 0); } /** *
       * int
       * 
* * optional int64 i = 3; * @return The i. */ @java.lang.Override public long getI() { return i_; } /** *
       * int
       * 
* * optional int64 i = 3; * @param value The i to set. * @return This builder for chaining. */ public Builder setI(long value) { i_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * int
       * 
* * optional int64 i = 3; * @return This builder for chaining. */ public Builder clearI() { bitField0_ = (bitField0_ & ~0x00000020); i_ = 0L; onChanged(); return this; } private com.google.protobuf.ByteString s_ = com.google.protobuf.ByteString.EMPTY; /** *
       * UTF-8 string
       * 
* * optional bytes s = 4; * @return Whether the s field is set. */ @java.lang.Override public boolean hasS() { return ((bitField0_ & 0x00000040) != 0); } /** *
       * UTF-8 string
       * 
* * optional bytes s = 4; * @return The s. */ @java.lang.Override public com.google.protobuf.ByteString getS() { return s_; } /** *
       * UTF-8 string
       * 
* * optional bytes s = 4; * @param value The s to set. * @return This builder for chaining. */ public Builder setS(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } s_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * UTF-8 string
       * 
* * optional bytes s = 4; * @return This builder for chaining. */ public Builder clearS() { bitField0_ = (bitField0_ & ~0x00000040); s_ = getDefaultInstance().getS(); onChanged(); return this; } private onnx.Onnx.TensorProto t_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> tBuilder_; /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; * @return Whether the t field is set. */ public boolean hasT() { return ((bitField0_ & 0x00000080) != 0); } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; * @return The t. */ public onnx.Onnx.TensorProto getT() { if (tBuilder_ == null) { return t_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : t_; } else { return tBuilder_.getMessage(); } } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public Builder setT(onnx.Onnx.TensorProto value) { if (tBuilder_ == null) { if (value == null) { throw new NullPointerException(); } t_ = value; } else { tBuilder_.setMessage(value); } bitField0_ |= 0x00000080; onChanged(); return this; } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public Builder setT( onnx.Onnx.TensorProto.Builder builderForValue) { if (tBuilder_ == null) { t_ = builderForValue.build(); } else { tBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000080; onChanged(); return this; } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public Builder mergeT(onnx.Onnx.TensorProto value) { if (tBuilder_ == null) { if (((bitField0_ & 0x00000080) != 0) && t_ != null && t_ != onnx.Onnx.TensorProto.getDefaultInstance()) { getTBuilder().mergeFrom(value); } else { t_ = value; } } else { tBuilder_.mergeFrom(value); } if (t_ != null) { bitField0_ |= 0x00000080; onChanged(); } return this; } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public Builder clearT() { bitField0_ = (bitField0_ & ~0x00000080); t_ = null; if (tBuilder_ != null) { tBuilder_.dispose(); tBuilder_ = null; } onChanged(); return this; } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public onnx.Onnx.TensorProto.Builder getTBuilder() { bitField0_ |= 0x00000080; onChanged(); return getTFieldBuilder().getBuilder(); } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ public onnx.Onnx.TensorProtoOrBuilder getTOrBuilder() { if (tBuilder_ != null) { return tBuilder_.getMessageOrBuilder(); } else { return t_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : t_; } } /** *
       * tensor value
       * 
* * optional .onnx.TensorProto t = 5; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> getTFieldBuilder() { if (tBuilder_ == null) { tBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder>( getT(), getParentForChildren(), isClean()); t_ = null; } return tBuilder_; } private onnx.Onnx.GraphProto g_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> gBuilder_; /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; * @return Whether the g field is set. */ public boolean hasG() { return ((bitField0_ & 0x00000100) != 0); } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; * @return The g. */ public onnx.Onnx.GraphProto getG() { if (gBuilder_ == null) { return g_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : g_; } else { return gBuilder_.getMessage(); } } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public Builder setG(onnx.Onnx.GraphProto value) { if (gBuilder_ == null) { if (value == null) { throw new NullPointerException(); } g_ = value; } else { gBuilder_.setMessage(value); } bitField0_ |= 0x00000100; onChanged(); return this; } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public Builder setG( onnx.Onnx.GraphProto.Builder builderForValue) { if (gBuilder_ == null) { g_ = builderForValue.build(); } else { gBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000100; onChanged(); return this; } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public Builder mergeG(onnx.Onnx.GraphProto value) { if (gBuilder_ == null) { if (((bitField0_ & 0x00000100) != 0) && g_ != null && g_ != onnx.Onnx.GraphProto.getDefaultInstance()) { getGBuilder().mergeFrom(value); } else { g_ = value; } } else { gBuilder_.mergeFrom(value); } if (g_ != null) { bitField0_ |= 0x00000100; onChanged(); } return this; } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public Builder clearG() { bitField0_ = (bitField0_ & ~0x00000100); g_ = null; if (gBuilder_ != null) { gBuilder_.dispose(); gBuilder_ = null; } onChanged(); return this; } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public onnx.Onnx.GraphProto.Builder getGBuilder() { bitField0_ |= 0x00000100; onChanged(); return getGFieldBuilder().getBuilder(); } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ public onnx.Onnx.GraphProtoOrBuilder getGOrBuilder() { if (gBuilder_ != null) { return gBuilder_.getMessageOrBuilder(); } else { return g_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : g_; } } /** *
       * graph
       * 
* * optional .onnx.GraphProto g = 6; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> getGFieldBuilder() { if (gBuilder_ == null) { gBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder>( getG(), getParentForChildren(), isClean()); g_ = null; } return gBuilder_; } private onnx.Onnx.SparseTensorProto sparseTensor_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> sparseTensorBuilder_; /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return Whether the sparseTensor field is set. */ public boolean hasSparseTensor() { return ((bitField0_ & 0x00000200) != 0); } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; * @return The sparseTensor. */ public onnx.Onnx.SparseTensorProto getSparseTensor() { if (sparseTensorBuilder_ == null) { return sparseTensor_ == null ? onnx.Onnx.SparseTensorProto.getDefaultInstance() : sparseTensor_; } else { return sparseTensorBuilder_.getMessage(); } } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public Builder setSparseTensor(onnx.Onnx.SparseTensorProto value) { if (sparseTensorBuilder_ == null) { if (value == null) { throw new NullPointerException(); } sparseTensor_ = value; } else { sparseTensorBuilder_.setMessage(value); } bitField0_ |= 0x00000200; onChanged(); return this; } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public Builder setSparseTensor( onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseTensorBuilder_ == null) { sparseTensor_ = builderForValue.build(); } else { sparseTensorBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000200; onChanged(); return this; } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public Builder mergeSparseTensor(onnx.Onnx.SparseTensorProto value) { if (sparseTensorBuilder_ == null) { if (((bitField0_ & 0x00000200) != 0) && sparseTensor_ != null && sparseTensor_ != onnx.Onnx.SparseTensorProto.getDefaultInstance()) { getSparseTensorBuilder().mergeFrom(value); } else { sparseTensor_ = value; } } else { sparseTensorBuilder_.mergeFrom(value); } if (sparseTensor_ != null) { bitField0_ |= 0x00000200; onChanged(); } return this; } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public Builder clearSparseTensor() { bitField0_ = (bitField0_ & ~0x00000200); sparseTensor_ = null; if (sparseTensorBuilder_ != null) { sparseTensorBuilder_.dispose(); sparseTensorBuilder_ = null; } onChanged(); return this; } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public onnx.Onnx.SparseTensorProto.Builder getSparseTensorBuilder() { bitField0_ |= 0x00000200; onChanged(); return getSparseTensorFieldBuilder().getBuilder(); } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ public onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorOrBuilder() { if (sparseTensorBuilder_ != null) { return sparseTensorBuilder_.getMessageOrBuilder(); } else { return sparseTensor_ == null ? onnx.Onnx.SparseTensorProto.getDefaultInstance() : sparseTensor_; } } /** *
       * sparse tensor value
       * 
* * optional .onnx.SparseTensorProto sparse_tensor = 22; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> getSparseTensorFieldBuilder() { if (sparseTensorBuilder_ == null) { sparseTensorBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder>( getSparseTensor(), getParentForChildren(), isClean()); sparseTensor_ = null; } return sparseTensorBuilder_; } private onnx.Onnx.TypeProto tp_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> tpBuilder_; /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; * @return Whether the tp field is set. */ public boolean hasTp() { return ((bitField0_ & 0x00000400) != 0); } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; * @return The tp. */ public onnx.Onnx.TypeProto getTp() { if (tpBuilder_ == null) { return tp_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : tp_; } else { return tpBuilder_.getMessage(); } } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public Builder setTp(onnx.Onnx.TypeProto value) { if (tpBuilder_ == null) { if (value == null) { throw new NullPointerException(); } tp_ = value; } else { tpBuilder_.setMessage(value); } bitField0_ |= 0x00000400; onChanged(); return this; } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public Builder setTp( onnx.Onnx.TypeProto.Builder builderForValue) { if (tpBuilder_ == null) { tp_ = builderForValue.build(); } else { tpBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000400; onChanged(); return this; } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public Builder mergeTp(onnx.Onnx.TypeProto value) { if (tpBuilder_ == null) { if (((bitField0_ & 0x00000400) != 0) && tp_ != null && tp_ != onnx.Onnx.TypeProto.getDefaultInstance()) { getTpBuilder().mergeFrom(value); } else { tp_ = value; } } else { tpBuilder_.mergeFrom(value); } if (tp_ != null) { bitField0_ |= 0x00000400; onChanged(); } return this; } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public Builder clearTp() { bitField0_ = (bitField0_ & ~0x00000400); tp_ = null; if (tpBuilder_ != null) { tpBuilder_.dispose(); tpBuilder_ = null; } onChanged(); return this; } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public onnx.Onnx.TypeProto.Builder getTpBuilder() { bitField0_ |= 0x00000400; onChanged(); return getTpFieldBuilder().getBuilder(); } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ public onnx.Onnx.TypeProtoOrBuilder getTpOrBuilder() { if (tpBuilder_ != null) { return tpBuilder_.getMessageOrBuilder(); } else { return tp_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : tp_; } } /** *
       * Do not use field below, it's deprecated.
       * optional ValueProto v = 12;         // value - subsumes everything but graph
       * 
* * optional .onnx.TypeProto tp = 14; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getTpFieldBuilder() { if (tpBuilder_ == null) { tpBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( getTp(), getParentForChildren(), isClean()); tp_ = null; } return tpBuilder_; } private com.google.protobuf.Internal.FloatList floats_ = emptyFloatList(); private void ensureFloatsIsMutable() { if (!floats_.isModifiable()) { floats_ = makeMutableCopy(floats_); } bitField0_ |= 0x00000800; } private void ensureFloatsIsMutable(int capacity) { if (!floats_.isModifiable()) { floats_ = makeMutableCopy(floats_, capacity); } bitField0_ |= 0x00000800; } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @return A list containing the floats. */ public java.util.List getFloatsList() { floats_.makeImmutable(); return floats_; } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @return The count of floats. */ public int getFloatsCount() { return floats_.size(); } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @param index The index of the element to return. * @return The floats at the given index. */ public float getFloats(int index) { return floats_.getFloat(index); } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @param index The index to set the value at. * @param value The floats to set. * @return This builder for chaining. */ public Builder setFloats( int index, float value) { ensureFloatsIsMutable(); floats_.setFloat(index, value); bitField0_ |= 0x00000800; onChanged(); return this; } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @param value The floats to add. * @return This builder for chaining. */ public Builder addFloats(float value) { ensureFloatsIsMutable(); floats_.addFloat(value); bitField0_ |= 0x00000800; onChanged(); return this; } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @param values The floats to add. * @return This builder for chaining. */ public Builder addAllFloats( java.lang.Iterable values) { ensureFloatsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, floats_); bitField0_ |= 0x00000800; onChanged(); return this; } /** *
       * list of floats
       * 
* * repeated float floats = 7; * @return This builder for chaining. */ public Builder clearFloats() { floats_ = emptyFloatList(); bitField0_ = (bitField0_ & ~0x00000800); onChanged(); return this; } private com.google.protobuf.Internal.LongList ints_ = emptyLongList(); private void ensureIntsIsMutable() { if (!ints_.isModifiable()) { ints_ = makeMutableCopy(ints_); } bitField0_ |= 0x00001000; } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @return A list containing the ints. */ public java.util.List getIntsList() { ints_.makeImmutable(); return ints_; } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @return The count of ints. */ public int getIntsCount() { return ints_.size(); } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @param index The index of the element to return. * @return The ints at the given index. */ public long getInts(int index) { return ints_.getLong(index); } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @param index The index to set the value at. * @param value The ints to set. * @return This builder for chaining. */ public Builder setInts( int index, long value) { ensureIntsIsMutable(); ints_.setLong(index, value); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @param value The ints to add. * @return This builder for chaining. */ public Builder addInts(long value) { ensureIntsIsMutable(); ints_.addLong(value); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @param values The ints to add. * @return This builder for chaining. */ public Builder addAllInts( java.lang.Iterable values) { ensureIntsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, ints_); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * list of ints
       * 
* * repeated int64 ints = 8; * @return This builder for chaining. */ public Builder clearInts() { ints_ = emptyLongList(); bitField0_ = (bitField0_ & ~0x00001000); onChanged(); return this; } private com.google.protobuf.Internal.ProtobufList strings_ = emptyList(com.google.protobuf.ByteString.class); private void ensureStringsIsMutable() { if (!strings_.isModifiable()) { strings_ = makeMutableCopy(strings_); } bitField0_ |= 0x00002000; } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @return A list containing the strings. */ public java.util.List getStringsList() { strings_.makeImmutable(); return strings_; } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @return The count of strings. */ public int getStringsCount() { return strings_.size(); } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @param index The index of the element to return. * @return The strings at the given index. */ public com.google.protobuf.ByteString getStrings(int index) { return strings_.get(index); } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @param index The index to set the value at. * @param value The strings to set. * @return This builder for chaining. */ public Builder setStrings( int index, com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureStringsIsMutable(); strings_.set(index, value); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @param value The strings to add. * @return This builder for chaining. */ public Builder addStrings(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureStringsIsMutable(); strings_.add(value); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @param values The strings to add. * @return This builder for chaining. */ public Builder addAllStrings( java.lang.Iterable values) { ensureStringsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, strings_); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * list of UTF-8 strings
       * 
* * repeated bytes strings = 9; * @return This builder for chaining. */ public Builder clearStrings() { strings_ = emptyList(com.google.protobuf.ByteString.class); bitField0_ = (bitField0_ & ~0x00002000); onChanged(); return this; } private java.util.List tensors_ = java.util.Collections.emptyList(); private void ensureTensorsIsMutable() { if (!((bitField0_ & 0x00004000) != 0)) { tensors_ = new java.util.ArrayList(tensors_); bitField0_ |= 0x00004000; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> tensorsBuilder_; /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public java.util.List getTensorsList() { if (tensorsBuilder_ == null) { return java.util.Collections.unmodifiableList(tensors_); } else { return tensorsBuilder_.getMessageList(); } } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public int getTensorsCount() { if (tensorsBuilder_ == null) { return tensors_.size(); } else { return tensorsBuilder_.getCount(); } } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public onnx.Onnx.TensorProto getTensors(int index) { if (tensorsBuilder_ == null) { return tensors_.get(index); } else { return tensorsBuilder_.getMessage(index); } } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder setTensors( int index, onnx.Onnx.TensorProto value) { if (tensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTensorsIsMutable(); tensors_.set(index, value); onChanged(); } else { tensorsBuilder_.setMessage(index, value); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder setTensors( int index, onnx.Onnx.TensorProto.Builder builderForValue) { if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); tensors_.set(index, builderForValue.build()); onChanged(); } else { tensorsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder addTensors(onnx.Onnx.TensorProto value) { if (tensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTensorsIsMutable(); tensors_.add(value); onChanged(); } else { tensorsBuilder_.addMessage(value); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder addTensors( int index, onnx.Onnx.TensorProto value) { if (tensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTensorsIsMutable(); tensors_.add(index, value); onChanged(); } else { tensorsBuilder_.addMessage(index, value); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder addTensors( onnx.Onnx.TensorProto.Builder builderForValue) { if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); tensors_.add(builderForValue.build()); onChanged(); } else { tensorsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder addTensors( int index, onnx.Onnx.TensorProto.Builder builderForValue) { if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); tensors_.add(index, builderForValue.build()); onChanged(); } else { tensorsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder addAllTensors( java.lang.Iterable values) { if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, tensors_); onChanged(); } else { tensorsBuilder_.addAllMessages(values); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder clearTensors() { if (tensorsBuilder_ == null) { tensors_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00004000); onChanged(); } else { tensorsBuilder_.clear(); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public Builder removeTensors(int index) { if (tensorsBuilder_ == null) { ensureTensorsIsMutable(); tensors_.remove(index); onChanged(); } else { tensorsBuilder_.remove(index); } return this; } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public onnx.Onnx.TensorProto.Builder getTensorsBuilder( int index) { return getTensorsFieldBuilder().getBuilder(index); } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public onnx.Onnx.TensorProtoOrBuilder getTensorsOrBuilder( int index) { if (tensorsBuilder_ == null) { return tensors_.get(index); } else { return tensorsBuilder_.getMessageOrBuilder(index); } } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public java.util.List getTensorsOrBuilderList() { if (tensorsBuilder_ != null) { return tensorsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(tensors_); } } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public onnx.Onnx.TensorProto.Builder addTensorsBuilder() { return getTensorsFieldBuilder().addBuilder( onnx.Onnx.TensorProto.getDefaultInstance()); } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public onnx.Onnx.TensorProto.Builder addTensorsBuilder( int index) { return getTensorsFieldBuilder().addBuilder( index, onnx.Onnx.TensorProto.getDefaultInstance()); } /** *
       * list of tensors
       * 
* * repeated .onnx.TensorProto tensors = 10; */ public java.util.List getTensorsBuilderList() { return getTensorsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> getTensorsFieldBuilder() { if (tensorsBuilder_ == null) { tensorsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder>( tensors_, ((bitField0_ & 0x00004000) != 0), getParentForChildren(), isClean()); tensors_ = null; } return tensorsBuilder_; } private java.util.List graphs_ = java.util.Collections.emptyList(); private void ensureGraphsIsMutable() { if (!((bitField0_ & 0x00008000) != 0)) { graphs_ = new java.util.ArrayList(graphs_); bitField0_ |= 0x00008000; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> graphsBuilder_; /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public java.util.List getGraphsList() { if (graphsBuilder_ == null) { return java.util.Collections.unmodifiableList(graphs_); } else { return graphsBuilder_.getMessageList(); } } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public int getGraphsCount() { if (graphsBuilder_ == null) { return graphs_.size(); } else { return graphsBuilder_.getCount(); } } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public onnx.Onnx.GraphProto getGraphs(int index) { if (graphsBuilder_ == null) { return graphs_.get(index); } else { return graphsBuilder_.getMessage(index); } } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder setGraphs( int index, onnx.Onnx.GraphProto value) { if (graphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureGraphsIsMutable(); graphs_.set(index, value); onChanged(); } else { graphsBuilder_.setMessage(index, value); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder setGraphs( int index, onnx.Onnx.GraphProto.Builder builderForValue) { if (graphsBuilder_ == null) { ensureGraphsIsMutable(); graphs_.set(index, builderForValue.build()); onChanged(); } else { graphsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder addGraphs(onnx.Onnx.GraphProto value) { if (graphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureGraphsIsMutable(); graphs_.add(value); onChanged(); } else { graphsBuilder_.addMessage(value); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder addGraphs( int index, onnx.Onnx.GraphProto value) { if (graphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureGraphsIsMutable(); graphs_.add(index, value); onChanged(); } else { graphsBuilder_.addMessage(index, value); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder addGraphs( onnx.Onnx.GraphProto.Builder builderForValue) { if (graphsBuilder_ == null) { ensureGraphsIsMutable(); graphs_.add(builderForValue.build()); onChanged(); } else { graphsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder addGraphs( int index, onnx.Onnx.GraphProto.Builder builderForValue) { if (graphsBuilder_ == null) { ensureGraphsIsMutable(); graphs_.add(index, builderForValue.build()); onChanged(); } else { graphsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder addAllGraphs( java.lang.Iterable values) { if (graphsBuilder_ == null) { ensureGraphsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, graphs_); onChanged(); } else { graphsBuilder_.addAllMessages(values); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder clearGraphs() { if (graphsBuilder_ == null) { graphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00008000); onChanged(); } else { graphsBuilder_.clear(); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public Builder removeGraphs(int index) { if (graphsBuilder_ == null) { ensureGraphsIsMutable(); graphs_.remove(index); onChanged(); } else { graphsBuilder_.remove(index); } return this; } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public onnx.Onnx.GraphProto.Builder getGraphsBuilder( int index) { return getGraphsFieldBuilder().getBuilder(index); } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public onnx.Onnx.GraphProtoOrBuilder getGraphsOrBuilder( int index) { if (graphsBuilder_ == null) { return graphs_.get(index); } else { return graphsBuilder_.getMessageOrBuilder(index); } } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public java.util.List getGraphsOrBuilderList() { if (graphsBuilder_ != null) { return graphsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(graphs_); } } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public onnx.Onnx.GraphProto.Builder addGraphsBuilder() { return getGraphsFieldBuilder().addBuilder( onnx.Onnx.GraphProto.getDefaultInstance()); } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public onnx.Onnx.GraphProto.Builder addGraphsBuilder( int index) { return getGraphsFieldBuilder().addBuilder( index, onnx.Onnx.GraphProto.getDefaultInstance()); } /** *
       * list of graph
       * 
* * repeated .onnx.GraphProto graphs = 11; */ public java.util.List getGraphsBuilderList() { return getGraphsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> getGraphsFieldBuilder() { if (graphsBuilder_ == null) { graphsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder>( graphs_, ((bitField0_ & 0x00008000) != 0), getParentForChildren(), isClean()); graphs_ = null; } return graphsBuilder_; } private java.util.List sparseTensors_ = java.util.Collections.emptyList(); private void ensureSparseTensorsIsMutable() { if (!((bitField0_ & 0x00010000) != 0)) { sparseTensors_ = new java.util.ArrayList(sparseTensors_); bitField0_ |= 0x00010000; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> sparseTensorsBuilder_; /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public java.util.List getSparseTensorsList() { if (sparseTensorsBuilder_ == null) { return java.util.Collections.unmodifiableList(sparseTensors_); } else { return sparseTensorsBuilder_.getMessageList(); } } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public int getSparseTensorsCount() { if (sparseTensorsBuilder_ == null) { return sparseTensors_.size(); } else { return sparseTensorsBuilder_.getCount(); } } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public onnx.Onnx.SparseTensorProto getSparseTensors(int index) { if (sparseTensorsBuilder_ == null) { return sparseTensors_.get(index); } else { return sparseTensorsBuilder_.getMessage(index); } } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder setSparseTensors( int index, onnx.Onnx.SparseTensorProto value) { if (sparseTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseTensorsIsMutable(); sparseTensors_.set(index, value); onChanged(); } else { sparseTensorsBuilder_.setMessage(index, value); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder setSparseTensors( int index, onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); sparseTensors_.set(index, builderForValue.build()); onChanged(); } else { sparseTensorsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder addSparseTensors(onnx.Onnx.SparseTensorProto value) { if (sparseTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseTensorsIsMutable(); sparseTensors_.add(value); onChanged(); } else { sparseTensorsBuilder_.addMessage(value); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder addSparseTensors( int index, onnx.Onnx.SparseTensorProto value) { if (sparseTensorsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseTensorsIsMutable(); sparseTensors_.add(index, value); onChanged(); } else { sparseTensorsBuilder_.addMessage(index, value); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder addSparseTensors( onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); sparseTensors_.add(builderForValue.build()); onChanged(); } else { sparseTensorsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder addSparseTensors( int index, onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); sparseTensors_.add(index, builderForValue.build()); onChanged(); } else { sparseTensorsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder addAllSparseTensors( java.lang.Iterable values) { if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, sparseTensors_); onChanged(); } else { sparseTensorsBuilder_.addAllMessages(values); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder clearSparseTensors() { if (sparseTensorsBuilder_ == null) { sparseTensors_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00010000); onChanged(); } else { sparseTensorsBuilder_.clear(); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public Builder removeSparseTensors(int index) { if (sparseTensorsBuilder_ == null) { ensureSparseTensorsIsMutable(); sparseTensors_.remove(index); onChanged(); } else { sparseTensorsBuilder_.remove(index); } return this; } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public onnx.Onnx.SparseTensorProto.Builder getSparseTensorsBuilder( int index) { return getSparseTensorsFieldBuilder().getBuilder(index); } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public onnx.Onnx.SparseTensorProtoOrBuilder getSparseTensorsOrBuilder( int index) { if (sparseTensorsBuilder_ == null) { return sparseTensors_.get(index); } else { return sparseTensorsBuilder_.getMessageOrBuilder(index); } } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public java.util.List getSparseTensorsOrBuilderList() { if (sparseTensorsBuilder_ != null) { return sparseTensorsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(sparseTensors_); } } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public onnx.Onnx.SparseTensorProto.Builder addSparseTensorsBuilder() { return getSparseTensorsFieldBuilder().addBuilder( onnx.Onnx.SparseTensorProto.getDefaultInstance()); } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public onnx.Onnx.SparseTensorProto.Builder addSparseTensorsBuilder( int index) { return getSparseTensorsFieldBuilder().addBuilder( index, onnx.Onnx.SparseTensorProto.getDefaultInstance()); } /** *
       * list of sparse tensors
       * 
* * repeated .onnx.SparseTensorProto sparse_tensors = 23; */ public java.util.List getSparseTensorsBuilderList() { return getSparseTensorsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> getSparseTensorsFieldBuilder() { if (sparseTensorsBuilder_ == null) { sparseTensorsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder>( sparseTensors_, ((bitField0_ & 0x00010000) != 0), getParentForChildren(), isClean()); sparseTensors_ = null; } return sparseTensorsBuilder_; } private java.util.List typeProtos_ = java.util.Collections.emptyList(); private void ensureTypeProtosIsMutable() { if (!((bitField0_ & 0x00020000) != 0)) { typeProtos_ = new java.util.ArrayList(typeProtos_); bitField0_ |= 0x00020000; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> typeProtosBuilder_; /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public java.util.List getTypeProtosList() { if (typeProtosBuilder_ == null) { return java.util.Collections.unmodifiableList(typeProtos_); } else { return typeProtosBuilder_.getMessageList(); } } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public int getTypeProtosCount() { if (typeProtosBuilder_ == null) { return typeProtos_.size(); } else { return typeProtosBuilder_.getCount(); } } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public onnx.Onnx.TypeProto getTypeProtos(int index) { if (typeProtosBuilder_ == null) { return typeProtos_.get(index); } else { return typeProtosBuilder_.getMessage(index); } } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder setTypeProtos( int index, onnx.Onnx.TypeProto value) { if (typeProtosBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTypeProtosIsMutable(); typeProtos_.set(index, value); onChanged(); } else { typeProtosBuilder_.setMessage(index, value); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder setTypeProtos( int index, onnx.Onnx.TypeProto.Builder builderForValue) { if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); typeProtos_.set(index, builderForValue.build()); onChanged(); } else { typeProtosBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder addTypeProtos(onnx.Onnx.TypeProto value) { if (typeProtosBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTypeProtosIsMutable(); typeProtos_.add(value); onChanged(); } else { typeProtosBuilder_.addMessage(value); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder addTypeProtos( int index, onnx.Onnx.TypeProto value) { if (typeProtosBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTypeProtosIsMutable(); typeProtos_.add(index, value); onChanged(); } else { typeProtosBuilder_.addMessage(index, value); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder addTypeProtos( onnx.Onnx.TypeProto.Builder builderForValue) { if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); typeProtos_.add(builderForValue.build()); onChanged(); } else { typeProtosBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder addTypeProtos( int index, onnx.Onnx.TypeProto.Builder builderForValue) { if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); typeProtos_.add(index, builderForValue.build()); onChanged(); } else { typeProtosBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder addAllTypeProtos( java.lang.Iterable values) { if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, typeProtos_); onChanged(); } else { typeProtosBuilder_.addAllMessages(values); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder clearTypeProtos() { if (typeProtosBuilder_ == null) { typeProtos_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00020000); onChanged(); } else { typeProtosBuilder_.clear(); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public Builder removeTypeProtos(int index) { if (typeProtosBuilder_ == null) { ensureTypeProtosIsMutable(); typeProtos_.remove(index); onChanged(); } else { typeProtosBuilder_.remove(index); } return this; } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public onnx.Onnx.TypeProto.Builder getTypeProtosBuilder( int index) { return getTypeProtosFieldBuilder().getBuilder(index); } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public onnx.Onnx.TypeProtoOrBuilder getTypeProtosOrBuilder( int index) { if (typeProtosBuilder_ == null) { return typeProtos_.get(index); } else { return typeProtosBuilder_.getMessageOrBuilder(index); } } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public java.util.List getTypeProtosOrBuilderList() { if (typeProtosBuilder_ != null) { return typeProtosBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(typeProtos_); } } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public onnx.Onnx.TypeProto.Builder addTypeProtosBuilder() { return getTypeProtosFieldBuilder().addBuilder( onnx.Onnx.TypeProto.getDefaultInstance()); } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public onnx.Onnx.TypeProto.Builder addTypeProtosBuilder( int index) { return getTypeProtosFieldBuilder().addBuilder( index, onnx.Onnx.TypeProto.getDefaultInstance()); } /** *
       * list of type protos
       * 
* * repeated .onnx.TypeProto type_protos = 15; */ public java.util.List getTypeProtosBuilderList() { return getTypeProtosFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getTypeProtosFieldBuilder() { if (typeProtosBuilder_ == null) { typeProtosBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( typeProtos_, ((bitField0_ & 0x00020000) != 0), getParentForChildren(), isClean()); typeProtos_ = null; } return typeProtosBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.AttributeProto) } // @@protoc_insertion_point(class_scope:onnx.AttributeProto) private static final onnx.Onnx.AttributeProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.AttributeProto(); } public static onnx.Onnx.AttributeProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public AttributeProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.AttributeProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface ValueInfoProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.ValueInfoProto) com.google.protobuf.MessageOrBuilder { /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ boolean hasName(); /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return The name. */ java.lang.String getName(); /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; * @return Whether the type field is set. */ boolean hasType(); /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; * @return The type. */ onnx.Onnx.TypeProto getType(); /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; */ onnx.Onnx.TypeProtoOrBuilder getTypeOrBuilder(); /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); } /** *
   * Defines information on value, including the name, the type, and
   * the shape of the value.
   * 
* * Protobuf type {@code onnx.ValueInfoProto} */ public static final class ValueInfoProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.ValueInfoProto) ValueInfoProtoOrBuilder { private static final long serialVersionUID = 0L; // Use ValueInfoProto.newBuilder() to construct. private ValueInfoProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ValueInfoProto() { name_ = ""; docString_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new ValueInfoProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_ValueInfoProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_ValueInfoProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.ValueInfoProto.class, onnx.Onnx.ValueInfoProto.Builder.class); } private int bitField0_; public static final int NAME_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * This field MUST be present in this version of the IR.
     * 
* * optional string name = 1; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TYPE_FIELD_NUMBER = 2; private onnx.Onnx.TypeProto type_; /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; * @return Whether the type field is set. */ @java.lang.Override public boolean hasType() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; * @return The type. */ @java.lang.Override public onnx.Onnx.TypeProto getType() { return type_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : type_; } /** *
     * This field MUST be present in this version of the IR for
     * inputs and outputs of the top-level graph.
     * 
* * optional .onnx.TypeProto type = 2; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getTypeOrBuilder() { return type_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : type_; } public static final int DOC_STRING_FIELD_NUMBER = 3; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this value. Markdown is allowed.
     * 
* * optional string doc_string = 3; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, name_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getType()); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, docString_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, name_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getType()); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, docString_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.ValueInfoProto)) { return super.equals(obj); } onnx.Onnx.ValueInfoProto other = (onnx.Onnx.ValueInfoProto) obj; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (hasType() != other.hasType()) return false; if (hasType()) { if (!getType() .equals(other.getType())) return false; } if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (hasType()) { hash = (37 * hash) + TYPE_FIELD_NUMBER; hash = (53 * hash) + getType().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.ValueInfoProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ValueInfoProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ValueInfoProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ValueInfoProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ValueInfoProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ValueInfoProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ValueInfoProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.ValueInfoProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.ValueInfoProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.ValueInfoProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.ValueInfoProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.ValueInfoProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.ValueInfoProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Defines information on value, including the name, the type, and
     * the shape of the value.
     * 
* * Protobuf type {@code onnx.ValueInfoProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.ValueInfoProto) onnx.Onnx.ValueInfoProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_ValueInfoProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_ValueInfoProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.ValueInfoProto.class, onnx.Onnx.ValueInfoProto.Builder.class); } // Construct using onnx.Onnx.ValueInfoProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getTypeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; name_ = ""; type_ = null; if (typeBuilder_ != null) { typeBuilder_.dispose(); typeBuilder_ = null; } docString_ = ""; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_ValueInfoProto_descriptor; } @java.lang.Override public onnx.Onnx.ValueInfoProto getDefaultInstanceForType() { return onnx.Onnx.ValueInfoProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.ValueInfoProto build() { onnx.Onnx.ValueInfoProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.ValueInfoProto buildPartial() { onnx.Onnx.ValueInfoProto result = new onnx.Onnx.ValueInfoProto(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.ValueInfoProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.type_ = typeBuilder_ == null ? type_ : typeBuilder_.build(); to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000004) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000004; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.ValueInfoProto) { return mergeFrom((onnx.Onnx.ValueInfoProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.ValueInfoProto other) { if (other == onnx.Onnx.ValueInfoProto.getDefaultInstance()) return this; if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000001; onChanged(); } if (other.hasType()) { mergeType(other.getType()); } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000004; onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { name_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 18: { input.readMessage( getTypeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 case 26: { docString_ = input.readBytes(); bitField0_ |= 0x00000004; break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object name_ = ""; /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** *
       * This field MUST be present in this version of the IR.
       * 
* * optional string name = 1; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private onnx.Onnx.TypeProto type_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> typeBuilder_; /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; * @return Whether the type field is set. */ public boolean hasType() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; * @return The type. */ public onnx.Onnx.TypeProto getType() { if (typeBuilder_ == null) { return type_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : type_; } else { return typeBuilder_.getMessage(); } } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public Builder setType(onnx.Onnx.TypeProto value) { if (typeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } type_ = value; } else { typeBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public Builder setType( onnx.Onnx.TypeProto.Builder builderForValue) { if (typeBuilder_ == null) { type_ = builderForValue.build(); } else { typeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public Builder mergeType(onnx.Onnx.TypeProto value) { if (typeBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && type_ != null && type_ != onnx.Onnx.TypeProto.getDefaultInstance()) { getTypeBuilder().mergeFrom(value); } else { type_ = value; } } else { typeBuilder_.mergeFrom(value); } if (type_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public Builder clearType() { bitField0_ = (bitField0_ & ~0x00000002); type_ = null; if (typeBuilder_ != null) { typeBuilder_.dispose(); typeBuilder_ = null; } onChanged(); return this; } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public onnx.Onnx.TypeProto.Builder getTypeBuilder() { bitField0_ |= 0x00000002; onChanged(); return getTypeFieldBuilder().getBuilder(); } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ public onnx.Onnx.TypeProtoOrBuilder getTypeOrBuilder() { if (typeBuilder_ != null) { return typeBuilder_.getMessageOrBuilder(); } else { return type_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : type_; } } /** *
       * This field MUST be present in this version of the IR for
       * inputs and outputs of the top-level graph.
       * 
* * optional .onnx.TypeProto type = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getTypeFieldBuilder() { if (typeBuilder_ == null) { typeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( getType(), getParentForChildren(), isClean()); type_ = null; } return typeBuilder_; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000004) != 0); } /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
       * A human-readable documentation for this value. Markdown is allowed.
       * 
* * optional string doc_string = 3; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.ValueInfoProto) } // @@protoc_insertion_point(class_scope:onnx.ValueInfoProto) private static final onnx.Onnx.ValueInfoProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.ValueInfoProto(); } public static onnx.Onnx.ValueInfoProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ValueInfoProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.ValueInfoProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface NodeProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.NodeProto) com.google.protobuf.MessageOrBuilder { /** *
     * namespace Value
     * 
* * repeated string input = 1; * @return A list containing the input. */ java.util.List getInputList(); /** *
     * namespace Value
     * 
* * repeated string input = 1; * @return The count of input. */ int getInputCount(); /** *
     * namespace Value
     * 
* * repeated string input = 1; * @param index The index of the element to return. * @return The input at the given index. */ java.lang.String getInput(int index); /** *
     * namespace Value
     * 
* * repeated string input = 1; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ com.google.protobuf.ByteString getInputBytes(int index); /** *
     * namespace Value
     * 
* * repeated string output = 2; * @return A list containing the output. */ java.util.List getOutputList(); /** *
     * namespace Value
     * 
* * repeated string output = 2; * @return The count of output. */ int getOutputCount(); /** *
     * namespace Value
     * 
* * repeated string output = 2; * @param index The index of the element to return. * @return The output at the given index. */ java.lang.String getOutput(int index); /** *
     * namespace Value
     * 
* * repeated string output = 2; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ com.google.protobuf.ByteString getOutputBytes(int index); /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return Whether the name field is set. */ boolean hasName(); /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return The name. */ java.lang.String getName(); /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return Whether the opType field is set. */ boolean hasOpType(); /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return The opType. */ java.lang.String getOpType(); /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return The bytes for opType. */ com.google.protobuf.ByteString getOpTypeBytes(); /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return Whether the domain field is set. */ boolean hasDomain(); /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return The domain. */ java.lang.String getDomain(); /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return The bytes for domain. */ com.google.protobuf.ByteString getDomainBytes(); /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ java.util.List getAttributeList(); /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ onnx.Onnx.AttributeProto getAttribute(int index); /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ int getAttributeCount(); /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ java.util.List getAttributeOrBuilderList(); /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ onnx.Onnx.AttributeProtoOrBuilder getAttributeOrBuilder( int index); /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); } /** *
   * Nodes
   *
   * Computation graphs are made up of a DAG of nodes, which represent what is
   * commonly called a "layer" or "pipeline stage" in machine learning frameworks.
   *
   * For example, it can be a node of type "Conv" that takes in an image, a filter
   * tensor and a bias tensor, and produces the convolved output.
   * 
* * Protobuf type {@code onnx.NodeProto} */ public static final class NodeProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.NodeProto) NodeProtoOrBuilder { private static final long serialVersionUID = 0L; // Use NodeProto.newBuilder() to construct. private NodeProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private NodeProto() { input_ = com.google.protobuf.LazyStringArrayList.emptyList(); output_ = com.google.protobuf.LazyStringArrayList.emptyList(); name_ = ""; opType_ = ""; domain_ = ""; attribute_ = java.util.Collections.emptyList(); docString_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new NodeProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_NodeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_NodeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.NodeProto.class, onnx.Onnx.NodeProto.Builder.class); } private int bitField0_; public static final int INPUT_FIELD_NUMBER = 1; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList input_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
     * namespace Value
     * 
* * repeated string input = 1; * @return A list containing the input. */ public com.google.protobuf.ProtocolStringList getInputList() { return input_; } /** *
     * namespace Value
     * 
* * repeated string input = 1; * @return The count of input. */ public int getInputCount() { return input_.size(); } /** *
     * namespace Value
     * 
* * repeated string input = 1; * @param index The index of the element to return. * @return The input at the given index. */ public java.lang.String getInput(int index) { return input_.get(index); } /** *
     * namespace Value
     * 
* * repeated string input = 1; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ public com.google.protobuf.ByteString getInputBytes(int index) { return input_.getByteString(index); } public static final int OUTPUT_FIELD_NUMBER = 2; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList output_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
     * namespace Value
     * 
* * repeated string output = 2; * @return A list containing the output. */ public com.google.protobuf.ProtocolStringList getOutputList() { return output_; } /** *
     * namespace Value
     * 
* * repeated string output = 2; * @return The count of output. */ public int getOutputCount() { return output_.size(); } /** *
     * namespace Value
     * 
* * repeated string output = 2; * @param index The index of the element to return. * @return The output at the given index. */ public java.lang.String getOutput(int index) { return output_.get(index); } /** *
     * namespace Value
     * 
* * repeated string output = 2; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ public com.google.protobuf.ByteString getOutputBytes(int index) { return output_.getByteString(index); } public static final int NAME_FIELD_NUMBER = 3; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * An optional identifier for this node in a graph.
     * This field MAY be absent in ths version of the IR.
     * 
* * optional string name = 3; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int OP_TYPE_FIELD_NUMBER = 4; @SuppressWarnings("serial") private volatile java.lang.Object opType_ = ""; /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return Whether the opType field is set. */ @java.lang.Override public boolean hasOpType() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return The opType. */ @java.lang.Override public java.lang.String getOpType() { java.lang.Object ref = opType_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { opType_ = s; } return s; } } /** *
     * The symbolic identifier of the Operator to execute.
     * 
* * optional string op_type = 4; * @return The bytes for opType. */ @java.lang.Override public com.google.protobuf.ByteString getOpTypeBytes() { java.lang.Object ref = opType_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); opType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int DOMAIN_FIELD_NUMBER = 7; @SuppressWarnings("serial") private volatile java.lang.Object domain_ = ""; /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return Whether the domain field is set. */ @java.lang.Override public boolean hasDomain() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return The domain. */ @java.lang.Override public java.lang.String getDomain() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } } /** *
     * The domain of the OperatorSet that specifies the operator named by op_type.
     * 
* * optional string domain = 7; * @return The bytes for domain. */ @java.lang.Override public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int ATTRIBUTE_FIELD_NUMBER = 5; @SuppressWarnings("serial") private java.util.List attribute_; /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ @java.lang.Override public java.util.List getAttributeList() { return attribute_; } /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ @java.lang.Override public java.util.List getAttributeOrBuilderList() { return attribute_; } /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ @java.lang.Override public int getAttributeCount() { return attribute_.size(); } /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ @java.lang.Override public onnx.Onnx.AttributeProto getAttribute(int index) { return attribute_.get(index); } /** *
     * Additional named attributes.
     * 
* * repeated .onnx.AttributeProto attribute = 5; */ @java.lang.Override public onnx.Onnx.AttributeProtoOrBuilder getAttributeOrBuilder( int index) { return attribute_.get(index); } public static final int DOC_STRING_FIELD_NUMBER = 6; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000008) != 0); } /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this node. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < input_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, input_.getRaw(i)); } for (int i = 0; i < output_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, output_.getRaw(i)); } if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, name_); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, opType_); } for (int i = 0; i < attribute_.size(); i++) { output.writeMessage(5, attribute_.get(i)); } if (((bitField0_ & 0x00000008) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, docString_); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 7, domain_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < input_.size(); i++) { dataSize += computeStringSizeNoTag(input_.getRaw(i)); } size += dataSize; size += 1 * getInputList().size(); } { int dataSize = 0; for (int i = 0; i < output_.size(); i++) { dataSize += computeStringSizeNoTag(output_.getRaw(i)); } size += dataSize; size += 1 * getOutputList().size(); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, name_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, opType_); } for (int i = 0; i < attribute_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, attribute_.get(i)); } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(6, docString_); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(7, domain_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.NodeProto)) { return super.equals(obj); } onnx.Onnx.NodeProto other = (onnx.Onnx.NodeProto) obj; if (!getInputList() .equals(other.getInputList())) return false; if (!getOutputList() .equals(other.getOutputList())) return false; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (hasOpType() != other.hasOpType()) return false; if (hasOpType()) { if (!getOpType() .equals(other.getOpType())) return false; } if (hasDomain() != other.hasDomain()) return false; if (hasDomain()) { if (!getDomain() .equals(other.getDomain())) return false; } if (!getAttributeList() .equals(other.getAttributeList())) return false; if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getInputCount() > 0) { hash = (37 * hash) + INPUT_FIELD_NUMBER; hash = (53 * hash) + getInputList().hashCode(); } if (getOutputCount() > 0) { hash = (37 * hash) + OUTPUT_FIELD_NUMBER; hash = (53 * hash) + getOutputList().hashCode(); } if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (hasOpType()) { hash = (37 * hash) + OP_TYPE_FIELD_NUMBER; hash = (53 * hash) + getOpType().hashCode(); } if (hasDomain()) { hash = (37 * hash) + DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getDomain().hashCode(); } if (getAttributeCount() > 0) { hash = (37 * hash) + ATTRIBUTE_FIELD_NUMBER; hash = (53 * hash) + getAttributeList().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.NodeProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.NodeProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.NodeProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.NodeProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.NodeProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.NodeProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.NodeProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.NodeProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.NodeProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.NodeProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.NodeProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.NodeProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.NodeProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Nodes
     *
     * Computation graphs are made up of a DAG of nodes, which represent what is
     * commonly called a "layer" or "pipeline stage" in machine learning frameworks.
     *
     * For example, it can be a node of type "Conv" that takes in an image, a filter
     * tensor and a bias tensor, and produces the convolved output.
     * 
* * Protobuf type {@code onnx.NodeProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.NodeProto) onnx.Onnx.NodeProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_NodeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_NodeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.NodeProto.class, onnx.Onnx.NodeProto.Builder.class); } // Construct using onnx.Onnx.NodeProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; input_ = com.google.protobuf.LazyStringArrayList.emptyList(); output_ = com.google.protobuf.LazyStringArrayList.emptyList(); name_ = ""; opType_ = ""; domain_ = ""; if (attributeBuilder_ == null) { attribute_ = java.util.Collections.emptyList(); } else { attribute_ = null; attributeBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); docString_ = ""; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_NodeProto_descriptor; } @java.lang.Override public onnx.Onnx.NodeProto getDefaultInstanceForType() { return onnx.Onnx.NodeProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.NodeProto build() { onnx.Onnx.NodeProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.NodeProto buildPartial() { onnx.Onnx.NodeProto result = new onnx.Onnx.NodeProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.NodeProto result) { if (attributeBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { attribute_ = java.util.Collections.unmodifiableList(attribute_); bitField0_ = (bitField0_ & ~0x00000020); } result.attribute_ = attribute_; } else { result.attribute_ = attributeBuilder_.build(); } } private void buildPartial0(onnx.Onnx.NodeProto result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { input_.makeImmutable(); result.input_ = input_; } if (((from_bitField0_ & 0x00000002) != 0)) { output_.makeImmutable(); result.output_ = output_; } int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000004) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000008) != 0)) { result.opType_ = opType_; to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000010) != 0)) { result.domain_ = domain_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000040) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000008; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.NodeProto) { return mergeFrom((onnx.Onnx.NodeProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.NodeProto other) { if (other == onnx.Onnx.NodeProto.getDefaultInstance()) return this; if (!other.input_.isEmpty()) { if (input_.isEmpty()) { input_ = other.input_; bitField0_ |= 0x00000001; } else { ensureInputIsMutable(); input_.addAll(other.input_); } onChanged(); } if (!other.output_.isEmpty()) { if (output_.isEmpty()) { output_ = other.output_; bitField0_ |= 0x00000002; } else { ensureOutputIsMutable(); output_.addAll(other.output_); } onChanged(); } if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000004; onChanged(); } if (other.hasOpType()) { opType_ = other.opType_; bitField0_ |= 0x00000008; onChanged(); } if (other.hasDomain()) { domain_ = other.domain_; bitField0_ |= 0x00000010; onChanged(); } if (attributeBuilder_ == null) { if (!other.attribute_.isEmpty()) { if (attribute_.isEmpty()) { attribute_ = other.attribute_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureAttributeIsMutable(); attribute_.addAll(other.attribute_); } onChanged(); } } else { if (!other.attribute_.isEmpty()) { if (attributeBuilder_.isEmpty()) { attributeBuilder_.dispose(); attributeBuilder_ = null; attribute_ = other.attribute_; bitField0_ = (bitField0_ & ~0x00000020); attributeBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getAttributeFieldBuilder() : null; } else { attributeBuilder_.addAllMessages(other.attribute_); } } } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000040; onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { com.google.protobuf.ByteString bs = input.readBytes(); ensureInputIsMutable(); input_.add(bs); break; } // case 10 case 18: { com.google.protobuf.ByteString bs = input.readBytes(); ensureOutputIsMutable(); output_.add(bs); break; } // case 18 case 26: { name_ = input.readBytes(); bitField0_ |= 0x00000004; break; } // case 26 case 34: { opType_ = input.readBytes(); bitField0_ |= 0x00000008; break; } // case 34 case 42: { onnx.Onnx.AttributeProto m = input.readMessage( onnx.Onnx.AttributeProto.PARSER, extensionRegistry); if (attributeBuilder_ == null) { ensureAttributeIsMutable(); attribute_.add(m); } else { attributeBuilder_.addMessage(m); } break; } // case 42 case 50: { docString_ = input.readBytes(); bitField0_ |= 0x00000040; break; } // case 50 case 58: { domain_ = input.readBytes(); bitField0_ |= 0x00000010; break; } // case 58 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.google.protobuf.LazyStringArrayList input_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureInputIsMutable() { if (!input_.isModifiable()) { input_ = new com.google.protobuf.LazyStringArrayList(input_); } bitField0_ |= 0x00000001; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @return A list containing the input. */ public com.google.protobuf.ProtocolStringList getInputList() { input_.makeImmutable(); return input_; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @return The count of input. */ public int getInputCount() { return input_.size(); } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param index The index of the element to return. * @return The input at the given index. */ public java.lang.String getInput(int index) { return input_.get(index); } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ public com.google.protobuf.ByteString getInputBytes(int index) { return input_.getByteString(index); } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param index The index to set the value at. * @param value The input to set. * @return This builder for chaining. */ public Builder setInput( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.set(index, value); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param value The input to add. * @return This builder for chaining. */ public Builder addInput( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(value); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param values The input to add. * @return This builder for chaining. */ public Builder addAllInput( java.lang.Iterable values) { ensureInputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, input_); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @return This builder for chaining. */ public Builder clearInput() { input_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000001);; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string input = 1; * @param value The bytes of the input to add. * @return This builder for chaining. */ public Builder addInputBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(value); bitField0_ |= 0x00000001; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList output_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureOutputIsMutable() { if (!output_.isModifiable()) { output_ = new com.google.protobuf.LazyStringArrayList(output_); } bitField0_ |= 0x00000002; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @return A list containing the output. */ public com.google.protobuf.ProtocolStringList getOutputList() { output_.makeImmutable(); return output_; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @return The count of output. */ public int getOutputCount() { return output_.size(); } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param index The index of the element to return. * @return The output at the given index. */ public java.lang.String getOutput(int index) { return output_.get(index); } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ public com.google.protobuf.ByteString getOutputBytes(int index) { return output_.getByteString(index); } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param index The index to set the value at. * @param value The output to set. * @return This builder for chaining. */ public Builder setOutput( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.set(index, value); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param value The output to add. * @return This builder for chaining. */ public Builder addOutput( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param values The output to add. * @return This builder for chaining. */ public Builder addAllOutput( java.lang.Iterable values) { ensureOutputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, output_); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @return This builder for chaining. */ public Builder clearOutput() { output_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000002);; onChanged(); return this; } /** *
       * namespace Value
       * 
* * repeated string output = 2; * @param value The bytes of the output to add. * @return This builder for chaining. */ public Builder addOutputBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } private java.lang.Object name_ = ""; /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000004) != 0); } /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
       * An optional identifier for this node in a graph.
       * This field MAY be absent in ths version of the IR.
       * 
* * optional string name = 3; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } private java.lang.Object opType_ = ""; /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @return Whether the opType field is set. */ public boolean hasOpType() { return ((bitField0_ & 0x00000008) != 0); } /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @return The opType. */ public java.lang.String getOpType() { java.lang.Object ref = opType_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { opType_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @return The bytes for opType. */ public com.google.protobuf.ByteString getOpTypeBytes() { java.lang.Object ref = opType_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); opType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @param value The opType to set. * @return This builder for chaining. */ public Builder setOpType( java.lang.String value) { if (value == null) { throw new NullPointerException(); } opType_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @return This builder for chaining. */ public Builder clearOpType() { opType_ = getDefaultInstance().getOpType(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); return this; } /** *
       * The symbolic identifier of the Operator to execute.
       * 
* * optional string op_type = 4; * @param value The bytes for opType to set. * @return This builder for chaining. */ public Builder setOpTypeBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } opType_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } private java.lang.Object domain_ = ""; /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @return Whether the domain field is set. */ public boolean hasDomain() { return ((bitField0_ & 0x00000010) != 0); } /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @return The domain. */ public java.lang.String getDomain() { java.lang.Object ref = domain_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @return The bytes for domain. */ public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @param value The domain to set. * @return This builder for chaining. */ public Builder setDomain( java.lang.String value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @return This builder for chaining. */ public Builder clearDomain() { domain_ = getDefaultInstance().getDomain(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } /** *
       * The domain of the OperatorSet that specifies the operator named by op_type.
       * 
* * optional string domain = 7; * @param value The bytes for domain to set. * @return This builder for chaining. */ public Builder setDomainBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } private java.util.List attribute_ = java.util.Collections.emptyList(); private void ensureAttributeIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { attribute_ = new java.util.ArrayList(attribute_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder> attributeBuilder_; /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public java.util.List getAttributeList() { if (attributeBuilder_ == null) { return java.util.Collections.unmodifiableList(attribute_); } else { return attributeBuilder_.getMessageList(); } } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public int getAttributeCount() { if (attributeBuilder_ == null) { return attribute_.size(); } else { return attributeBuilder_.getCount(); } } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public onnx.Onnx.AttributeProto getAttribute(int index) { if (attributeBuilder_ == null) { return attribute_.get(index); } else { return attributeBuilder_.getMessage(index); } } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder setAttribute( int index, onnx.Onnx.AttributeProto value) { if (attributeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.set(index, value); onChanged(); } else { attributeBuilder_.setMessage(index, value); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder setAttribute( int index, onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeBuilder_ == null) { ensureAttributeIsMutable(); attribute_.set(index, builderForValue.build()); onChanged(); } else { attributeBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder addAttribute(onnx.Onnx.AttributeProto value) { if (attributeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.add(value); onChanged(); } else { attributeBuilder_.addMessage(value); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder addAttribute( int index, onnx.Onnx.AttributeProto value) { if (attributeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.add(index, value); onChanged(); } else { attributeBuilder_.addMessage(index, value); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder addAttribute( onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeBuilder_ == null) { ensureAttributeIsMutable(); attribute_.add(builderForValue.build()); onChanged(); } else { attributeBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder addAttribute( int index, onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeBuilder_ == null) { ensureAttributeIsMutable(); attribute_.add(index, builderForValue.build()); onChanged(); } else { attributeBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder addAllAttribute( java.lang.Iterable values) { if (attributeBuilder_ == null) { ensureAttributeIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, attribute_); onChanged(); } else { attributeBuilder_.addAllMessages(values); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder clearAttribute() { if (attributeBuilder_ == null) { attribute_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { attributeBuilder_.clear(); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public Builder removeAttribute(int index) { if (attributeBuilder_ == null) { ensureAttributeIsMutable(); attribute_.remove(index); onChanged(); } else { attributeBuilder_.remove(index); } return this; } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public onnx.Onnx.AttributeProto.Builder getAttributeBuilder( int index) { return getAttributeFieldBuilder().getBuilder(index); } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public onnx.Onnx.AttributeProtoOrBuilder getAttributeOrBuilder( int index) { if (attributeBuilder_ == null) { return attribute_.get(index); } else { return attributeBuilder_.getMessageOrBuilder(index); } } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public java.util.List getAttributeOrBuilderList() { if (attributeBuilder_ != null) { return attributeBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(attribute_); } } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public onnx.Onnx.AttributeProto.Builder addAttributeBuilder() { return getAttributeFieldBuilder().addBuilder( onnx.Onnx.AttributeProto.getDefaultInstance()); } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public onnx.Onnx.AttributeProto.Builder addAttributeBuilder( int index) { return getAttributeFieldBuilder().addBuilder( index, onnx.Onnx.AttributeProto.getDefaultInstance()); } /** *
       * Additional named attributes.
       * 
* * repeated .onnx.AttributeProto attribute = 5; */ public java.util.List getAttributeBuilderList() { return getAttributeFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder> getAttributeFieldBuilder() { if (attributeBuilder_ == null) { attributeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder>( attribute_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); attribute_ = null; } return attributeBuilder_; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000040) != 0); } /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); return this; } /** *
       * A human-readable documentation for this node. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.NodeProto) } // @@protoc_insertion_point(class_scope:onnx.NodeProto) private static final onnx.Onnx.NodeProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.NodeProto(); } public static onnx.Onnx.NodeProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public NodeProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.NodeProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TrainingInfoProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TrainingInfoProto) com.google.protobuf.MessageOrBuilder { /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; * @return Whether the initialization field is set. */ boolean hasInitialization(); /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; * @return The initialization. */ onnx.Onnx.GraphProto getInitialization(); /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; */ onnx.Onnx.GraphProtoOrBuilder getInitializationOrBuilder(); /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; * @return Whether the algorithm field is set. */ boolean hasAlgorithm(); /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; * @return The algorithm. */ onnx.Onnx.GraphProto getAlgorithm(); /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; */ onnx.Onnx.GraphProtoOrBuilder getAlgorithmOrBuilder(); /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ java.util.List getInitializationBindingList(); /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ onnx.Onnx.StringStringEntryProto getInitializationBinding(int index); /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ int getInitializationBindingCount(); /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ java.util.List getInitializationBindingOrBuilderList(); /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ onnx.Onnx.StringStringEntryProtoOrBuilder getInitializationBindingOrBuilder( int index); /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ java.util.List getUpdateBindingList(); /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ onnx.Onnx.StringStringEntryProto getUpdateBinding(int index); /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ int getUpdateBindingCount(); /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ java.util.List getUpdateBindingOrBuilderList(); /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ onnx.Onnx.StringStringEntryProtoOrBuilder getUpdateBindingOrBuilder( int index); } /** *
   * Training information
   * TrainingInfoProto stores information for training a model.
   * In particular, this defines two functionalities: an initialization-step
   * and a training-algorithm-step. Initialization resets the model
   * back to its original state as if no training has been performed.
   * Training algorithm improves the model based on input data.
   *
   * The semantics of the initialization-step is that the initializers
   * in ModelProto.graph and in TrainingInfoProto.algorithm are first
   * initialized as specified by the initializers in the graph, and then
   * updated by the "initialization_binding" in every instance in
   * ModelProto.training_info.
   *
   * The field "algorithm" defines a computation graph which represents a
   * training algorithm's step. After the execution of a
   * TrainingInfoProto.algorithm, the initializers specified by "update_binding"
   * may be immediately updated. If the targeted training algorithm contains
   * consecutive update steps (such as block coordinate descent methods),
   * the user needs to create a TrainingInfoProto for each step.
   * 
* * Protobuf type {@code onnx.TrainingInfoProto} */ public static final class TrainingInfoProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TrainingInfoProto) TrainingInfoProtoOrBuilder { private static final long serialVersionUID = 0L; // Use TrainingInfoProto.newBuilder() to construct. private TrainingInfoProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TrainingInfoProto() { initializationBinding_ = java.util.Collections.emptyList(); updateBinding_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new TrainingInfoProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TrainingInfoProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TrainingInfoProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TrainingInfoProto.class, onnx.Onnx.TrainingInfoProto.Builder.class); } private int bitField0_; public static final int INITIALIZATION_FIELD_NUMBER = 1; private onnx.Onnx.GraphProto initialization_; /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; * @return Whether the initialization field is set. */ @java.lang.Override public boolean hasInitialization() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; * @return The initialization. */ @java.lang.Override public onnx.Onnx.GraphProto getInitialization() { return initialization_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : initialization_; } /** *
     * This field describes a graph to compute the initial tensors
     * upon starting the training process. Initialization graph has no input
     * and can have multiple outputs. Usually, trainable tensors in neural
     * networks are randomly initialized. To achieve that, for each tensor,
     * the user can put a random number operator such as RandomNormal or
     * RandomUniform in TrainingInfoProto.initialization.node and assign its
     * random output to the specific tensor using "initialization_binding".
     * This graph can also set the initializers in "algorithm" in the same
     * TrainingInfoProto; a use case is resetting the number of training
     * iteration to zero.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Thus, no initializer would be changed by default.
     * 
* * optional .onnx.GraphProto initialization = 1; */ @java.lang.Override public onnx.Onnx.GraphProtoOrBuilder getInitializationOrBuilder() { return initialization_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : initialization_; } public static final int ALGORITHM_FIELD_NUMBER = 2; private onnx.Onnx.GraphProto algorithm_; /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; * @return Whether the algorithm field is set. */ @java.lang.Override public boolean hasAlgorithm() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; * @return The algorithm. */ @java.lang.Override public onnx.Onnx.GraphProto getAlgorithm() { return algorithm_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : algorithm_; } /** *
     * This field represents a training algorithm step. Given required inputs,
     * it computes outputs to update initializers in its own or inference graph's
     * initializer lists. In general, this field contains loss node, gradient node,
     * optimizer node, increment of iteration count.
     *
     * An execution of the training algorithm step is performed by executing the
     * graph obtained by combining the inference graph (namely "ModelProto.graph")
     * and the "algorithm" graph. That is, the actual
     * input/initializer/output/node/value_info/sparse_initializer list of
     * the training graph is the concatenation of
     * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
     * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
     * in that order. This combined graph must satisfy the normal ONNX conditions.
     * Now, let's provide a visualization of graph combination for clarity.
     * Let the inference graph (i.e., "ModelProto.graph") be
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
     * and the "algorithm" graph be
     *    tensor_d -> Add -> tensor_e
     * The combination process results
     *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
     *
     * Notice that an input of a node in the "algorithm" graph may reference the
     * output of a node in the inference graph (but not the other way round). Also, inference
     * node cannot reference inputs of "algorithm". With these restrictions, inference graph
     * can always be run independently without training information.
     *
     * By default, this field is an empty graph and its evaluation does not
     * produce any output. Evaluating the default training step never
     * update any initializers.
     * 
* * optional .onnx.GraphProto algorithm = 2; */ @java.lang.Override public onnx.Onnx.GraphProtoOrBuilder getAlgorithmOrBuilder() { return algorithm_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : algorithm_; } public static final int INITIALIZATION_BINDING_FIELD_NUMBER = 3; @SuppressWarnings("serial") private java.util.List initializationBinding_; /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ @java.lang.Override public java.util.List getInitializationBindingList() { return initializationBinding_; } /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ @java.lang.Override public java.util.List getInitializationBindingOrBuilderList() { return initializationBinding_; } /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ @java.lang.Override public int getInitializationBindingCount() { return initializationBinding_.size(); } /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ @java.lang.Override public onnx.Onnx.StringStringEntryProto getInitializationBinding(int index) { return initializationBinding_.get(index); } /** *
     * This field specifies the bindings from the outputs of "initialization" to
     * some initializers in "ModelProto.graph.initializer" and
     * the "algorithm.initializer" in the same TrainingInfoProto.
     * See "update_binding" below for details.
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "initialization".
     * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ @java.lang.Override public onnx.Onnx.StringStringEntryProtoOrBuilder getInitializationBindingOrBuilder( int index) { return initializationBinding_.get(index); } public static final int UPDATE_BINDING_FIELD_NUMBER = 4; @SuppressWarnings("serial") private java.util.List updateBinding_; /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ @java.lang.Override public java.util.List getUpdateBindingList() { return updateBinding_; } /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ @java.lang.Override public java.util.List getUpdateBindingOrBuilderList() { return updateBinding_; } /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ @java.lang.Override public int getUpdateBindingCount() { return updateBinding_.size(); } /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ @java.lang.Override public onnx.Onnx.StringStringEntryProto getUpdateBinding(int index) { return updateBinding_.get(index); } /** *
     * Gradient-based training is usually an iterative procedure. In one gradient
     * descent iteration, we apply
     *
     * x = x - r * g
     *
     * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
     * gradient of "x" with respect to a chosen loss. To avoid adding assignments
     * into the training graph, we split the update equation into
     *
     * y = x - r * g
     * x = y
     *
     * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
     * tell that "y" should be assigned to "x", the field "update_binding" may
     * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
     * and "y" (value of StringStringEntryProto).
     * For a neural network with multiple trainable (mutable) tensors, there can
     * be multiple key-value pairs in "update_binding".
     *
     * The initializers appears as keys in "update_binding" are considered
     * mutable variables. This implies some behaviors
     * as described below.
     *
     *  1. We have only unique keys in all "update_binding"s so that two
     *     variables may not have the same name. This ensures that one
     *     variable is assigned up to once.
     *  2. The keys must appear in names of "ModelProto.graph.initializer" or
     *     "TrainingInfoProto.algorithm.initializer".
     *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
     *  4. Mutable variables are initialized to the value specified by the
     *     corresponding initializer, and then potentially updated by
     *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
     *
     * This field usually contains names of trainable tensors
     * (in ModelProto.graph), optimizer states such as momentums in advanced
     * stochastic gradient methods (in TrainingInfoProto.graph),
     * and number of training iterations (in TrainingInfoProto.graph).
     *
     * By default, this field is empty and no initializer would be changed
     * by the execution of "algorithm".
     * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ @java.lang.Override public onnx.Onnx.StringStringEntryProtoOrBuilder getUpdateBindingOrBuilder( int index) { return updateBinding_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getInitialization()); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getAlgorithm()); } for (int i = 0; i < initializationBinding_.size(); i++) { output.writeMessage(3, initializationBinding_.get(i)); } for (int i = 0; i < updateBinding_.size(); i++) { output.writeMessage(4, updateBinding_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getInitialization()); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getAlgorithm()); } for (int i = 0; i < initializationBinding_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, initializationBinding_.get(i)); } for (int i = 0; i < updateBinding_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, updateBinding_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TrainingInfoProto)) { return super.equals(obj); } onnx.Onnx.TrainingInfoProto other = (onnx.Onnx.TrainingInfoProto) obj; if (hasInitialization() != other.hasInitialization()) return false; if (hasInitialization()) { if (!getInitialization() .equals(other.getInitialization())) return false; } if (hasAlgorithm() != other.hasAlgorithm()) return false; if (hasAlgorithm()) { if (!getAlgorithm() .equals(other.getAlgorithm())) return false; } if (!getInitializationBindingList() .equals(other.getInitializationBindingList())) return false; if (!getUpdateBindingList() .equals(other.getUpdateBindingList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasInitialization()) { hash = (37 * hash) + INITIALIZATION_FIELD_NUMBER; hash = (53 * hash) + getInitialization().hashCode(); } if (hasAlgorithm()) { hash = (37 * hash) + ALGORITHM_FIELD_NUMBER; hash = (53 * hash) + getAlgorithm().hashCode(); } if (getInitializationBindingCount() > 0) { hash = (37 * hash) + INITIALIZATION_BINDING_FIELD_NUMBER; hash = (53 * hash) + getInitializationBindingList().hashCode(); } if (getUpdateBindingCount() > 0) { hash = (37 * hash) + UPDATE_BINDING_FIELD_NUMBER; hash = (53 * hash) + getUpdateBindingList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TrainingInfoProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TrainingInfoProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TrainingInfoProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TrainingInfoProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TrainingInfoProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TrainingInfoProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TrainingInfoProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TrainingInfoProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TrainingInfoProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TrainingInfoProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TrainingInfoProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TrainingInfoProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TrainingInfoProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Training information
     * TrainingInfoProto stores information for training a model.
     * In particular, this defines two functionalities: an initialization-step
     * and a training-algorithm-step. Initialization resets the model
     * back to its original state as if no training has been performed.
     * Training algorithm improves the model based on input data.
     *
     * The semantics of the initialization-step is that the initializers
     * in ModelProto.graph and in TrainingInfoProto.algorithm are first
     * initialized as specified by the initializers in the graph, and then
     * updated by the "initialization_binding" in every instance in
     * ModelProto.training_info.
     *
     * The field "algorithm" defines a computation graph which represents a
     * training algorithm's step. After the execution of a
     * TrainingInfoProto.algorithm, the initializers specified by "update_binding"
     * may be immediately updated. If the targeted training algorithm contains
     * consecutive update steps (such as block coordinate descent methods),
     * the user needs to create a TrainingInfoProto for each step.
     * 
* * Protobuf type {@code onnx.TrainingInfoProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TrainingInfoProto) onnx.Onnx.TrainingInfoProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TrainingInfoProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TrainingInfoProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TrainingInfoProto.class, onnx.Onnx.TrainingInfoProto.Builder.class); } // Construct using onnx.Onnx.TrainingInfoProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getInitializationFieldBuilder(); getAlgorithmFieldBuilder(); getInitializationBindingFieldBuilder(); getUpdateBindingFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; initialization_ = null; if (initializationBuilder_ != null) { initializationBuilder_.dispose(); initializationBuilder_ = null; } algorithm_ = null; if (algorithmBuilder_ != null) { algorithmBuilder_.dispose(); algorithmBuilder_ = null; } if (initializationBindingBuilder_ == null) { initializationBinding_ = java.util.Collections.emptyList(); } else { initializationBinding_ = null; initializationBindingBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000004); if (updateBindingBuilder_ == null) { updateBinding_ = java.util.Collections.emptyList(); } else { updateBinding_ = null; updateBindingBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TrainingInfoProto_descriptor; } @java.lang.Override public onnx.Onnx.TrainingInfoProto getDefaultInstanceForType() { return onnx.Onnx.TrainingInfoProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TrainingInfoProto build() { onnx.Onnx.TrainingInfoProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TrainingInfoProto buildPartial() { onnx.Onnx.TrainingInfoProto result = new onnx.Onnx.TrainingInfoProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.TrainingInfoProto result) { if (initializationBindingBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0)) { initializationBinding_ = java.util.Collections.unmodifiableList(initializationBinding_); bitField0_ = (bitField0_ & ~0x00000004); } result.initializationBinding_ = initializationBinding_; } else { result.initializationBinding_ = initializationBindingBuilder_.build(); } if (updateBindingBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { updateBinding_ = java.util.Collections.unmodifiableList(updateBinding_); bitField0_ = (bitField0_ & ~0x00000008); } result.updateBinding_ = updateBinding_; } else { result.updateBinding_ = updateBindingBuilder_.build(); } } private void buildPartial0(onnx.Onnx.TrainingInfoProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.initialization_ = initializationBuilder_ == null ? initialization_ : initializationBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.algorithm_ = algorithmBuilder_ == null ? algorithm_ : algorithmBuilder_.build(); to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TrainingInfoProto) { return mergeFrom((onnx.Onnx.TrainingInfoProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TrainingInfoProto other) { if (other == onnx.Onnx.TrainingInfoProto.getDefaultInstance()) return this; if (other.hasInitialization()) { mergeInitialization(other.getInitialization()); } if (other.hasAlgorithm()) { mergeAlgorithm(other.getAlgorithm()); } if (initializationBindingBuilder_ == null) { if (!other.initializationBinding_.isEmpty()) { if (initializationBinding_.isEmpty()) { initializationBinding_ = other.initializationBinding_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensureInitializationBindingIsMutable(); initializationBinding_.addAll(other.initializationBinding_); } onChanged(); } } else { if (!other.initializationBinding_.isEmpty()) { if (initializationBindingBuilder_.isEmpty()) { initializationBindingBuilder_.dispose(); initializationBindingBuilder_ = null; initializationBinding_ = other.initializationBinding_; bitField0_ = (bitField0_ & ~0x00000004); initializationBindingBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getInitializationBindingFieldBuilder() : null; } else { initializationBindingBuilder_.addAllMessages(other.initializationBinding_); } } } if (updateBindingBuilder_ == null) { if (!other.updateBinding_.isEmpty()) { if (updateBinding_.isEmpty()) { updateBinding_ = other.updateBinding_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureUpdateBindingIsMutable(); updateBinding_.addAll(other.updateBinding_); } onChanged(); } } else { if (!other.updateBinding_.isEmpty()) { if (updateBindingBuilder_.isEmpty()) { updateBindingBuilder_.dispose(); updateBindingBuilder_ = null; updateBinding_ = other.updateBinding_; bitField0_ = (bitField0_ & ~0x00000008); updateBindingBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getUpdateBindingFieldBuilder() : null; } else { updateBindingBuilder_.addAllMessages(other.updateBinding_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getInitializationFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 case 18: { input.readMessage( getAlgorithmFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 case 26: { onnx.Onnx.StringStringEntryProto m = input.readMessage( onnx.Onnx.StringStringEntryProto.PARSER, extensionRegistry); if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); initializationBinding_.add(m); } else { initializationBindingBuilder_.addMessage(m); } break; } // case 26 case 34: { onnx.Onnx.StringStringEntryProto m = input.readMessage( onnx.Onnx.StringStringEntryProto.PARSER, extensionRegistry); if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); updateBinding_.add(m); } else { updateBindingBuilder_.addMessage(m); } break; } // case 34 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private onnx.Onnx.GraphProto initialization_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> initializationBuilder_; /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; * @return Whether the initialization field is set. */ public boolean hasInitialization() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; * @return The initialization. */ public onnx.Onnx.GraphProto getInitialization() { if (initializationBuilder_ == null) { return initialization_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : initialization_; } else { return initializationBuilder_.getMessage(); } } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public Builder setInitialization(onnx.Onnx.GraphProto value) { if (initializationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } initialization_ = value; } else { initializationBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public Builder setInitialization( onnx.Onnx.GraphProto.Builder builderForValue) { if (initializationBuilder_ == null) { initialization_ = builderForValue.build(); } else { initializationBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public Builder mergeInitialization(onnx.Onnx.GraphProto value) { if (initializationBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && initialization_ != null && initialization_ != onnx.Onnx.GraphProto.getDefaultInstance()) { getInitializationBuilder().mergeFrom(value); } else { initialization_ = value; } } else { initializationBuilder_.mergeFrom(value); } if (initialization_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public Builder clearInitialization() { bitField0_ = (bitField0_ & ~0x00000001); initialization_ = null; if (initializationBuilder_ != null) { initializationBuilder_.dispose(); initializationBuilder_ = null; } onChanged(); return this; } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public onnx.Onnx.GraphProto.Builder getInitializationBuilder() { bitField0_ |= 0x00000001; onChanged(); return getInitializationFieldBuilder().getBuilder(); } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ public onnx.Onnx.GraphProtoOrBuilder getInitializationOrBuilder() { if (initializationBuilder_ != null) { return initializationBuilder_.getMessageOrBuilder(); } else { return initialization_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : initialization_; } } /** *
       * This field describes a graph to compute the initial tensors
       * upon starting the training process. Initialization graph has no input
       * and can have multiple outputs. Usually, trainable tensors in neural
       * networks are randomly initialized. To achieve that, for each tensor,
       * the user can put a random number operator such as RandomNormal or
       * RandomUniform in TrainingInfoProto.initialization.node and assign its
       * random output to the specific tensor using "initialization_binding".
       * This graph can also set the initializers in "algorithm" in the same
       * TrainingInfoProto; a use case is resetting the number of training
       * iteration to zero.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Thus, no initializer would be changed by default.
       * 
* * optional .onnx.GraphProto initialization = 1; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> getInitializationFieldBuilder() { if (initializationBuilder_ == null) { initializationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder>( getInitialization(), getParentForChildren(), isClean()); initialization_ = null; } return initializationBuilder_; } private onnx.Onnx.GraphProto algorithm_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> algorithmBuilder_; /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; * @return Whether the algorithm field is set. */ public boolean hasAlgorithm() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; * @return The algorithm. */ public onnx.Onnx.GraphProto getAlgorithm() { if (algorithmBuilder_ == null) { return algorithm_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : algorithm_; } else { return algorithmBuilder_.getMessage(); } } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public Builder setAlgorithm(onnx.Onnx.GraphProto value) { if (algorithmBuilder_ == null) { if (value == null) { throw new NullPointerException(); } algorithm_ = value; } else { algorithmBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public Builder setAlgorithm( onnx.Onnx.GraphProto.Builder builderForValue) { if (algorithmBuilder_ == null) { algorithm_ = builderForValue.build(); } else { algorithmBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public Builder mergeAlgorithm(onnx.Onnx.GraphProto value) { if (algorithmBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && algorithm_ != null && algorithm_ != onnx.Onnx.GraphProto.getDefaultInstance()) { getAlgorithmBuilder().mergeFrom(value); } else { algorithm_ = value; } } else { algorithmBuilder_.mergeFrom(value); } if (algorithm_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public Builder clearAlgorithm() { bitField0_ = (bitField0_ & ~0x00000002); algorithm_ = null; if (algorithmBuilder_ != null) { algorithmBuilder_.dispose(); algorithmBuilder_ = null; } onChanged(); return this; } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public onnx.Onnx.GraphProto.Builder getAlgorithmBuilder() { bitField0_ |= 0x00000002; onChanged(); return getAlgorithmFieldBuilder().getBuilder(); } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ public onnx.Onnx.GraphProtoOrBuilder getAlgorithmOrBuilder() { if (algorithmBuilder_ != null) { return algorithmBuilder_.getMessageOrBuilder(); } else { return algorithm_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : algorithm_; } } /** *
       * This field represents a training algorithm step. Given required inputs,
       * it computes outputs to update initializers in its own or inference graph's
       * initializer lists. In general, this field contains loss node, gradient node,
       * optimizer node, increment of iteration count.
       *
       * An execution of the training algorithm step is performed by executing the
       * graph obtained by combining the inference graph (namely "ModelProto.graph")
       * and the "algorithm" graph. That is, the actual
       * input/initializer/output/node/value_info/sparse_initializer list of
       * the training graph is the concatenation of
       * "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer"
       * and "algorithm.input/initializer/output/node/value_info/sparse_initializer"
       * in that order. This combined graph must satisfy the normal ONNX conditions.
       * Now, let's provide a visualization of graph combination for clarity.
       * Let the inference graph (i.e., "ModelProto.graph") be
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d
       * and the "algorithm" graph be
       *    tensor_d -> Add -> tensor_e
       * The combination process results
       *    tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e
       *
       * Notice that an input of a node in the "algorithm" graph may reference the
       * output of a node in the inference graph (but not the other way round). Also, inference
       * node cannot reference inputs of "algorithm". With these restrictions, inference graph
       * can always be run independently without training information.
       *
       * By default, this field is an empty graph and its evaluation does not
       * produce any output. Evaluating the default training step never
       * update any initializers.
       * 
* * optional .onnx.GraphProto algorithm = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> getAlgorithmFieldBuilder() { if (algorithmBuilder_ == null) { algorithmBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder>( getAlgorithm(), getParentForChildren(), isClean()); algorithm_ = null; } return algorithmBuilder_; } private java.util.List initializationBinding_ = java.util.Collections.emptyList(); private void ensureInitializationBindingIsMutable() { if (!((bitField0_ & 0x00000004) != 0)) { initializationBinding_ = new java.util.ArrayList(initializationBinding_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> initializationBindingBuilder_; /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public java.util.List getInitializationBindingList() { if (initializationBindingBuilder_ == null) { return java.util.Collections.unmodifiableList(initializationBinding_); } else { return initializationBindingBuilder_.getMessageList(); } } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public int getInitializationBindingCount() { if (initializationBindingBuilder_ == null) { return initializationBinding_.size(); } else { return initializationBindingBuilder_.getCount(); } } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public onnx.Onnx.StringStringEntryProto getInitializationBinding(int index) { if (initializationBindingBuilder_ == null) { return initializationBinding_.get(index); } else { return initializationBindingBuilder_.getMessage(index); } } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder setInitializationBinding( int index, onnx.Onnx.StringStringEntryProto value) { if (initializationBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializationBindingIsMutable(); initializationBinding_.set(index, value); onChanged(); } else { initializationBindingBuilder_.setMessage(index, value); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder setInitializationBinding( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); initializationBinding_.set(index, builderForValue.build()); onChanged(); } else { initializationBindingBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder addInitializationBinding(onnx.Onnx.StringStringEntryProto value) { if (initializationBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializationBindingIsMutable(); initializationBinding_.add(value); onChanged(); } else { initializationBindingBuilder_.addMessage(value); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder addInitializationBinding( int index, onnx.Onnx.StringStringEntryProto value) { if (initializationBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializationBindingIsMutable(); initializationBinding_.add(index, value); onChanged(); } else { initializationBindingBuilder_.addMessage(index, value); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder addInitializationBinding( onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); initializationBinding_.add(builderForValue.build()); onChanged(); } else { initializationBindingBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder addInitializationBinding( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); initializationBinding_.add(index, builderForValue.build()); onChanged(); } else { initializationBindingBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder addAllInitializationBinding( java.lang.Iterable values) { if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, initializationBinding_); onChanged(); } else { initializationBindingBuilder_.addAllMessages(values); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder clearInitializationBinding() { if (initializationBindingBuilder_ == null) { initializationBinding_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { initializationBindingBuilder_.clear(); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public Builder removeInitializationBinding(int index) { if (initializationBindingBuilder_ == null) { ensureInitializationBindingIsMutable(); initializationBinding_.remove(index); onChanged(); } else { initializationBindingBuilder_.remove(index); } return this; } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public onnx.Onnx.StringStringEntryProto.Builder getInitializationBindingBuilder( int index) { return getInitializationBindingFieldBuilder().getBuilder(index); } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public onnx.Onnx.StringStringEntryProtoOrBuilder getInitializationBindingOrBuilder( int index) { if (initializationBindingBuilder_ == null) { return initializationBinding_.get(index); } else { return initializationBindingBuilder_.getMessageOrBuilder(index); } } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public java.util.List getInitializationBindingOrBuilderList() { if (initializationBindingBuilder_ != null) { return initializationBindingBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(initializationBinding_); } } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public onnx.Onnx.StringStringEntryProto.Builder addInitializationBindingBuilder() { return getInitializationBindingFieldBuilder().addBuilder( onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public onnx.Onnx.StringStringEntryProto.Builder addInitializationBindingBuilder( int index) { return getInitializationBindingFieldBuilder().addBuilder( index, onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * This field specifies the bindings from the outputs of "initialization" to
       * some initializers in "ModelProto.graph.initializer" and
       * the "algorithm.initializer" in the same TrainingInfoProto.
       * See "update_binding" below for details.
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "initialization".
       * 
* * repeated .onnx.StringStringEntryProto initialization_binding = 3; */ public java.util.List getInitializationBindingBuilderList() { return getInitializationBindingFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> getInitializationBindingFieldBuilder() { if (initializationBindingBuilder_ == null) { initializationBindingBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder>( initializationBinding_, ((bitField0_ & 0x00000004) != 0), getParentForChildren(), isClean()); initializationBinding_ = null; } return initializationBindingBuilder_; } private java.util.List updateBinding_ = java.util.Collections.emptyList(); private void ensureUpdateBindingIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { updateBinding_ = new java.util.ArrayList(updateBinding_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> updateBindingBuilder_; /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public java.util.List getUpdateBindingList() { if (updateBindingBuilder_ == null) { return java.util.Collections.unmodifiableList(updateBinding_); } else { return updateBindingBuilder_.getMessageList(); } } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public int getUpdateBindingCount() { if (updateBindingBuilder_ == null) { return updateBinding_.size(); } else { return updateBindingBuilder_.getCount(); } } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public onnx.Onnx.StringStringEntryProto getUpdateBinding(int index) { if (updateBindingBuilder_ == null) { return updateBinding_.get(index); } else { return updateBindingBuilder_.getMessage(index); } } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder setUpdateBinding( int index, onnx.Onnx.StringStringEntryProto value) { if (updateBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureUpdateBindingIsMutable(); updateBinding_.set(index, value); onChanged(); } else { updateBindingBuilder_.setMessage(index, value); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder setUpdateBinding( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); updateBinding_.set(index, builderForValue.build()); onChanged(); } else { updateBindingBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder addUpdateBinding(onnx.Onnx.StringStringEntryProto value) { if (updateBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureUpdateBindingIsMutable(); updateBinding_.add(value); onChanged(); } else { updateBindingBuilder_.addMessage(value); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder addUpdateBinding( int index, onnx.Onnx.StringStringEntryProto value) { if (updateBindingBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureUpdateBindingIsMutable(); updateBinding_.add(index, value); onChanged(); } else { updateBindingBuilder_.addMessage(index, value); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder addUpdateBinding( onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); updateBinding_.add(builderForValue.build()); onChanged(); } else { updateBindingBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder addUpdateBinding( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); updateBinding_.add(index, builderForValue.build()); onChanged(); } else { updateBindingBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder addAllUpdateBinding( java.lang.Iterable values) { if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, updateBinding_); onChanged(); } else { updateBindingBuilder_.addAllMessages(values); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder clearUpdateBinding() { if (updateBindingBuilder_ == null) { updateBinding_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { updateBindingBuilder_.clear(); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public Builder removeUpdateBinding(int index) { if (updateBindingBuilder_ == null) { ensureUpdateBindingIsMutable(); updateBinding_.remove(index); onChanged(); } else { updateBindingBuilder_.remove(index); } return this; } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public onnx.Onnx.StringStringEntryProto.Builder getUpdateBindingBuilder( int index) { return getUpdateBindingFieldBuilder().getBuilder(index); } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public onnx.Onnx.StringStringEntryProtoOrBuilder getUpdateBindingOrBuilder( int index) { if (updateBindingBuilder_ == null) { return updateBinding_.get(index); } else { return updateBindingBuilder_.getMessageOrBuilder(index); } } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public java.util.List getUpdateBindingOrBuilderList() { if (updateBindingBuilder_ != null) { return updateBindingBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(updateBinding_); } } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public onnx.Onnx.StringStringEntryProto.Builder addUpdateBindingBuilder() { return getUpdateBindingFieldBuilder().addBuilder( onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public onnx.Onnx.StringStringEntryProto.Builder addUpdateBindingBuilder( int index) { return getUpdateBindingFieldBuilder().addBuilder( index, onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Gradient-based training is usually an iterative procedure. In one gradient
       * descent iteration, we apply
       *
       * x = x - r * g
       *
       * where "x" is the optimized tensor, "r" stands for learning rate, and "g" is
       * gradient of "x" with respect to a chosen loss. To avoid adding assignments
       * into the training graph, we split the update equation into
       *
       * y = x - r * g
       * x = y
       *
       * The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To
       * tell that "y" should be assigned to "x", the field "update_binding" may
       * contain a key-value pair of strings, "x" (key of StringStringEntryProto)
       * and "y" (value of StringStringEntryProto).
       * For a neural network with multiple trainable (mutable) tensors, there can
       * be multiple key-value pairs in "update_binding".
       *
       * The initializers appears as keys in "update_binding" are considered
       * mutable variables. This implies some behaviors
       * as described below.
       *
       *  1. We have only unique keys in all "update_binding"s so that two
       *     variables may not have the same name. This ensures that one
       *     variable is assigned up to once.
       *  2. The keys must appear in names of "ModelProto.graph.initializer" or
       *     "TrainingInfoProto.algorithm.initializer".
       *  3. The values must be output names of "algorithm" or "ModelProto.graph.output".
       *  4. Mutable variables are initialized to the value specified by the
       *     corresponding initializer, and then potentially updated by
       *     "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s.
       *
       * This field usually contains names of trainable tensors
       * (in ModelProto.graph), optimizer states such as momentums in advanced
       * stochastic gradient methods (in TrainingInfoProto.graph),
       * and number of training iterations (in TrainingInfoProto.graph).
       *
       * By default, this field is empty and no initializer would be changed
       * by the execution of "algorithm".
       * 
* * repeated .onnx.StringStringEntryProto update_binding = 4; */ public java.util.List getUpdateBindingBuilderList() { return getUpdateBindingFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> getUpdateBindingFieldBuilder() { if (updateBindingBuilder_ == null) { updateBindingBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder>( updateBinding_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); updateBinding_ = null; } return updateBindingBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TrainingInfoProto) } // @@protoc_insertion_point(class_scope:onnx.TrainingInfoProto) private static final onnx.Onnx.TrainingInfoProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TrainingInfoProto(); } public static onnx.Onnx.TrainingInfoProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TrainingInfoProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TrainingInfoProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface ModelProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.ModelProto) com.google.protobuf.MessageOrBuilder { /** *
     * The version of the IR this model targets. See Version enum above.
     * This field MUST be present.
     * 
* * optional int64 ir_version = 1; * @return Whether the irVersion field is set. */ boolean hasIrVersion(); /** *
     * The version of the IR this model targets. See Version enum above.
     * This field MUST be present.
     * 
* * optional int64 ir_version = 1; * @return The irVersion. */ long getIrVersion(); /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ java.util.List getOpsetImportList(); /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ onnx.Onnx.OperatorSetIdProto getOpsetImport(int index); /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ int getOpsetImportCount(); /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ java.util.List getOpsetImportOrBuilderList(); /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index); /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return Whether the producerName field is set. */ boolean hasProducerName(); /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return The producerName. */ java.lang.String getProducerName(); /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return The bytes for producerName. */ com.google.protobuf.ByteString getProducerNameBytes(); /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return Whether the producerVersion field is set. */ boolean hasProducerVersion(); /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return The producerVersion. */ java.lang.String getProducerVersion(); /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return The bytes for producerVersion. */ com.google.protobuf.ByteString getProducerVersionBytes(); /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return Whether the domain field is set. */ boolean hasDomain(); /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return The domain. */ java.lang.String getDomain(); /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return The bytes for domain. */ com.google.protobuf.ByteString getDomainBytes(); /** *
     * The version of the graph encoded. See Version enum below.
     * 
* * optional int64 model_version = 5; * @return Whether the modelVersion field is set. */ boolean hasModelVersion(); /** *
     * The version of the graph encoded. See Version enum below.
     * 
* * optional int64 model_version = 5; * @return The modelVersion. */ long getModelVersion(); /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; * @return Whether the graph field is set. */ boolean hasGraph(); /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; * @return The graph. */ onnx.Onnx.GraphProto getGraph(); /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; */ onnx.Onnx.GraphProtoOrBuilder getGraphOrBuilder(); /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ java.util.List getMetadataPropsList(); /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ onnx.Onnx.StringStringEntryProto getMetadataProps(int index); /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ int getMetadataPropsCount(); /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ java.util.List getMetadataPropsOrBuilderList(); /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ onnx.Onnx.StringStringEntryProtoOrBuilder getMetadataPropsOrBuilder( int index); /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ java.util.List getTrainingInfoList(); /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ onnx.Onnx.TrainingInfoProto getTrainingInfo(int index); /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ int getTrainingInfoCount(); /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ java.util.List getTrainingInfoOrBuilderList(); /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ onnx.Onnx.TrainingInfoProtoOrBuilder getTrainingInfoOrBuilder( int index); /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ java.util.List getFunctionsList(); /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ onnx.Onnx.FunctionProto getFunctions(int index); /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ int getFunctionsCount(); /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ java.util.List getFunctionsOrBuilderList(); /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ onnx.Onnx.FunctionProtoOrBuilder getFunctionsOrBuilder( int index); } /** *
   * Models
   *
   * ModelProto is a top-level file/container format for bundling a ML model and
   * associating its computation graph with metadata.
   *
   * The semantics of the model are described by the associated GraphProto's.
   * 
* * Protobuf type {@code onnx.ModelProto} */ public static final class ModelProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.ModelProto) ModelProtoOrBuilder { private static final long serialVersionUID = 0L; // Use ModelProto.newBuilder() to construct. private ModelProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ModelProto() { opsetImport_ = java.util.Collections.emptyList(); producerName_ = ""; producerVersion_ = ""; domain_ = ""; docString_ = ""; metadataProps_ = java.util.Collections.emptyList(); trainingInfo_ = java.util.Collections.emptyList(); functions_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new ModelProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_ModelProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_ModelProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.ModelProto.class, onnx.Onnx.ModelProto.Builder.class); } private int bitField0_; public static final int IR_VERSION_FIELD_NUMBER = 1; private long irVersion_ = 0L; /** *
     * The version of the IR this model targets. See Version enum above.
     * This field MUST be present.
     * 
* * optional int64 ir_version = 1; * @return Whether the irVersion field is set. */ @java.lang.Override public boolean hasIrVersion() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The version of the IR this model targets. See Version enum above.
     * This field MUST be present.
     * 
* * optional int64 ir_version = 1; * @return The irVersion. */ @java.lang.Override public long getIrVersion() { return irVersion_; } public static final int OPSET_IMPORT_FIELD_NUMBER = 8; @SuppressWarnings("serial") private java.util.List opsetImport_; /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ @java.lang.Override public java.util.List getOpsetImportList() { return opsetImport_; } /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ @java.lang.Override public java.util.List getOpsetImportOrBuilderList() { return opsetImport_; } /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ @java.lang.Override public int getOpsetImportCount() { return opsetImport_.size(); } /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ @java.lang.Override public onnx.Onnx.OperatorSetIdProto getOpsetImport(int index) { return opsetImport_.get(index); } /** *
     * The OperatorSets this model relies on.
     * All ModelProtos MUST have at least one entry that
     * specifies which version of the ONNX OperatorSet is
     * being imported.
     *
     * All nodes in the ModelProto's graph will bind against the operator
     * with the same-domain/same-op_type operator with the HIGHEST version
     * in the referenced operator sets.
     * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ @java.lang.Override public onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index) { return opsetImport_.get(index); } public static final int PRODUCER_NAME_FIELD_NUMBER = 2; @SuppressWarnings("serial") private volatile java.lang.Object producerName_ = ""; /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return Whether the producerName field is set. */ @java.lang.Override public boolean hasProducerName() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return The producerName. */ @java.lang.Override public java.lang.String getProducerName() { java.lang.Object ref = producerName_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { producerName_ = s; } return s; } } /** *
     * The name of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_name = 2; * @return The bytes for producerName. */ @java.lang.Override public com.google.protobuf.ByteString getProducerNameBytes() { java.lang.Object ref = producerName_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); producerName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int PRODUCER_VERSION_FIELD_NUMBER = 3; @SuppressWarnings("serial") private volatile java.lang.Object producerVersion_ = ""; /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return Whether the producerVersion field is set. */ @java.lang.Override public boolean hasProducerVersion() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return The producerVersion. */ @java.lang.Override public java.lang.String getProducerVersion() { java.lang.Object ref = producerVersion_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { producerVersion_ = s; } return s; } } /** *
     * The version of the framework or tool used to generate this model.
     * This field SHOULD be present to indicate which implementation/tool/framework
     * emitted the model.
     * 
* * optional string producer_version = 3; * @return The bytes for producerVersion. */ @java.lang.Override public com.google.protobuf.ByteString getProducerVersionBytes() { java.lang.Object ref = producerVersion_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); producerVersion_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int DOMAIN_FIELD_NUMBER = 4; @SuppressWarnings("serial") private volatile java.lang.Object domain_ = ""; /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return Whether the domain field is set. */ @java.lang.Override public boolean hasDomain() { return ((bitField0_ & 0x00000008) != 0); } /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return The domain. */ @java.lang.Override public java.lang.String getDomain() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } } /** *
     * Domain name of the model.
     * We use reverse domain names as name space indicators. For example:
     * `com.facebook.fair` or `com.microsoft.cognitiveservices`
     *
     * Together with `model_version` and GraphProto.name, this forms the unique identity of
     * the graph.
     * 
* * optional string domain = 4; * @return The bytes for domain. */ @java.lang.Override public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int MODEL_VERSION_FIELD_NUMBER = 5; private long modelVersion_ = 0L; /** *
     * The version of the graph encoded. See Version enum below.
     * 
* * optional int64 model_version = 5; * @return Whether the modelVersion field is set. */ @java.lang.Override public boolean hasModelVersion() { return ((bitField0_ & 0x00000010) != 0); } /** *
     * The version of the graph encoded. See Version enum below.
     * 
* * optional int64 model_version = 5; * @return The modelVersion. */ @java.lang.Override public long getModelVersion() { return modelVersion_; } public static final int DOC_STRING_FIELD_NUMBER = 6; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000020) != 0); } /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this model. Markdown is allowed.
     * 
* * optional string doc_string = 6; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int GRAPH_FIELD_NUMBER = 7; private onnx.Onnx.GraphProto graph_; /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; * @return Whether the graph field is set. */ @java.lang.Override public boolean hasGraph() { return ((bitField0_ & 0x00000040) != 0); } /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; * @return The graph. */ @java.lang.Override public onnx.Onnx.GraphProto getGraph() { return graph_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : graph_; } /** *
     * The parameterized graph that is evaluated to execute the model.
     * 
* * optional .onnx.GraphProto graph = 7; */ @java.lang.Override public onnx.Onnx.GraphProtoOrBuilder getGraphOrBuilder() { return graph_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : graph_; } public static final int METADATA_PROPS_FIELD_NUMBER = 14; @SuppressWarnings("serial") private java.util.List metadataProps_; /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ @java.lang.Override public java.util.List getMetadataPropsList() { return metadataProps_; } /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ @java.lang.Override public java.util.List getMetadataPropsOrBuilderList() { return metadataProps_; } /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ @java.lang.Override public int getMetadataPropsCount() { return metadataProps_.size(); } /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ @java.lang.Override public onnx.Onnx.StringStringEntryProto getMetadataProps(int index) { return metadataProps_.get(index); } /** *
     * Named metadata values; keys should be distinct.
     * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ @java.lang.Override public onnx.Onnx.StringStringEntryProtoOrBuilder getMetadataPropsOrBuilder( int index) { return metadataProps_.get(index); } public static final int TRAINING_INFO_FIELD_NUMBER = 20; @SuppressWarnings("serial") private java.util.List trainingInfo_; /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ @java.lang.Override public java.util.List getTrainingInfoList() { return trainingInfo_; } /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ @java.lang.Override public java.util.List getTrainingInfoOrBuilderList() { return trainingInfo_; } /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ @java.lang.Override public int getTrainingInfoCount() { return trainingInfo_.size(); } /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ @java.lang.Override public onnx.Onnx.TrainingInfoProto getTrainingInfo(int index) { return trainingInfo_.get(index); } /** *
     * Training-specific information. Sequentially executing all stored
     * `TrainingInfoProto.algorithm`s and assigning their outputs following
     * the corresponding `TrainingInfoProto.update_binding`s is one training
     * iteration. Similarly, to initialize the model
     * (as if training hasn't happened), the user should sequentially execute
     * all stored `TrainingInfoProto.initialization`s and assigns their outputs
     * using `TrainingInfoProto.initialization_binding`s.
     *
     * If this field is empty, the training behavior of the model is undefined.
     * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ @java.lang.Override public onnx.Onnx.TrainingInfoProtoOrBuilder getTrainingInfoOrBuilder( int index) { return trainingInfo_.get(index); } public static final int FUNCTIONS_FIELD_NUMBER = 25; @SuppressWarnings("serial") private java.util.List functions_; /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ @java.lang.Override public java.util.List getFunctionsList() { return functions_; } /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ @java.lang.Override public java.util.List getFunctionsOrBuilderList() { return functions_; } /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ @java.lang.Override public int getFunctionsCount() { return functions_.size(); } /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ @java.lang.Override public onnx.Onnx.FunctionProto getFunctions(int index) { return functions_.get(index); } /** *
     * A list of function protos local to the model.
     *
     * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
     * In case of any conflicts the behavior (whether the model local functions are given higher priority,
     * or standard operator sets are given higher priotity or this is treated as error) is defined by
     * the runtimes.
     *
     * The operator sets imported by FunctionProto should be compatible with the ones
     * imported by ModelProto and other model local FunctionProtos.
     * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
     * or by 2 FunctionProtos then versions for the operator set may be different but,
     * the operator schema returned for op_type, domain, version combination
     * for both the versions should be same for every node in the function body.
     *
     * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
     * is not allowed.
     * 
* * repeated .onnx.FunctionProto functions = 25; */ @java.lang.Override public onnx.Onnx.FunctionProtoOrBuilder getFunctionsOrBuilder( int index) { return functions_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt64(1, irVersion_); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, producerName_); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, producerVersion_); } if (((bitField0_ & 0x00000008) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, domain_); } if (((bitField0_ & 0x00000010) != 0)) { output.writeInt64(5, modelVersion_); } if (((bitField0_ & 0x00000020) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, docString_); } if (((bitField0_ & 0x00000040) != 0)) { output.writeMessage(7, getGraph()); } for (int i = 0; i < opsetImport_.size(); i++) { output.writeMessage(8, opsetImport_.get(i)); } for (int i = 0; i < metadataProps_.size(); i++) { output.writeMessage(14, metadataProps_.get(i)); } for (int i = 0; i < trainingInfo_.size(); i++) { output.writeMessage(20, trainingInfo_.get(i)); } for (int i = 0; i < functions_.size(); i++) { output.writeMessage(25, functions_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(1, irVersion_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, producerName_); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, producerVersion_); } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, domain_); } if (((bitField0_ & 0x00000010) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(5, modelVersion_); } if (((bitField0_ & 0x00000020) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(6, docString_); } if (((bitField0_ & 0x00000040) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(7, getGraph()); } for (int i = 0; i < opsetImport_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(8, opsetImport_.get(i)); } for (int i = 0; i < metadataProps_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(14, metadataProps_.get(i)); } for (int i = 0; i < trainingInfo_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(20, trainingInfo_.get(i)); } for (int i = 0; i < functions_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(25, functions_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.ModelProto)) { return super.equals(obj); } onnx.Onnx.ModelProto other = (onnx.Onnx.ModelProto) obj; if (hasIrVersion() != other.hasIrVersion()) return false; if (hasIrVersion()) { if (getIrVersion() != other.getIrVersion()) return false; } if (!getOpsetImportList() .equals(other.getOpsetImportList())) return false; if (hasProducerName() != other.hasProducerName()) return false; if (hasProducerName()) { if (!getProducerName() .equals(other.getProducerName())) return false; } if (hasProducerVersion() != other.hasProducerVersion()) return false; if (hasProducerVersion()) { if (!getProducerVersion() .equals(other.getProducerVersion())) return false; } if (hasDomain() != other.hasDomain()) return false; if (hasDomain()) { if (!getDomain() .equals(other.getDomain())) return false; } if (hasModelVersion() != other.hasModelVersion()) return false; if (hasModelVersion()) { if (getModelVersion() != other.getModelVersion()) return false; } if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (hasGraph() != other.hasGraph()) return false; if (hasGraph()) { if (!getGraph() .equals(other.getGraph())) return false; } if (!getMetadataPropsList() .equals(other.getMetadataPropsList())) return false; if (!getTrainingInfoList() .equals(other.getTrainingInfoList())) return false; if (!getFunctionsList() .equals(other.getFunctionsList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasIrVersion()) { hash = (37 * hash) + IR_VERSION_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getIrVersion()); } if (getOpsetImportCount() > 0) { hash = (37 * hash) + OPSET_IMPORT_FIELD_NUMBER; hash = (53 * hash) + getOpsetImportList().hashCode(); } if (hasProducerName()) { hash = (37 * hash) + PRODUCER_NAME_FIELD_NUMBER; hash = (53 * hash) + getProducerName().hashCode(); } if (hasProducerVersion()) { hash = (37 * hash) + PRODUCER_VERSION_FIELD_NUMBER; hash = (53 * hash) + getProducerVersion().hashCode(); } if (hasDomain()) { hash = (37 * hash) + DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getDomain().hashCode(); } if (hasModelVersion()) { hash = (37 * hash) + MODEL_VERSION_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getModelVersion()); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } if (hasGraph()) { hash = (37 * hash) + GRAPH_FIELD_NUMBER; hash = (53 * hash) + getGraph().hashCode(); } if (getMetadataPropsCount() > 0) { hash = (37 * hash) + METADATA_PROPS_FIELD_NUMBER; hash = (53 * hash) + getMetadataPropsList().hashCode(); } if (getTrainingInfoCount() > 0) { hash = (37 * hash) + TRAINING_INFO_FIELD_NUMBER; hash = (53 * hash) + getTrainingInfoList().hashCode(); } if (getFunctionsCount() > 0) { hash = (37 * hash) + FUNCTIONS_FIELD_NUMBER; hash = (53 * hash) + getFunctionsList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.ModelProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ModelProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ModelProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ModelProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ModelProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.ModelProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.ModelProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.ModelProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.ModelProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.ModelProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.ModelProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.ModelProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.ModelProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Models
     *
     * ModelProto is a top-level file/container format for bundling a ML model and
     * associating its computation graph with metadata.
     *
     * The semantics of the model are described by the associated GraphProto's.
     * 
* * Protobuf type {@code onnx.ModelProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.ModelProto) onnx.Onnx.ModelProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_ModelProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_ModelProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.ModelProto.class, onnx.Onnx.ModelProto.Builder.class); } // Construct using onnx.Onnx.ModelProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getOpsetImportFieldBuilder(); getGraphFieldBuilder(); getMetadataPropsFieldBuilder(); getTrainingInfoFieldBuilder(); getFunctionsFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; irVersion_ = 0L; if (opsetImportBuilder_ == null) { opsetImport_ = java.util.Collections.emptyList(); } else { opsetImport_ = null; opsetImportBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000002); producerName_ = ""; producerVersion_ = ""; domain_ = ""; modelVersion_ = 0L; docString_ = ""; graph_ = null; if (graphBuilder_ != null) { graphBuilder_.dispose(); graphBuilder_ = null; } if (metadataPropsBuilder_ == null) { metadataProps_ = java.util.Collections.emptyList(); } else { metadataProps_ = null; metadataPropsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000100); if (trainingInfoBuilder_ == null) { trainingInfo_ = java.util.Collections.emptyList(); } else { trainingInfo_ = null; trainingInfoBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000200); if (functionsBuilder_ == null) { functions_ = java.util.Collections.emptyList(); } else { functions_ = null; functionsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000400); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_ModelProto_descriptor; } @java.lang.Override public onnx.Onnx.ModelProto getDefaultInstanceForType() { return onnx.Onnx.ModelProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.ModelProto build() { onnx.Onnx.ModelProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.ModelProto buildPartial() { onnx.Onnx.ModelProto result = new onnx.Onnx.ModelProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.ModelProto result) { if (opsetImportBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0)) { opsetImport_ = java.util.Collections.unmodifiableList(opsetImport_); bitField0_ = (bitField0_ & ~0x00000002); } result.opsetImport_ = opsetImport_; } else { result.opsetImport_ = opsetImportBuilder_.build(); } if (metadataPropsBuilder_ == null) { if (((bitField0_ & 0x00000100) != 0)) { metadataProps_ = java.util.Collections.unmodifiableList(metadataProps_); bitField0_ = (bitField0_ & ~0x00000100); } result.metadataProps_ = metadataProps_; } else { result.metadataProps_ = metadataPropsBuilder_.build(); } if (trainingInfoBuilder_ == null) { if (((bitField0_ & 0x00000200) != 0)) { trainingInfo_ = java.util.Collections.unmodifiableList(trainingInfo_); bitField0_ = (bitField0_ & ~0x00000200); } result.trainingInfo_ = trainingInfo_; } else { result.trainingInfo_ = trainingInfoBuilder_.build(); } if (functionsBuilder_ == null) { if (((bitField0_ & 0x00000400) != 0)) { functions_ = java.util.Collections.unmodifiableList(functions_); bitField0_ = (bitField0_ & ~0x00000400); } result.functions_ = functions_; } else { result.functions_ = functionsBuilder_.build(); } } private void buildPartial0(onnx.Onnx.ModelProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.irVersion_ = irVersion_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000004) != 0)) { result.producerName_ = producerName_; to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000008) != 0)) { result.producerVersion_ = producerVersion_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000010) != 0)) { result.domain_ = domain_; to_bitField0_ |= 0x00000008; } if (((from_bitField0_ & 0x00000020) != 0)) { result.modelVersion_ = modelVersion_; to_bitField0_ |= 0x00000010; } if (((from_bitField0_ & 0x00000040) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000020; } if (((from_bitField0_ & 0x00000080) != 0)) { result.graph_ = graphBuilder_ == null ? graph_ : graphBuilder_.build(); to_bitField0_ |= 0x00000040; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.ModelProto) { return mergeFrom((onnx.Onnx.ModelProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.ModelProto other) { if (other == onnx.Onnx.ModelProto.getDefaultInstance()) return this; if (other.hasIrVersion()) { setIrVersion(other.getIrVersion()); } if (opsetImportBuilder_ == null) { if (!other.opsetImport_.isEmpty()) { if (opsetImport_.isEmpty()) { opsetImport_ = other.opsetImport_; bitField0_ = (bitField0_ & ~0x00000002); } else { ensureOpsetImportIsMutable(); opsetImport_.addAll(other.opsetImport_); } onChanged(); } } else { if (!other.opsetImport_.isEmpty()) { if (opsetImportBuilder_.isEmpty()) { opsetImportBuilder_.dispose(); opsetImportBuilder_ = null; opsetImport_ = other.opsetImport_; bitField0_ = (bitField0_ & ~0x00000002); opsetImportBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getOpsetImportFieldBuilder() : null; } else { opsetImportBuilder_.addAllMessages(other.opsetImport_); } } } if (other.hasProducerName()) { producerName_ = other.producerName_; bitField0_ |= 0x00000004; onChanged(); } if (other.hasProducerVersion()) { producerVersion_ = other.producerVersion_; bitField0_ |= 0x00000008; onChanged(); } if (other.hasDomain()) { domain_ = other.domain_; bitField0_ |= 0x00000010; onChanged(); } if (other.hasModelVersion()) { setModelVersion(other.getModelVersion()); } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000040; onChanged(); } if (other.hasGraph()) { mergeGraph(other.getGraph()); } if (metadataPropsBuilder_ == null) { if (!other.metadataProps_.isEmpty()) { if (metadataProps_.isEmpty()) { metadataProps_ = other.metadataProps_; bitField0_ = (bitField0_ & ~0x00000100); } else { ensureMetadataPropsIsMutable(); metadataProps_.addAll(other.metadataProps_); } onChanged(); } } else { if (!other.metadataProps_.isEmpty()) { if (metadataPropsBuilder_.isEmpty()) { metadataPropsBuilder_.dispose(); metadataPropsBuilder_ = null; metadataProps_ = other.metadataProps_; bitField0_ = (bitField0_ & ~0x00000100); metadataPropsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getMetadataPropsFieldBuilder() : null; } else { metadataPropsBuilder_.addAllMessages(other.metadataProps_); } } } if (trainingInfoBuilder_ == null) { if (!other.trainingInfo_.isEmpty()) { if (trainingInfo_.isEmpty()) { trainingInfo_ = other.trainingInfo_; bitField0_ = (bitField0_ & ~0x00000200); } else { ensureTrainingInfoIsMutable(); trainingInfo_.addAll(other.trainingInfo_); } onChanged(); } } else { if (!other.trainingInfo_.isEmpty()) { if (trainingInfoBuilder_.isEmpty()) { trainingInfoBuilder_.dispose(); trainingInfoBuilder_ = null; trainingInfo_ = other.trainingInfo_; bitField0_ = (bitField0_ & ~0x00000200); trainingInfoBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getTrainingInfoFieldBuilder() : null; } else { trainingInfoBuilder_.addAllMessages(other.trainingInfo_); } } } if (functionsBuilder_ == null) { if (!other.functions_.isEmpty()) { if (functions_.isEmpty()) { functions_ = other.functions_; bitField0_ = (bitField0_ & ~0x00000400); } else { ensureFunctionsIsMutable(); functions_.addAll(other.functions_); } onChanged(); } } else { if (!other.functions_.isEmpty()) { if (functionsBuilder_.isEmpty()) { functionsBuilder_.dispose(); functionsBuilder_ = null; functions_ = other.functions_; bitField0_ = (bitField0_ & ~0x00000400); functionsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getFunctionsFieldBuilder() : null; } else { functionsBuilder_.addAllMessages(other.functions_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { irVersion_ = input.readInt64(); bitField0_ |= 0x00000001; break; } // case 8 case 18: { producerName_ = input.readBytes(); bitField0_ |= 0x00000004; break; } // case 18 case 26: { producerVersion_ = input.readBytes(); bitField0_ |= 0x00000008; break; } // case 26 case 34: { domain_ = input.readBytes(); bitField0_ |= 0x00000010; break; } // case 34 case 40: { modelVersion_ = input.readInt64(); bitField0_ |= 0x00000020; break; } // case 40 case 50: { docString_ = input.readBytes(); bitField0_ |= 0x00000040; break; } // case 50 case 58: { input.readMessage( getGraphFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000080; break; } // case 58 case 66: { onnx.Onnx.OperatorSetIdProto m = input.readMessage( onnx.Onnx.OperatorSetIdProto.PARSER, extensionRegistry); if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(m); } else { opsetImportBuilder_.addMessage(m); } break; } // case 66 case 114: { onnx.Onnx.StringStringEntryProto m = input.readMessage( onnx.Onnx.StringStringEntryProto.PARSER, extensionRegistry); if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); metadataProps_.add(m); } else { metadataPropsBuilder_.addMessage(m); } break; } // case 114 case 162: { onnx.Onnx.TrainingInfoProto m = input.readMessage( onnx.Onnx.TrainingInfoProto.PARSER, extensionRegistry); if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); trainingInfo_.add(m); } else { trainingInfoBuilder_.addMessage(m); } break; } // case 162 case 202: { onnx.Onnx.FunctionProto m = input.readMessage( onnx.Onnx.FunctionProto.PARSER, extensionRegistry); if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); functions_.add(m); } else { functionsBuilder_.addMessage(m); } break; } // case 202 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private long irVersion_ ; /** *
       * The version of the IR this model targets. See Version enum above.
       * This field MUST be present.
       * 
* * optional int64 ir_version = 1; * @return Whether the irVersion field is set. */ @java.lang.Override public boolean hasIrVersion() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The version of the IR this model targets. See Version enum above.
       * This field MUST be present.
       * 
* * optional int64 ir_version = 1; * @return The irVersion. */ @java.lang.Override public long getIrVersion() { return irVersion_; } /** *
       * The version of the IR this model targets. See Version enum above.
       * This field MUST be present.
       * 
* * optional int64 ir_version = 1; * @param value The irVersion to set. * @return This builder for chaining. */ public Builder setIrVersion(long value) { irVersion_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The version of the IR this model targets. See Version enum above.
       * This field MUST be present.
       * 
* * optional int64 ir_version = 1; * @return This builder for chaining. */ public Builder clearIrVersion() { bitField0_ = (bitField0_ & ~0x00000001); irVersion_ = 0L; onChanged(); return this; } private java.util.List opsetImport_ = java.util.Collections.emptyList(); private void ensureOpsetImportIsMutable() { if (!((bitField0_ & 0x00000002) != 0)) { opsetImport_ = new java.util.ArrayList(opsetImport_); bitField0_ |= 0x00000002; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder> opsetImportBuilder_; /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public java.util.List getOpsetImportList() { if (opsetImportBuilder_ == null) { return java.util.Collections.unmodifiableList(opsetImport_); } else { return opsetImportBuilder_.getMessageList(); } } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public int getOpsetImportCount() { if (opsetImportBuilder_ == null) { return opsetImport_.size(); } else { return opsetImportBuilder_.getCount(); } } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public onnx.Onnx.OperatorSetIdProto getOpsetImport(int index) { if (opsetImportBuilder_ == null) { return opsetImport_.get(index); } else { return opsetImportBuilder_.getMessage(index); } } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder setOpsetImport( int index, onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.set(index, value); onChanged(); } else { opsetImportBuilder_.setMessage(index, value); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder setOpsetImport( int index, onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.set(index, builderForValue.build()); onChanged(); } else { opsetImportBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder addOpsetImport(onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.add(value); onChanged(); } else { opsetImportBuilder_.addMessage(value); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder addOpsetImport( int index, onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.add(index, value); onChanged(); } else { opsetImportBuilder_.addMessage(index, value); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder addOpsetImport( onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(builderForValue.build()); onChanged(); } else { opsetImportBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder addOpsetImport( int index, onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(index, builderForValue.build()); onChanged(); } else { opsetImportBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder addAllOpsetImport( java.lang.Iterable values) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, opsetImport_); onChanged(); } else { opsetImportBuilder_.addAllMessages(values); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder clearOpsetImport() { if (opsetImportBuilder_ == null) { opsetImport_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); } else { opsetImportBuilder_.clear(); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public Builder removeOpsetImport(int index) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.remove(index); onChanged(); } else { opsetImportBuilder_.remove(index); } return this; } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public onnx.Onnx.OperatorSetIdProto.Builder getOpsetImportBuilder( int index) { return getOpsetImportFieldBuilder().getBuilder(index); } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index) { if (opsetImportBuilder_ == null) { return opsetImport_.get(index); } else { return opsetImportBuilder_.getMessageOrBuilder(index); } } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public java.util.List getOpsetImportOrBuilderList() { if (opsetImportBuilder_ != null) { return opsetImportBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(opsetImport_); } } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public onnx.Onnx.OperatorSetIdProto.Builder addOpsetImportBuilder() { return getOpsetImportFieldBuilder().addBuilder( onnx.Onnx.OperatorSetIdProto.getDefaultInstance()); } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public onnx.Onnx.OperatorSetIdProto.Builder addOpsetImportBuilder( int index) { return getOpsetImportFieldBuilder().addBuilder( index, onnx.Onnx.OperatorSetIdProto.getDefaultInstance()); } /** *
       * The OperatorSets this model relies on.
       * All ModelProtos MUST have at least one entry that
       * specifies which version of the ONNX OperatorSet is
       * being imported.
       *
       * All nodes in the ModelProto's graph will bind against the operator
       * with the same-domain/same-op_type operator with the HIGHEST version
       * in the referenced operator sets.
       * 
* * repeated .onnx.OperatorSetIdProto opset_import = 8; */ public java.util.List getOpsetImportBuilderList() { return getOpsetImportFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder> getOpsetImportFieldBuilder() { if (opsetImportBuilder_ == null) { opsetImportBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder>( opsetImport_, ((bitField0_ & 0x00000002) != 0), getParentForChildren(), isClean()); opsetImport_ = null; } return opsetImportBuilder_; } private java.lang.Object producerName_ = ""; /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @return Whether the producerName field is set. */ public boolean hasProducerName() { return ((bitField0_ & 0x00000004) != 0); } /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @return The producerName. */ public java.lang.String getProducerName() { java.lang.Object ref = producerName_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { producerName_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @return The bytes for producerName. */ public com.google.protobuf.ByteString getProducerNameBytes() { java.lang.Object ref = producerName_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); producerName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @param value The producerName to set. * @return This builder for chaining. */ public Builder setProducerName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } producerName_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @return This builder for chaining. */ public Builder clearProducerName() { producerName_ = getDefaultInstance().getProducerName(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
       * The name of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_name = 2; * @param value The bytes for producerName to set. * @return This builder for chaining. */ public Builder setProducerNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } producerName_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } private java.lang.Object producerVersion_ = ""; /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @return Whether the producerVersion field is set. */ public boolean hasProducerVersion() { return ((bitField0_ & 0x00000008) != 0); } /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @return The producerVersion. */ public java.lang.String getProducerVersion() { java.lang.Object ref = producerVersion_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { producerVersion_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @return The bytes for producerVersion. */ public com.google.protobuf.ByteString getProducerVersionBytes() { java.lang.Object ref = producerVersion_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); producerVersion_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @param value The producerVersion to set. * @return This builder for chaining. */ public Builder setProducerVersion( java.lang.String value) { if (value == null) { throw new NullPointerException(); } producerVersion_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @return This builder for chaining. */ public Builder clearProducerVersion() { producerVersion_ = getDefaultInstance().getProducerVersion(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); return this; } /** *
       * The version of the framework or tool used to generate this model.
       * This field SHOULD be present to indicate which implementation/tool/framework
       * emitted the model.
       * 
* * optional string producer_version = 3; * @param value The bytes for producerVersion to set. * @return This builder for chaining. */ public Builder setProducerVersionBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } producerVersion_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } private java.lang.Object domain_ = ""; /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @return Whether the domain field is set. */ public boolean hasDomain() { return ((bitField0_ & 0x00000010) != 0); } /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @return The domain. */ public java.lang.String getDomain() { java.lang.Object ref = domain_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @return The bytes for domain. */ public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @param value The domain to set. * @return This builder for chaining. */ public Builder setDomain( java.lang.String value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @return This builder for chaining. */ public Builder clearDomain() { domain_ = getDefaultInstance().getDomain(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } /** *
       * Domain name of the model.
       * We use reverse domain names as name space indicators. For example:
       * `com.facebook.fair` or `com.microsoft.cognitiveservices`
       *
       * Together with `model_version` and GraphProto.name, this forms the unique identity of
       * the graph.
       * 
* * optional string domain = 4; * @param value The bytes for domain to set. * @return This builder for chaining. */ public Builder setDomainBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } private long modelVersion_ ; /** *
       * The version of the graph encoded. See Version enum below.
       * 
* * optional int64 model_version = 5; * @return Whether the modelVersion field is set. */ @java.lang.Override public boolean hasModelVersion() { return ((bitField0_ & 0x00000020) != 0); } /** *
       * The version of the graph encoded. See Version enum below.
       * 
* * optional int64 model_version = 5; * @return The modelVersion. */ @java.lang.Override public long getModelVersion() { return modelVersion_; } /** *
       * The version of the graph encoded. See Version enum below.
       * 
* * optional int64 model_version = 5; * @param value The modelVersion to set. * @return This builder for chaining. */ public Builder setModelVersion(long value) { modelVersion_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * The version of the graph encoded. See Version enum below.
       * 
* * optional int64 model_version = 5; * @return This builder for chaining. */ public Builder clearModelVersion() { bitField0_ = (bitField0_ & ~0x00000020); modelVersion_ = 0L; onChanged(); return this; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000040) != 0); } /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); return this; } /** *
       * A human-readable documentation for this model. Markdown is allowed.
       * 
* * optional string doc_string = 6; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } private onnx.Onnx.GraphProto graph_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> graphBuilder_; /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; * @return Whether the graph field is set. */ public boolean hasGraph() { return ((bitField0_ & 0x00000080) != 0); } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; * @return The graph. */ public onnx.Onnx.GraphProto getGraph() { if (graphBuilder_ == null) { return graph_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : graph_; } else { return graphBuilder_.getMessage(); } } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public Builder setGraph(onnx.Onnx.GraphProto value) { if (graphBuilder_ == null) { if (value == null) { throw new NullPointerException(); } graph_ = value; } else { graphBuilder_.setMessage(value); } bitField0_ |= 0x00000080; onChanged(); return this; } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public Builder setGraph( onnx.Onnx.GraphProto.Builder builderForValue) { if (graphBuilder_ == null) { graph_ = builderForValue.build(); } else { graphBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000080; onChanged(); return this; } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public Builder mergeGraph(onnx.Onnx.GraphProto value) { if (graphBuilder_ == null) { if (((bitField0_ & 0x00000080) != 0) && graph_ != null && graph_ != onnx.Onnx.GraphProto.getDefaultInstance()) { getGraphBuilder().mergeFrom(value); } else { graph_ = value; } } else { graphBuilder_.mergeFrom(value); } if (graph_ != null) { bitField0_ |= 0x00000080; onChanged(); } return this; } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public Builder clearGraph() { bitField0_ = (bitField0_ & ~0x00000080); graph_ = null; if (graphBuilder_ != null) { graphBuilder_.dispose(); graphBuilder_ = null; } onChanged(); return this; } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public onnx.Onnx.GraphProto.Builder getGraphBuilder() { bitField0_ |= 0x00000080; onChanged(); return getGraphFieldBuilder().getBuilder(); } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ public onnx.Onnx.GraphProtoOrBuilder getGraphOrBuilder() { if (graphBuilder_ != null) { return graphBuilder_.getMessageOrBuilder(); } else { return graph_ == null ? onnx.Onnx.GraphProto.getDefaultInstance() : graph_; } } /** *
       * The parameterized graph that is evaluated to execute the model.
       * 
* * optional .onnx.GraphProto graph = 7; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder> getGraphFieldBuilder() { if (graphBuilder_ == null) { graphBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.GraphProto, onnx.Onnx.GraphProto.Builder, onnx.Onnx.GraphProtoOrBuilder>( getGraph(), getParentForChildren(), isClean()); graph_ = null; } return graphBuilder_; } private java.util.List metadataProps_ = java.util.Collections.emptyList(); private void ensureMetadataPropsIsMutable() { if (!((bitField0_ & 0x00000100) != 0)) { metadataProps_ = new java.util.ArrayList(metadataProps_); bitField0_ |= 0x00000100; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> metadataPropsBuilder_; /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public java.util.List getMetadataPropsList() { if (metadataPropsBuilder_ == null) { return java.util.Collections.unmodifiableList(metadataProps_); } else { return metadataPropsBuilder_.getMessageList(); } } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public int getMetadataPropsCount() { if (metadataPropsBuilder_ == null) { return metadataProps_.size(); } else { return metadataPropsBuilder_.getCount(); } } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public onnx.Onnx.StringStringEntryProto getMetadataProps(int index) { if (metadataPropsBuilder_ == null) { return metadataProps_.get(index); } else { return metadataPropsBuilder_.getMessage(index); } } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder setMetadataProps( int index, onnx.Onnx.StringStringEntryProto value) { if (metadataPropsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetadataPropsIsMutable(); metadataProps_.set(index, value); onChanged(); } else { metadataPropsBuilder_.setMessage(index, value); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder setMetadataProps( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); metadataProps_.set(index, builderForValue.build()); onChanged(); } else { metadataPropsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder addMetadataProps(onnx.Onnx.StringStringEntryProto value) { if (metadataPropsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetadataPropsIsMutable(); metadataProps_.add(value); onChanged(); } else { metadataPropsBuilder_.addMessage(value); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder addMetadataProps( int index, onnx.Onnx.StringStringEntryProto value) { if (metadataPropsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetadataPropsIsMutable(); metadataProps_.add(index, value); onChanged(); } else { metadataPropsBuilder_.addMessage(index, value); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder addMetadataProps( onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); metadataProps_.add(builderForValue.build()); onChanged(); } else { metadataPropsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder addMetadataProps( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); metadataProps_.add(index, builderForValue.build()); onChanged(); } else { metadataPropsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder addAllMetadataProps( java.lang.Iterable values) { if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, metadataProps_); onChanged(); } else { metadataPropsBuilder_.addAllMessages(values); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder clearMetadataProps() { if (metadataPropsBuilder_ == null) { metadataProps_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000100); onChanged(); } else { metadataPropsBuilder_.clear(); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public Builder removeMetadataProps(int index) { if (metadataPropsBuilder_ == null) { ensureMetadataPropsIsMutable(); metadataProps_.remove(index); onChanged(); } else { metadataPropsBuilder_.remove(index); } return this; } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public onnx.Onnx.StringStringEntryProto.Builder getMetadataPropsBuilder( int index) { return getMetadataPropsFieldBuilder().getBuilder(index); } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public onnx.Onnx.StringStringEntryProtoOrBuilder getMetadataPropsOrBuilder( int index) { if (metadataPropsBuilder_ == null) { return metadataProps_.get(index); } else { return metadataPropsBuilder_.getMessageOrBuilder(index); } } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public java.util.List getMetadataPropsOrBuilderList() { if (metadataPropsBuilder_ != null) { return metadataPropsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(metadataProps_); } } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public onnx.Onnx.StringStringEntryProto.Builder addMetadataPropsBuilder() { return getMetadataPropsFieldBuilder().addBuilder( onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public onnx.Onnx.StringStringEntryProto.Builder addMetadataPropsBuilder( int index) { return getMetadataPropsFieldBuilder().addBuilder( index, onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Named metadata values; keys should be distinct.
       * 
* * repeated .onnx.StringStringEntryProto metadata_props = 14; */ public java.util.List getMetadataPropsBuilderList() { return getMetadataPropsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> getMetadataPropsFieldBuilder() { if (metadataPropsBuilder_ == null) { metadataPropsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder>( metadataProps_, ((bitField0_ & 0x00000100) != 0), getParentForChildren(), isClean()); metadataProps_ = null; } return metadataPropsBuilder_; } private java.util.List trainingInfo_ = java.util.Collections.emptyList(); private void ensureTrainingInfoIsMutable() { if (!((bitField0_ & 0x00000200) != 0)) { trainingInfo_ = new java.util.ArrayList(trainingInfo_); bitField0_ |= 0x00000200; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TrainingInfoProto, onnx.Onnx.TrainingInfoProto.Builder, onnx.Onnx.TrainingInfoProtoOrBuilder> trainingInfoBuilder_; /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public java.util.List getTrainingInfoList() { if (trainingInfoBuilder_ == null) { return java.util.Collections.unmodifiableList(trainingInfo_); } else { return trainingInfoBuilder_.getMessageList(); } } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public int getTrainingInfoCount() { if (trainingInfoBuilder_ == null) { return trainingInfo_.size(); } else { return trainingInfoBuilder_.getCount(); } } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public onnx.Onnx.TrainingInfoProto getTrainingInfo(int index) { if (trainingInfoBuilder_ == null) { return trainingInfo_.get(index); } else { return trainingInfoBuilder_.getMessage(index); } } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder setTrainingInfo( int index, onnx.Onnx.TrainingInfoProto value) { if (trainingInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTrainingInfoIsMutable(); trainingInfo_.set(index, value); onChanged(); } else { trainingInfoBuilder_.setMessage(index, value); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder setTrainingInfo( int index, onnx.Onnx.TrainingInfoProto.Builder builderForValue) { if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); trainingInfo_.set(index, builderForValue.build()); onChanged(); } else { trainingInfoBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder addTrainingInfo(onnx.Onnx.TrainingInfoProto value) { if (trainingInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTrainingInfoIsMutable(); trainingInfo_.add(value); onChanged(); } else { trainingInfoBuilder_.addMessage(value); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder addTrainingInfo( int index, onnx.Onnx.TrainingInfoProto value) { if (trainingInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTrainingInfoIsMutable(); trainingInfo_.add(index, value); onChanged(); } else { trainingInfoBuilder_.addMessage(index, value); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder addTrainingInfo( onnx.Onnx.TrainingInfoProto.Builder builderForValue) { if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); trainingInfo_.add(builderForValue.build()); onChanged(); } else { trainingInfoBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder addTrainingInfo( int index, onnx.Onnx.TrainingInfoProto.Builder builderForValue) { if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); trainingInfo_.add(index, builderForValue.build()); onChanged(); } else { trainingInfoBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder addAllTrainingInfo( java.lang.Iterable values) { if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, trainingInfo_); onChanged(); } else { trainingInfoBuilder_.addAllMessages(values); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder clearTrainingInfo() { if (trainingInfoBuilder_ == null) { trainingInfo_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000200); onChanged(); } else { trainingInfoBuilder_.clear(); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public Builder removeTrainingInfo(int index) { if (trainingInfoBuilder_ == null) { ensureTrainingInfoIsMutable(); trainingInfo_.remove(index); onChanged(); } else { trainingInfoBuilder_.remove(index); } return this; } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public onnx.Onnx.TrainingInfoProto.Builder getTrainingInfoBuilder( int index) { return getTrainingInfoFieldBuilder().getBuilder(index); } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public onnx.Onnx.TrainingInfoProtoOrBuilder getTrainingInfoOrBuilder( int index) { if (trainingInfoBuilder_ == null) { return trainingInfo_.get(index); } else { return trainingInfoBuilder_.getMessageOrBuilder(index); } } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public java.util.List getTrainingInfoOrBuilderList() { if (trainingInfoBuilder_ != null) { return trainingInfoBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(trainingInfo_); } } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public onnx.Onnx.TrainingInfoProto.Builder addTrainingInfoBuilder() { return getTrainingInfoFieldBuilder().addBuilder( onnx.Onnx.TrainingInfoProto.getDefaultInstance()); } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public onnx.Onnx.TrainingInfoProto.Builder addTrainingInfoBuilder( int index) { return getTrainingInfoFieldBuilder().addBuilder( index, onnx.Onnx.TrainingInfoProto.getDefaultInstance()); } /** *
       * Training-specific information. Sequentially executing all stored
       * `TrainingInfoProto.algorithm`s and assigning their outputs following
       * the corresponding `TrainingInfoProto.update_binding`s is one training
       * iteration. Similarly, to initialize the model
       * (as if training hasn't happened), the user should sequentially execute
       * all stored `TrainingInfoProto.initialization`s and assigns their outputs
       * using `TrainingInfoProto.initialization_binding`s.
       *
       * If this field is empty, the training behavior of the model is undefined.
       * 
* * repeated .onnx.TrainingInfoProto training_info = 20; */ public java.util.List getTrainingInfoBuilderList() { return getTrainingInfoFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TrainingInfoProto, onnx.Onnx.TrainingInfoProto.Builder, onnx.Onnx.TrainingInfoProtoOrBuilder> getTrainingInfoFieldBuilder() { if (trainingInfoBuilder_ == null) { trainingInfoBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TrainingInfoProto, onnx.Onnx.TrainingInfoProto.Builder, onnx.Onnx.TrainingInfoProtoOrBuilder>( trainingInfo_, ((bitField0_ & 0x00000200) != 0), getParentForChildren(), isClean()); trainingInfo_ = null; } return trainingInfoBuilder_; } private java.util.List functions_ = java.util.Collections.emptyList(); private void ensureFunctionsIsMutable() { if (!((bitField0_ & 0x00000400) != 0)) { functions_ = new java.util.ArrayList(functions_); bitField0_ |= 0x00000400; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.FunctionProto, onnx.Onnx.FunctionProto.Builder, onnx.Onnx.FunctionProtoOrBuilder> functionsBuilder_; /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public java.util.List getFunctionsList() { if (functionsBuilder_ == null) { return java.util.Collections.unmodifiableList(functions_); } else { return functionsBuilder_.getMessageList(); } } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public int getFunctionsCount() { if (functionsBuilder_ == null) { return functions_.size(); } else { return functionsBuilder_.getCount(); } } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public onnx.Onnx.FunctionProto getFunctions(int index) { if (functionsBuilder_ == null) { return functions_.get(index); } else { return functionsBuilder_.getMessage(index); } } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder setFunctions( int index, onnx.Onnx.FunctionProto value) { if (functionsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionsIsMutable(); functions_.set(index, value); onChanged(); } else { functionsBuilder_.setMessage(index, value); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder setFunctions( int index, onnx.Onnx.FunctionProto.Builder builderForValue) { if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); functions_.set(index, builderForValue.build()); onChanged(); } else { functionsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder addFunctions(onnx.Onnx.FunctionProto value) { if (functionsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionsIsMutable(); functions_.add(value); onChanged(); } else { functionsBuilder_.addMessage(value); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder addFunctions( int index, onnx.Onnx.FunctionProto value) { if (functionsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionsIsMutable(); functions_.add(index, value); onChanged(); } else { functionsBuilder_.addMessage(index, value); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder addFunctions( onnx.Onnx.FunctionProto.Builder builderForValue) { if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); functions_.add(builderForValue.build()); onChanged(); } else { functionsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder addFunctions( int index, onnx.Onnx.FunctionProto.Builder builderForValue) { if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); functions_.add(index, builderForValue.build()); onChanged(); } else { functionsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder addAllFunctions( java.lang.Iterable values) { if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, functions_); onChanged(); } else { functionsBuilder_.addAllMessages(values); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder clearFunctions() { if (functionsBuilder_ == null) { functions_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000400); onChanged(); } else { functionsBuilder_.clear(); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public Builder removeFunctions(int index) { if (functionsBuilder_ == null) { ensureFunctionsIsMutable(); functions_.remove(index); onChanged(); } else { functionsBuilder_.remove(index); } return this; } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public onnx.Onnx.FunctionProto.Builder getFunctionsBuilder( int index) { return getFunctionsFieldBuilder().getBuilder(index); } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public onnx.Onnx.FunctionProtoOrBuilder getFunctionsOrBuilder( int index) { if (functionsBuilder_ == null) { return functions_.get(index); } else { return functionsBuilder_.getMessageOrBuilder(index); } } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public java.util.List getFunctionsOrBuilderList() { if (functionsBuilder_ != null) { return functionsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(functions_); } } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public onnx.Onnx.FunctionProto.Builder addFunctionsBuilder() { return getFunctionsFieldBuilder().addBuilder( onnx.Onnx.FunctionProto.getDefaultInstance()); } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public onnx.Onnx.FunctionProto.Builder addFunctionsBuilder( int index) { return getFunctionsFieldBuilder().addBuilder( index, onnx.Onnx.FunctionProto.getDefaultInstance()); } /** *
       * A list of function protos local to the model.
       *
       * Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain".
       * In case of any conflicts the behavior (whether the model local functions are given higher priority,
       * or standard operator sets are given higher priotity or this is treated as error) is defined by
       * the runtimes.
       *
       * The operator sets imported by FunctionProto should be compatible with the ones
       * imported by ModelProto and other model local FunctionProtos.
       * Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto
       * or by 2 FunctionProtos then versions for the operator set may be different but,
       * the operator schema returned for op_type, domain, version combination
       * for both the versions should be same for every node in the function body.
       *
       * One FunctionProto can reference other FunctionProto in the model, however, recursive reference
       * is not allowed.
       * 
* * repeated .onnx.FunctionProto functions = 25; */ public java.util.List getFunctionsBuilderList() { return getFunctionsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.FunctionProto, onnx.Onnx.FunctionProto.Builder, onnx.Onnx.FunctionProtoOrBuilder> getFunctionsFieldBuilder() { if (functionsBuilder_ == null) { functionsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.FunctionProto, onnx.Onnx.FunctionProto.Builder, onnx.Onnx.FunctionProtoOrBuilder>( functions_, ((bitField0_ & 0x00000400) != 0), getParentForChildren(), isClean()); functions_ = null; } return functionsBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.ModelProto) } // @@protoc_insertion_point(class_scope:onnx.ModelProto) private static final onnx.Onnx.ModelProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.ModelProto(); } public static onnx.Onnx.ModelProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ModelProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.ModelProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface StringStringEntryProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.StringStringEntryProto) com.google.protobuf.MessageOrBuilder { /** * optional string key = 1; * @return Whether the key field is set. */ boolean hasKey(); /** * optional string key = 1; * @return The key. */ java.lang.String getKey(); /** * optional string key = 1; * @return The bytes for key. */ com.google.protobuf.ByteString getKeyBytes(); /** * optional string value = 2; * @return Whether the value field is set. */ boolean hasValue(); /** * optional string value = 2; * @return The value. */ java.lang.String getValue(); /** * optional string value = 2; * @return The bytes for value. */ com.google.protobuf.ByteString getValueBytes(); } /** *
   * StringStringEntryProto follows the pattern for cross-proto-version maps.
   * See https://developers.google.com/protocol-buffers/docs/proto3#maps
   * 
* * Protobuf type {@code onnx.StringStringEntryProto} */ public static final class StringStringEntryProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.StringStringEntryProto) StringStringEntryProtoOrBuilder { private static final long serialVersionUID = 0L; // Use StringStringEntryProto.newBuilder() to construct. private StringStringEntryProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private StringStringEntryProto() { key_ = ""; value_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new StringStringEntryProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_StringStringEntryProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_StringStringEntryProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.StringStringEntryProto.class, onnx.Onnx.StringStringEntryProto.Builder.class); } private int bitField0_; public static final int KEY_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object key_ = ""; /** * optional string key = 1; * @return Whether the key field is set. */ @java.lang.Override public boolean hasKey() { return ((bitField0_ & 0x00000001) != 0); } /** * optional string key = 1; * @return The key. */ @java.lang.Override public java.lang.String getKey() { java.lang.Object ref = key_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { key_ = s; } return s; } } /** * optional string key = 1; * @return The bytes for key. */ @java.lang.Override public com.google.protobuf.ByteString getKeyBytes() { java.lang.Object ref = key_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); key_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int VALUE_FIELD_NUMBER = 2; @SuppressWarnings("serial") private volatile java.lang.Object value_ = ""; /** * optional string value = 2; * @return Whether the value field is set. */ @java.lang.Override public boolean hasValue() { return ((bitField0_ & 0x00000002) != 0); } /** * optional string value = 2; * @return The value. */ @java.lang.Override public java.lang.String getValue() { java.lang.Object ref = value_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { value_ = s; } return s; } } /** * optional string value = 2; * @return The bytes for value. */ @java.lang.Override public com.google.protobuf.ByteString getValueBytes() { java.lang.Object ref = value_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); value_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, key_); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, value_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, key_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, value_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.StringStringEntryProto)) { return super.equals(obj); } onnx.Onnx.StringStringEntryProto other = (onnx.Onnx.StringStringEntryProto) obj; if (hasKey() != other.hasKey()) return false; if (hasKey()) { if (!getKey() .equals(other.getKey())) return false; } if (hasValue() != other.hasValue()) return false; if (hasValue()) { if (!getValue() .equals(other.getValue())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasKey()) { hash = (37 * hash) + KEY_FIELD_NUMBER; hash = (53 * hash) + getKey().hashCode(); } if (hasValue()) { hash = (37 * hash) + VALUE_FIELD_NUMBER; hash = (53 * hash) + getValue().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.StringStringEntryProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.StringStringEntryProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.StringStringEntryProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.StringStringEntryProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.StringStringEntryProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.StringStringEntryProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.StringStringEntryProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.StringStringEntryProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.StringStringEntryProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.StringStringEntryProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.StringStringEntryProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.StringStringEntryProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.StringStringEntryProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * StringStringEntryProto follows the pattern for cross-proto-version maps.
     * See https://developers.google.com/protocol-buffers/docs/proto3#maps
     * 
* * Protobuf type {@code onnx.StringStringEntryProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.StringStringEntryProto) onnx.Onnx.StringStringEntryProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_StringStringEntryProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_StringStringEntryProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.StringStringEntryProto.class, onnx.Onnx.StringStringEntryProto.Builder.class); } // Construct using onnx.Onnx.StringStringEntryProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; key_ = ""; value_ = ""; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_StringStringEntryProto_descriptor; } @java.lang.Override public onnx.Onnx.StringStringEntryProto getDefaultInstanceForType() { return onnx.Onnx.StringStringEntryProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.StringStringEntryProto build() { onnx.Onnx.StringStringEntryProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.StringStringEntryProto buildPartial() { onnx.Onnx.StringStringEntryProto result = new onnx.Onnx.StringStringEntryProto(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.StringStringEntryProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.key_ = key_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.value_ = value_; to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.StringStringEntryProto) { return mergeFrom((onnx.Onnx.StringStringEntryProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.StringStringEntryProto other) { if (other == onnx.Onnx.StringStringEntryProto.getDefaultInstance()) return this; if (other.hasKey()) { key_ = other.key_; bitField0_ |= 0x00000001; onChanged(); } if (other.hasValue()) { value_ = other.value_; bitField0_ |= 0x00000002; onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { key_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 18: { value_ = input.readBytes(); bitField0_ |= 0x00000002; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object key_ = ""; /** * optional string key = 1; * @return Whether the key field is set. */ public boolean hasKey() { return ((bitField0_ & 0x00000001) != 0); } /** * optional string key = 1; * @return The key. */ public java.lang.String getKey() { java.lang.Object ref = key_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { key_ = s; } return s; } else { return (java.lang.String) ref; } } /** * optional string key = 1; * @return The bytes for key. */ public com.google.protobuf.ByteString getKeyBytes() { java.lang.Object ref = key_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); key_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * optional string key = 1; * @param value The key to set. * @return This builder for chaining. */ public Builder setKey( java.lang.String value) { if (value == null) { throw new NullPointerException(); } key_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * optional string key = 1; * @return This builder for chaining. */ public Builder clearKey() { key_ = getDefaultInstance().getKey(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * optional string key = 1; * @param value The bytes for key to set. * @return This builder for chaining. */ public Builder setKeyBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } key_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private java.lang.Object value_ = ""; /** * optional string value = 2; * @return Whether the value field is set. */ public boolean hasValue() { return ((bitField0_ & 0x00000002) != 0); } /** * optional string value = 2; * @return The value. */ public java.lang.String getValue() { java.lang.Object ref = value_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { value_ = s; } return s; } else { return (java.lang.String) ref; } } /** * optional string value = 2; * @return The bytes for value. */ public com.google.protobuf.ByteString getValueBytes() { java.lang.Object ref = value_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); value_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * optional string value = 2; * @param value The value to set. * @return This builder for chaining. */ public Builder setValue( java.lang.String value) { if (value == null) { throw new NullPointerException(); } value_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional string value = 2; * @return This builder for chaining. */ public Builder clearValue() { value_ = getDefaultInstance().getValue(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** * optional string value = 2; * @param value The bytes for value to set. * @return This builder for chaining. */ public Builder setValueBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } value_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.StringStringEntryProto) } // @@protoc_insertion_point(class_scope:onnx.StringStringEntryProto) private static final onnx.Onnx.StringStringEntryProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.StringStringEntryProto(); } public static onnx.Onnx.StringStringEntryProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public StringStringEntryProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.StringStringEntryProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TensorAnnotationOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TensorAnnotation) com.google.protobuf.MessageOrBuilder { /** * optional string tensor_name = 1; * @return Whether the tensorName field is set. */ boolean hasTensorName(); /** * optional string tensor_name = 1; * @return The tensorName. */ java.lang.String getTensorName(); /** * optional string tensor_name = 1; * @return The bytes for tensorName. */ com.google.protobuf.ByteString getTensorNameBytes(); /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ java.util.List getQuantParameterTensorNamesList(); /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ onnx.Onnx.StringStringEntryProto getQuantParameterTensorNames(int index); /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ int getQuantParameterTensorNamesCount(); /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ java.util.List getQuantParameterTensorNamesOrBuilderList(); /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ onnx.Onnx.StringStringEntryProtoOrBuilder getQuantParameterTensorNamesOrBuilder( int index); } /** * Protobuf type {@code onnx.TensorAnnotation} */ public static final class TensorAnnotation extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TensorAnnotation) TensorAnnotationOrBuilder { private static final long serialVersionUID = 0L; // Use TensorAnnotation.newBuilder() to construct. private TensorAnnotation(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TensorAnnotation() { tensorName_ = ""; quantParameterTensorNames_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new TensorAnnotation(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorAnnotation.class, onnx.Onnx.TensorAnnotation.Builder.class); } private int bitField0_; public static final int TENSOR_NAME_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object tensorName_ = ""; /** * optional string tensor_name = 1; * @return Whether the tensorName field is set. */ @java.lang.Override public boolean hasTensorName() { return ((bitField0_ & 0x00000001) != 0); } /** * optional string tensor_name = 1; * @return The tensorName. */ @java.lang.Override public java.lang.String getTensorName() { java.lang.Object ref = tensorName_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { tensorName_ = s; } return s; } } /** * optional string tensor_name = 1; * @return The bytes for tensorName. */ @java.lang.Override public com.google.protobuf.ByteString getTensorNameBytes() { java.lang.Object ref = tensorName_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); tensorName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int QUANT_PARAMETER_TENSOR_NAMES_FIELD_NUMBER = 2; @SuppressWarnings("serial") private java.util.List quantParameterTensorNames_; /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ @java.lang.Override public java.util.List getQuantParameterTensorNamesList() { return quantParameterTensorNames_; } /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ @java.lang.Override public java.util.List getQuantParameterTensorNamesOrBuilderList() { return quantParameterTensorNames_; } /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ @java.lang.Override public int getQuantParameterTensorNamesCount() { return quantParameterTensorNames_.size(); } /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ @java.lang.Override public onnx.Onnx.StringStringEntryProto getQuantParameterTensorNames(int index) { return quantParameterTensorNames_.get(index); } /** *
     * <key, value> pairs to annotate tensor specified by <tensor_name> above.
     * The keys used in the mapping below must be pre-defined in ONNX spec.
     * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
     * quantization parameter keys.
     * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ @java.lang.Override public onnx.Onnx.StringStringEntryProtoOrBuilder getQuantParameterTensorNamesOrBuilder( int index) { return quantParameterTensorNames_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, tensorName_); } for (int i = 0; i < quantParameterTensorNames_.size(); i++) { output.writeMessage(2, quantParameterTensorNames_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, tensorName_); } for (int i = 0; i < quantParameterTensorNames_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, quantParameterTensorNames_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TensorAnnotation)) { return super.equals(obj); } onnx.Onnx.TensorAnnotation other = (onnx.Onnx.TensorAnnotation) obj; if (hasTensorName() != other.hasTensorName()) return false; if (hasTensorName()) { if (!getTensorName() .equals(other.getTensorName())) return false; } if (!getQuantParameterTensorNamesList() .equals(other.getQuantParameterTensorNamesList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasTensorName()) { hash = (37 * hash) + TENSOR_NAME_FIELD_NUMBER; hash = (53 * hash) + getTensorName().hashCode(); } if (getQuantParameterTensorNamesCount() > 0) { hash = (37 * hash) + QUANT_PARAMETER_TENSOR_NAMES_FIELD_NUMBER; hash = (53 * hash) + getQuantParameterTensorNamesList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TensorAnnotation parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorAnnotation parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorAnnotation parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorAnnotation parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorAnnotation parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorAnnotation parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorAnnotation parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorAnnotation parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorAnnotation parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TensorAnnotation parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorAnnotation parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorAnnotation parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TensorAnnotation prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code onnx.TensorAnnotation} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TensorAnnotation) onnx.Onnx.TensorAnnotationOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorAnnotation.class, onnx.Onnx.TensorAnnotation.Builder.class); } // Construct using onnx.Onnx.TensorAnnotation.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; tensorName_ = ""; if (quantParameterTensorNamesBuilder_ == null) { quantParameterTensorNames_ = java.util.Collections.emptyList(); } else { quantParameterTensorNames_ = null; quantParameterTensorNamesBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000002); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TensorAnnotation_descriptor; } @java.lang.Override public onnx.Onnx.TensorAnnotation getDefaultInstanceForType() { return onnx.Onnx.TensorAnnotation.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TensorAnnotation build() { onnx.Onnx.TensorAnnotation result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TensorAnnotation buildPartial() { onnx.Onnx.TensorAnnotation result = new onnx.Onnx.TensorAnnotation(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.TensorAnnotation result) { if (quantParameterTensorNamesBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0)) { quantParameterTensorNames_ = java.util.Collections.unmodifiableList(quantParameterTensorNames_); bitField0_ = (bitField0_ & ~0x00000002); } result.quantParameterTensorNames_ = quantParameterTensorNames_; } else { result.quantParameterTensorNames_ = quantParameterTensorNamesBuilder_.build(); } } private void buildPartial0(onnx.Onnx.TensorAnnotation result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.tensorName_ = tensorName_; to_bitField0_ |= 0x00000001; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TensorAnnotation) { return mergeFrom((onnx.Onnx.TensorAnnotation)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TensorAnnotation other) { if (other == onnx.Onnx.TensorAnnotation.getDefaultInstance()) return this; if (other.hasTensorName()) { tensorName_ = other.tensorName_; bitField0_ |= 0x00000001; onChanged(); } if (quantParameterTensorNamesBuilder_ == null) { if (!other.quantParameterTensorNames_.isEmpty()) { if (quantParameterTensorNames_.isEmpty()) { quantParameterTensorNames_ = other.quantParameterTensorNames_; bitField0_ = (bitField0_ & ~0x00000002); } else { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.addAll(other.quantParameterTensorNames_); } onChanged(); } } else { if (!other.quantParameterTensorNames_.isEmpty()) { if (quantParameterTensorNamesBuilder_.isEmpty()) { quantParameterTensorNamesBuilder_.dispose(); quantParameterTensorNamesBuilder_ = null; quantParameterTensorNames_ = other.quantParameterTensorNames_; bitField0_ = (bitField0_ & ~0x00000002); quantParameterTensorNamesBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getQuantParameterTensorNamesFieldBuilder() : null; } else { quantParameterTensorNamesBuilder_.addAllMessages(other.quantParameterTensorNames_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { tensorName_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 18: { onnx.Onnx.StringStringEntryProto m = input.readMessage( onnx.Onnx.StringStringEntryProto.PARSER, extensionRegistry); if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.add(m); } else { quantParameterTensorNamesBuilder_.addMessage(m); } break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object tensorName_ = ""; /** * optional string tensor_name = 1; * @return Whether the tensorName field is set. */ public boolean hasTensorName() { return ((bitField0_ & 0x00000001) != 0); } /** * optional string tensor_name = 1; * @return The tensorName. */ public java.lang.String getTensorName() { java.lang.Object ref = tensorName_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { tensorName_ = s; } return s; } else { return (java.lang.String) ref; } } /** * optional string tensor_name = 1; * @return The bytes for tensorName. */ public com.google.protobuf.ByteString getTensorNameBytes() { java.lang.Object ref = tensorName_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); tensorName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * optional string tensor_name = 1; * @param value The tensorName to set. * @return This builder for chaining. */ public Builder setTensorName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } tensorName_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * optional string tensor_name = 1; * @return This builder for chaining. */ public Builder clearTensorName() { tensorName_ = getDefaultInstance().getTensorName(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * optional string tensor_name = 1; * @param value The bytes for tensorName to set. * @return This builder for chaining. */ public Builder setTensorNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } tensorName_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private java.util.List quantParameterTensorNames_ = java.util.Collections.emptyList(); private void ensureQuantParameterTensorNamesIsMutable() { if (!((bitField0_ & 0x00000002) != 0)) { quantParameterTensorNames_ = new java.util.ArrayList(quantParameterTensorNames_); bitField0_ |= 0x00000002; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> quantParameterTensorNamesBuilder_; /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public java.util.List getQuantParameterTensorNamesList() { if (quantParameterTensorNamesBuilder_ == null) { return java.util.Collections.unmodifiableList(quantParameterTensorNames_); } else { return quantParameterTensorNamesBuilder_.getMessageList(); } } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public int getQuantParameterTensorNamesCount() { if (quantParameterTensorNamesBuilder_ == null) { return quantParameterTensorNames_.size(); } else { return quantParameterTensorNamesBuilder_.getCount(); } } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public onnx.Onnx.StringStringEntryProto getQuantParameterTensorNames(int index) { if (quantParameterTensorNamesBuilder_ == null) { return quantParameterTensorNames_.get(index); } else { return quantParameterTensorNamesBuilder_.getMessage(index); } } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder setQuantParameterTensorNames( int index, onnx.Onnx.StringStringEntryProto value) { if (quantParameterTensorNamesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.set(index, value); onChanged(); } else { quantParameterTensorNamesBuilder_.setMessage(index, value); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder setQuantParameterTensorNames( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.set(index, builderForValue.build()); onChanged(); } else { quantParameterTensorNamesBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder addQuantParameterTensorNames(onnx.Onnx.StringStringEntryProto value) { if (quantParameterTensorNamesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.add(value); onChanged(); } else { quantParameterTensorNamesBuilder_.addMessage(value); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder addQuantParameterTensorNames( int index, onnx.Onnx.StringStringEntryProto value) { if (quantParameterTensorNamesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.add(index, value); onChanged(); } else { quantParameterTensorNamesBuilder_.addMessage(index, value); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder addQuantParameterTensorNames( onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.add(builderForValue.build()); onChanged(); } else { quantParameterTensorNamesBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder addQuantParameterTensorNames( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.add(index, builderForValue.build()); onChanged(); } else { quantParameterTensorNamesBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder addAllQuantParameterTensorNames( java.lang.Iterable values) { if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, quantParameterTensorNames_); onChanged(); } else { quantParameterTensorNamesBuilder_.addAllMessages(values); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder clearQuantParameterTensorNames() { if (quantParameterTensorNamesBuilder_ == null) { quantParameterTensorNames_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); } else { quantParameterTensorNamesBuilder_.clear(); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public Builder removeQuantParameterTensorNames(int index) { if (quantParameterTensorNamesBuilder_ == null) { ensureQuantParameterTensorNamesIsMutable(); quantParameterTensorNames_.remove(index); onChanged(); } else { quantParameterTensorNamesBuilder_.remove(index); } return this; } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public onnx.Onnx.StringStringEntryProto.Builder getQuantParameterTensorNamesBuilder( int index) { return getQuantParameterTensorNamesFieldBuilder().getBuilder(index); } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public onnx.Onnx.StringStringEntryProtoOrBuilder getQuantParameterTensorNamesOrBuilder( int index) { if (quantParameterTensorNamesBuilder_ == null) { return quantParameterTensorNames_.get(index); } else { return quantParameterTensorNamesBuilder_.getMessageOrBuilder(index); } } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public java.util.List getQuantParameterTensorNamesOrBuilderList() { if (quantParameterTensorNamesBuilder_ != null) { return quantParameterTensorNamesBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(quantParameterTensorNames_); } } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public onnx.Onnx.StringStringEntryProto.Builder addQuantParameterTensorNamesBuilder() { return getQuantParameterTensorNamesFieldBuilder().addBuilder( onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public onnx.Onnx.StringStringEntryProto.Builder addQuantParameterTensorNamesBuilder( int index) { return getQuantParameterTensorNamesFieldBuilder().addBuilder( index, onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * <key, value> pairs to annotate tensor specified by <tensor_name> above.
       * The keys used in the mapping below must be pre-defined in ONNX spec.
       * For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
       * quantization parameter keys.
       * 
* * repeated .onnx.StringStringEntryProto quant_parameter_tensor_names = 2; */ public java.util.List getQuantParameterTensorNamesBuilderList() { return getQuantParameterTensorNamesFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> getQuantParameterTensorNamesFieldBuilder() { if (quantParameterTensorNamesBuilder_ == null) { quantParameterTensorNamesBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder>( quantParameterTensorNames_, ((bitField0_ & 0x00000002) != 0), getParentForChildren(), isClean()); quantParameterTensorNames_ = null; } return quantParameterTensorNamesBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TensorAnnotation) } // @@protoc_insertion_point(class_scope:onnx.TensorAnnotation) private static final onnx.Onnx.TensorAnnotation DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TensorAnnotation(); } public static onnx.Onnx.TensorAnnotation getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TensorAnnotation parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TensorAnnotation getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface GraphProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.GraphProto) com.google.protobuf.MessageOrBuilder { /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ java.util.List getNodeList(); /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ onnx.Onnx.NodeProto getNode(int index); /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ int getNodeCount(); /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ java.util.List getNodeOrBuilderList(); /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index); /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return Whether the name field is set. */ boolean hasName(); /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return The name. */ java.lang.String getName(); /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ java.util.List getInitializerList(); /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ onnx.Onnx.TensorProto getInitializer(int index); /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ int getInitializerCount(); /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ java.util.List getInitializerOrBuilderList(); /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ onnx.Onnx.TensorProtoOrBuilder getInitializerOrBuilder( int index); /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ java.util.List getSparseInitializerList(); /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ onnx.Onnx.SparseTensorProto getSparseInitializer(int index); /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ int getSparseInitializerCount(); /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ java.util.List getSparseInitializerOrBuilderList(); /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ onnx.Onnx.SparseTensorProtoOrBuilder getSparseInitializerOrBuilder( int index); /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ java.util.List getInputList(); /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ onnx.Onnx.ValueInfoProto getInput(int index); /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ int getInputCount(); /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ java.util.List getInputOrBuilderList(); /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ onnx.Onnx.ValueInfoProtoOrBuilder getInputOrBuilder( int index); /** * repeated .onnx.ValueInfoProto output = 12; */ java.util.List getOutputList(); /** * repeated .onnx.ValueInfoProto output = 12; */ onnx.Onnx.ValueInfoProto getOutput(int index); /** * repeated .onnx.ValueInfoProto output = 12; */ int getOutputCount(); /** * repeated .onnx.ValueInfoProto output = 12; */ java.util.List getOutputOrBuilderList(); /** * repeated .onnx.ValueInfoProto output = 12; */ onnx.Onnx.ValueInfoProtoOrBuilder getOutputOrBuilder( int index); /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ java.util.List getValueInfoList(); /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ onnx.Onnx.ValueInfoProto getValueInfo(int index); /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ int getValueInfoCount(); /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ java.util.List getValueInfoOrBuilderList(); /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ onnx.Onnx.ValueInfoProtoOrBuilder getValueInfoOrBuilder( int index); /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ java.util.List getQuantizationAnnotationList(); /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ onnx.Onnx.TensorAnnotation getQuantizationAnnotation(int index); /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ int getQuantizationAnnotationCount(); /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ java.util.List getQuantizationAnnotationOrBuilderList(); /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ onnx.Onnx.TensorAnnotationOrBuilder getQuantizationAnnotationOrBuilder( int index); } /** *
   * Graphs
   *
   * A graph defines the computational logic of a model and is comprised of a parameterized
   * list of nodes that form a directed acyclic graph based on their inputs and outputs.
   * This is the equivalent of the "network" or "graph" in many deep learning
   * frameworks.
   * 
* * Protobuf type {@code onnx.GraphProto} */ public static final class GraphProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.GraphProto) GraphProtoOrBuilder { private static final long serialVersionUID = 0L; // Use GraphProto.newBuilder() to construct. private GraphProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private GraphProto() { node_ = java.util.Collections.emptyList(); name_ = ""; initializer_ = java.util.Collections.emptyList(); sparseInitializer_ = java.util.Collections.emptyList(); docString_ = ""; input_ = java.util.Collections.emptyList(); output_ = java.util.Collections.emptyList(); valueInfo_ = java.util.Collections.emptyList(); quantizationAnnotation_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new GraphProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_GraphProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_GraphProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.GraphProto.class, onnx.Onnx.GraphProto.Builder.class); } private int bitField0_; public static final int NODE_FIELD_NUMBER = 1; @SuppressWarnings("serial") private java.util.List node_; /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ @java.lang.Override public java.util.List getNodeList() { return node_; } /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ @java.lang.Override public java.util.List getNodeOrBuilderList() { return node_; } /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ @java.lang.Override public int getNodeCount() { return node_.size(); } /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ @java.lang.Override public onnx.Onnx.NodeProto getNode(int index) { return node_.get(index); } /** *
     * The nodes in the graph, sorted topologically.
     * 
* * repeated .onnx.NodeProto node = 1; */ @java.lang.Override public onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index) { return node_.get(index); } public static final int NAME_FIELD_NUMBER = 2; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * The name of the graph.
     * 
* * optional string name = 2; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int INITIALIZER_FIELD_NUMBER = 5; @SuppressWarnings("serial") private java.util.List initializer_; /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ @java.lang.Override public java.util.List getInitializerList() { return initializer_; } /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ @java.lang.Override public java.util.List getInitializerOrBuilderList() { return initializer_; } /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ @java.lang.Override public int getInitializerCount() { return initializer_.size(); } /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ @java.lang.Override public onnx.Onnx.TensorProto getInitializer(int index) { return initializer_.get(index); } /** *
     * A list of named tensor values, used to specify constant inputs of the graph.
     * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
     * The name MUST be unique across both initializer and sparse_initializer,
     * but the name MAY also appear in the input list.
     * 
* * repeated .onnx.TensorProto initializer = 5; */ @java.lang.Override public onnx.Onnx.TensorProtoOrBuilder getInitializerOrBuilder( int index) { return initializer_.get(index); } public static final int SPARSE_INITIALIZER_FIELD_NUMBER = 15; @SuppressWarnings("serial") private java.util.List sparseInitializer_; /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ @java.lang.Override public java.util.List getSparseInitializerList() { return sparseInitializer_; } /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ @java.lang.Override public java.util.List getSparseInitializerOrBuilderList() { return sparseInitializer_; } /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ @java.lang.Override public int getSparseInitializerCount() { return sparseInitializer_.size(); } /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ @java.lang.Override public onnx.Onnx.SparseTensorProto getSparseInitializer(int index) { return sparseInitializer_.get(index); } /** *
     * Initializers (see above) stored in sparse format.
     * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ @java.lang.Override public onnx.Onnx.SparseTensorProtoOrBuilder getSparseInitializerOrBuilder( int index) { return sparseInitializer_.get(index); } public static final int DOC_STRING_FIELD_NUMBER = 10; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this graph. Markdown is allowed.
     * 
* * optional string doc_string = 10; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int INPUT_FIELD_NUMBER = 11; @SuppressWarnings("serial") private java.util.List input_; /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ @java.lang.Override public java.util.List getInputList() { return input_; } /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ @java.lang.Override public java.util.List getInputOrBuilderList() { return input_; } /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ @java.lang.Override public int getInputCount() { return input_.size(); } /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ @java.lang.Override public onnx.Onnx.ValueInfoProto getInput(int index) { return input_.get(index); } /** *
     * The inputs and outputs of the graph.
     * 
* * repeated .onnx.ValueInfoProto input = 11; */ @java.lang.Override public onnx.Onnx.ValueInfoProtoOrBuilder getInputOrBuilder( int index) { return input_.get(index); } public static final int OUTPUT_FIELD_NUMBER = 12; @SuppressWarnings("serial") private java.util.List output_; /** * repeated .onnx.ValueInfoProto output = 12; */ @java.lang.Override public java.util.List getOutputList() { return output_; } /** * repeated .onnx.ValueInfoProto output = 12; */ @java.lang.Override public java.util.List getOutputOrBuilderList() { return output_; } /** * repeated .onnx.ValueInfoProto output = 12; */ @java.lang.Override public int getOutputCount() { return output_.size(); } /** * repeated .onnx.ValueInfoProto output = 12; */ @java.lang.Override public onnx.Onnx.ValueInfoProto getOutput(int index) { return output_.get(index); } /** * repeated .onnx.ValueInfoProto output = 12; */ @java.lang.Override public onnx.Onnx.ValueInfoProtoOrBuilder getOutputOrBuilder( int index) { return output_.get(index); } public static final int VALUE_INFO_FIELD_NUMBER = 13; @SuppressWarnings("serial") private java.util.List valueInfo_; /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ @java.lang.Override public java.util.List getValueInfoList() { return valueInfo_; } /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ @java.lang.Override public java.util.List getValueInfoOrBuilderList() { return valueInfo_; } /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ @java.lang.Override public int getValueInfoCount() { return valueInfo_.size(); } /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ @java.lang.Override public onnx.Onnx.ValueInfoProto getValueInfo(int index) { return valueInfo_.get(index); } /** *
     * Information for the values in the graph. The ValueInfoProto.name's
     * must be distinct. It is optional for a value to appear in value_info list.
     * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ @java.lang.Override public onnx.Onnx.ValueInfoProtoOrBuilder getValueInfoOrBuilder( int index) { return valueInfo_.get(index); } public static final int QUANTIZATION_ANNOTATION_FIELD_NUMBER = 14; @SuppressWarnings("serial") private java.util.List quantizationAnnotation_; /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ @java.lang.Override public java.util.List getQuantizationAnnotationList() { return quantizationAnnotation_; } /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ @java.lang.Override public java.util.List getQuantizationAnnotationOrBuilderList() { return quantizationAnnotation_; } /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ @java.lang.Override public int getQuantizationAnnotationCount() { return quantizationAnnotation_.size(); } /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ @java.lang.Override public onnx.Onnx.TensorAnnotation getQuantizationAnnotation(int index) { return quantizationAnnotation_.get(index); } /** *
     * This field carries information to indicate the mapping among a tensor and its
     * quantization parameter tensors. For example:
     * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
     * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
     * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ @java.lang.Override public onnx.Onnx.TensorAnnotationOrBuilder getQuantizationAnnotationOrBuilder( int index) { return quantizationAnnotation_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < node_.size(); i++) { output.writeMessage(1, node_.get(i)); } if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, name_); } for (int i = 0; i < initializer_.size(); i++) { output.writeMessage(5, initializer_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 10, docString_); } for (int i = 0; i < input_.size(); i++) { output.writeMessage(11, input_.get(i)); } for (int i = 0; i < output_.size(); i++) { output.writeMessage(12, output_.get(i)); } for (int i = 0; i < valueInfo_.size(); i++) { output.writeMessage(13, valueInfo_.get(i)); } for (int i = 0; i < quantizationAnnotation_.size(); i++) { output.writeMessage(14, quantizationAnnotation_.get(i)); } for (int i = 0; i < sparseInitializer_.size(); i++) { output.writeMessage(15, sparseInitializer_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; for (int i = 0; i < node_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, node_.get(i)); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, name_); } for (int i = 0; i < initializer_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, initializer_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(10, docString_); } for (int i = 0; i < input_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(11, input_.get(i)); } for (int i = 0; i < output_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(12, output_.get(i)); } for (int i = 0; i < valueInfo_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(13, valueInfo_.get(i)); } for (int i = 0; i < quantizationAnnotation_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(14, quantizationAnnotation_.get(i)); } for (int i = 0; i < sparseInitializer_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(15, sparseInitializer_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.GraphProto)) { return super.equals(obj); } onnx.Onnx.GraphProto other = (onnx.Onnx.GraphProto) obj; if (!getNodeList() .equals(other.getNodeList())) return false; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (!getInitializerList() .equals(other.getInitializerList())) return false; if (!getSparseInitializerList() .equals(other.getSparseInitializerList())) return false; if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (!getInputList() .equals(other.getInputList())) return false; if (!getOutputList() .equals(other.getOutputList())) return false; if (!getValueInfoList() .equals(other.getValueInfoList())) return false; if (!getQuantizationAnnotationList() .equals(other.getQuantizationAnnotationList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getNodeCount() > 0) { hash = (37 * hash) + NODE_FIELD_NUMBER; hash = (53 * hash) + getNodeList().hashCode(); } if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (getInitializerCount() > 0) { hash = (37 * hash) + INITIALIZER_FIELD_NUMBER; hash = (53 * hash) + getInitializerList().hashCode(); } if (getSparseInitializerCount() > 0) { hash = (37 * hash) + SPARSE_INITIALIZER_FIELD_NUMBER; hash = (53 * hash) + getSparseInitializerList().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } if (getInputCount() > 0) { hash = (37 * hash) + INPUT_FIELD_NUMBER; hash = (53 * hash) + getInputList().hashCode(); } if (getOutputCount() > 0) { hash = (37 * hash) + OUTPUT_FIELD_NUMBER; hash = (53 * hash) + getOutputList().hashCode(); } if (getValueInfoCount() > 0) { hash = (37 * hash) + VALUE_INFO_FIELD_NUMBER; hash = (53 * hash) + getValueInfoList().hashCode(); } if (getQuantizationAnnotationCount() > 0) { hash = (37 * hash) + QUANTIZATION_ANNOTATION_FIELD_NUMBER; hash = (53 * hash) + getQuantizationAnnotationList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.GraphProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.GraphProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.GraphProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.GraphProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.GraphProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.GraphProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.GraphProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.GraphProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.GraphProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.GraphProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.GraphProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.GraphProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.GraphProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Graphs
     *
     * A graph defines the computational logic of a model and is comprised of a parameterized
     * list of nodes that form a directed acyclic graph based on their inputs and outputs.
     * This is the equivalent of the "network" or "graph" in many deep learning
     * frameworks.
     * 
* * Protobuf type {@code onnx.GraphProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.GraphProto) onnx.Onnx.GraphProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_GraphProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_GraphProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.GraphProto.class, onnx.Onnx.GraphProto.Builder.class); } // Construct using onnx.Onnx.GraphProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (nodeBuilder_ == null) { node_ = java.util.Collections.emptyList(); } else { node_ = null; nodeBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000001); name_ = ""; if (initializerBuilder_ == null) { initializer_ = java.util.Collections.emptyList(); } else { initializer_ = null; initializerBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000004); if (sparseInitializerBuilder_ == null) { sparseInitializer_ = java.util.Collections.emptyList(); } else { sparseInitializer_ = null; sparseInitializerBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); docString_ = ""; if (inputBuilder_ == null) { input_ = java.util.Collections.emptyList(); } else { input_ = null; inputBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); if (outputBuilder_ == null) { output_ = java.util.Collections.emptyList(); } else { output_ = null; outputBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000040); if (valueInfoBuilder_ == null) { valueInfo_ = java.util.Collections.emptyList(); } else { valueInfo_ = null; valueInfoBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000080); if (quantizationAnnotationBuilder_ == null) { quantizationAnnotation_ = java.util.Collections.emptyList(); } else { quantizationAnnotation_ = null; quantizationAnnotationBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000100); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_GraphProto_descriptor; } @java.lang.Override public onnx.Onnx.GraphProto getDefaultInstanceForType() { return onnx.Onnx.GraphProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.GraphProto build() { onnx.Onnx.GraphProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.GraphProto buildPartial() { onnx.Onnx.GraphProto result = new onnx.Onnx.GraphProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.GraphProto result) { if (nodeBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0)) { node_ = java.util.Collections.unmodifiableList(node_); bitField0_ = (bitField0_ & ~0x00000001); } result.node_ = node_; } else { result.node_ = nodeBuilder_.build(); } if (initializerBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0)) { initializer_ = java.util.Collections.unmodifiableList(initializer_); bitField0_ = (bitField0_ & ~0x00000004); } result.initializer_ = initializer_; } else { result.initializer_ = initializerBuilder_.build(); } if (sparseInitializerBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { sparseInitializer_ = java.util.Collections.unmodifiableList(sparseInitializer_); bitField0_ = (bitField0_ & ~0x00000008); } result.sparseInitializer_ = sparseInitializer_; } else { result.sparseInitializer_ = sparseInitializerBuilder_.build(); } if (inputBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { input_ = java.util.Collections.unmodifiableList(input_); bitField0_ = (bitField0_ & ~0x00000020); } result.input_ = input_; } else { result.input_ = inputBuilder_.build(); } if (outputBuilder_ == null) { if (((bitField0_ & 0x00000040) != 0)) { output_ = java.util.Collections.unmodifiableList(output_); bitField0_ = (bitField0_ & ~0x00000040); } result.output_ = output_; } else { result.output_ = outputBuilder_.build(); } if (valueInfoBuilder_ == null) { if (((bitField0_ & 0x00000080) != 0)) { valueInfo_ = java.util.Collections.unmodifiableList(valueInfo_); bitField0_ = (bitField0_ & ~0x00000080); } result.valueInfo_ = valueInfo_; } else { result.valueInfo_ = valueInfoBuilder_.build(); } if (quantizationAnnotationBuilder_ == null) { if (((bitField0_ & 0x00000100) != 0)) { quantizationAnnotation_ = java.util.Collections.unmodifiableList(quantizationAnnotation_); bitField0_ = (bitField0_ & ~0x00000100); } result.quantizationAnnotation_ = quantizationAnnotation_; } else { result.quantizationAnnotation_ = quantizationAnnotationBuilder_.build(); } } private void buildPartial0(onnx.Onnx.GraphProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000002) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000010) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.GraphProto) { return mergeFrom((onnx.Onnx.GraphProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.GraphProto other) { if (other == onnx.Onnx.GraphProto.getDefaultInstance()) return this; if (nodeBuilder_ == null) { if (!other.node_.isEmpty()) { if (node_.isEmpty()) { node_ = other.node_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureNodeIsMutable(); node_.addAll(other.node_); } onChanged(); } } else { if (!other.node_.isEmpty()) { if (nodeBuilder_.isEmpty()) { nodeBuilder_.dispose(); nodeBuilder_ = null; node_ = other.node_; bitField0_ = (bitField0_ & ~0x00000001); nodeBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getNodeFieldBuilder() : null; } else { nodeBuilder_.addAllMessages(other.node_); } } } if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000002; onChanged(); } if (initializerBuilder_ == null) { if (!other.initializer_.isEmpty()) { if (initializer_.isEmpty()) { initializer_ = other.initializer_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensureInitializerIsMutable(); initializer_.addAll(other.initializer_); } onChanged(); } } else { if (!other.initializer_.isEmpty()) { if (initializerBuilder_.isEmpty()) { initializerBuilder_.dispose(); initializerBuilder_ = null; initializer_ = other.initializer_; bitField0_ = (bitField0_ & ~0x00000004); initializerBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getInitializerFieldBuilder() : null; } else { initializerBuilder_.addAllMessages(other.initializer_); } } } if (sparseInitializerBuilder_ == null) { if (!other.sparseInitializer_.isEmpty()) { if (sparseInitializer_.isEmpty()) { sparseInitializer_ = other.sparseInitializer_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureSparseInitializerIsMutable(); sparseInitializer_.addAll(other.sparseInitializer_); } onChanged(); } } else { if (!other.sparseInitializer_.isEmpty()) { if (sparseInitializerBuilder_.isEmpty()) { sparseInitializerBuilder_.dispose(); sparseInitializerBuilder_ = null; sparseInitializer_ = other.sparseInitializer_; bitField0_ = (bitField0_ & ~0x00000008); sparseInitializerBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getSparseInitializerFieldBuilder() : null; } else { sparseInitializerBuilder_.addAllMessages(other.sparseInitializer_); } } } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000010; onChanged(); } if (inputBuilder_ == null) { if (!other.input_.isEmpty()) { if (input_.isEmpty()) { input_ = other.input_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureInputIsMutable(); input_.addAll(other.input_); } onChanged(); } } else { if (!other.input_.isEmpty()) { if (inputBuilder_.isEmpty()) { inputBuilder_.dispose(); inputBuilder_ = null; input_ = other.input_; bitField0_ = (bitField0_ & ~0x00000020); inputBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getInputFieldBuilder() : null; } else { inputBuilder_.addAllMessages(other.input_); } } } if (outputBuilder_ == null) { if (!other.output_.isEmpty()) { if (output_.isEmpty()) { output_ = other.output_; bitField0_ = (bitField0_ & ~0x00000040); } else { ensureOutputIsMutable(); output_.addAll(other.output_); } onChanged(); } } else { if (!other.output_.isEmpty()) { if (outputBuilder_.isEmpty()) { outputBuilder_.dispose(); outputBuilder_ = null; output_ = other.output_; bitField0_ = (bitField0_ & ~0x00000040); outputBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getOutputFieldBuilder() : null; } else { outputBuilder_.addAllMessages(other.output_); } } } if (valueInfoBuilder_ == null) { if (!other.valueInfo_.isEmpty()) { if (valueInfo_.isEmpty()) { valueInfo_ = other.valueInfo_; bitField0_ = (bitField0_ & ~0x00000080); } else { ensureValueInfoIsMutable(); valueInfo_.addAll(other.valueInfo_); } onChanged(); } } else { if (!other.valueInfo_.isEmpty()) { if (valueInfoBuilder_.isEmpty()) { valueInfoBuilder_.dispose(); valueInfoBuilder_ = null; valueInfo_ = other.valueInfo_; bitField0_ = (bitField0_ & ~0x00000080); valueInfoBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getValueInfoFieldBuilder() : null; } else { valueInfoBuilder_.addAllMessages(other.valueInfo_); } } } if (quantizationAnnotationBuilder_ == null) { if (!other.quantizationAnnotation_.isEmpty()) { if (quantizationAnnotation_.isEmpty()) { quantizationAnnotation_ = other.quantizationAnnotation_; bitField0_ = (bitField0_ & ~0x00000100); } else { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.addAll(other.quantizationAnnotation_); } onChanged(); } } else { if (!other.quantizationAnnotation_.isEmpty()) { if (quantizationAnnotationBuilder_.isEmpty()) { quantizationAnnotationBuilder_.dispose(); quantizationAnnotationBuilder_ = null; quantizationAnnotation_ = other.quantizationAnnotation_; bitField0_ = (bitField0_ & ~0x00000100); quantizationAnnotationBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getQuantizationAnnotationFieldBuilder() : null; } else { quantizationAnnotationBuilder_.addAllMessages(other.quantizationAnnotation_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { onnx.Onnx.NodeProto m = input.readMessage( onnx.Onnx.NodeProto.PARSER, extensionRegistry); if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(m); } else { nodeBuilder_.addMessage(m); } break; } // case 10 case 18: { name_ = input.readBytes(); bitField0_ |= 0x00000002; break; } // case 18 case 42: { onnx.Onnx.TensorProto m = input.readMessage( onnx.Onnx.TensorProto.PARSER, extensionRegistry); if (initializerBuilder_ == null) { ensureInitializerIsMutable(); initializer_.add(m); } else { initializerBuilder_.addMessage(m); } break; } // case 42 case 82: { docString_ = input.readBytes(); bitField0_ |= 0x00000010; break; } // case 82 case 90: { onnx.Onnx.ValueInfoProto m = input.readMessage( onnx.Onnx.ValueInfoProto.PARSER, extensionRegistry); if (inputBuilder_ == null) { ensureInputIsMutable(); input_.add(m); } else { inputBuilder_.addMessage(m); } break; } // case 90 case 98: { onnx.Onnx.ValueInfoProto m = input.readMessage( onnx.Onnx.ValueInfoProto.PARSER, extensionRegistry); if (outputBuilder_ == null) { ensureOutputIsMutable(); output_.add(m); } else { outputBuilder_.addMessage(m); } break; } // case 98 case 106: { onnx.Onnx.ValueInfoProto m = input.readMessage( onnx.Onnx.ValueInfoProto.PARSER, extensionRegistry); if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); valueInfo_.add(m); } else { valueInfoBuilder_.addMessage(m); } break; } // case 106 case 114: { onnx.Onnx.TensorAnnotation m = input.readMessage( onnx.Onnx.TensorAnnotation.PARSER, extensionRegistry); if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.add(m); } else { quantizationAnnotationBuilder_.addMessage(m); } break; } // case 114 case 122: { onnx.Onnx.SparseTensorProto m = input.readMessage( onnx.Onnx.SparseTensorProto.PARSER, extensionRegistry); if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); sparseInitializer_.add(m); } else { sparseInitializerBuilder_.addMessage(m); } break; } // case 122 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.util.List node_ = java.util.Collections.emptyList(); private void ensureNodeIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { node_ = new java.util.ArrayList(node_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder> nodeBuilder_; /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public java.util.List getNodeList() { if (nodeBuilder_ == null) { return java.util.Collections.unmodifiableList(node_); } else { return nodeBuilder_.getMessageList(); } } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public int getNodeCount() { if (nodeBuilder_ == null) { return node_.size(); } else { return nodeBuilder_.getCount(); } } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public onnx.Onnx.NodeProto getNode(int index) { if (nodeBuilder_ == null) { return node_.get(index); } else { return nodeBuilder_.getMessage(index); } } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder setNode( int index, onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.set(index, value); onChanged(); } else { nodeBuilder_.setMessage(index, value); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder setNode( int index, onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.set(index, builderForValue.build()); onChanged(); } else { nodeBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder addNode(onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.add(value); onChanged(); } else { nodeBuilder_.addMessage(value); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder addNode( int index, onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.add(index, value); onChanged(); } else { nodeBuilder_.addMessage(index, value); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder addNode( onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(builderForValue.build()); onChanged(); } else { nodeBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder addNode( int index, onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(index, builderForValue.build()); onChanged(); } else { nodeBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder addAllNode( java.lang.Iterable values) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, node_); onChanged(); } else { nodeBuilder_.addAllMessages(values); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder clearNode() { if (nodeBuilder_ == null) { node_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { nodeBuilder_.clear(); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public Builder removeNode(int index) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.remove(index); onChanged(); } else { nodeBuilder_.remove(index); } return this; } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public onnx.Onnx.NodeProto.Builder getNodeBuilder( int index) { return getNodeFieldBuilder().getBuilder(index); } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index) { if (nodeBuilder_ == null) { return node_.get(index); } else { return nodeBuilder_.getMessageOrBuilder(index); } } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public java.util.List getNodeOrBuilderList() { if (nodeBuilder_ != null) { return nodeBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(node_); } } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public onnx.Onnx.NodeProto.Builder addNodeBuilder() { return getNodeFieldBuilder().addBuilder( onnx.Onnx.NodeProto.getDefaultInstance()); } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public onnx.Onnx.NodeProto.Builder addNodeBuilder( int index) { return getNodeFieldBuilder().addBuilder( index, onnx.Onnx.NodeProto.getDefaultInstance()); } /** *
       * The nodes in the graph, sorted topologically.
       * 
* * repeated .onnx.NodeProto node = 1; */ public java.util.List getNodeBuilderList() { return getNodeFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder> getNodeFieldBuilder() { if (nodeBuilder_ == null) { nodeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder>( node_, ((bitField0_ & 0x00000001) != 0), getParentForChildren(), isClean()); node_ = null; } return nodeBuilder_; } private java.lang.Object name_ = ""; /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** *
       * The name of the graph.
       * 
* * optional string name = 2; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } private java.util.List initializer_ = java.util.Collections.emptyList(); private void ensureInitializerIsMutable() { if (!((bitField0_ & 0x00000004) != 0)) { initializer_ = new java.util.ArrayList(initializer_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> initializerBuilder_; /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public java.util.List getInitializerList() { if (initializerBuilder_ == null) { return java.util.Collections.unmodifiableList(initializer_); } else { return initializerBuilder_.getMessageList(); } } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public int getInitializerCount() { if (initializerBuilder_ == null) { return initializer_.size(); } else { return initializerBuilder_.getCount(); } } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public onnx.Onnx.TensorProto getInitializer(int index) { if (initializerBuilder_ == null) { return initializer_.get(index); } else { return initializerBuilder_.getMessage(index); } } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder setInitializer( int index, onnx.Onnx.TensorProto value) { if (initializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializerIsMutable(); initializer_.set(index, value); onChanged(); } else { initializerBuilder_.setMessage(index, value); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder setInitializer( int index, onnx.Onnx.TensorProto.Builder builderForValue) { if (initializerBuilder_ == null) { ensureInitializerIsMutable(); initializer_.set(index, builderForValue.build()); onChanged(); } else { initializerBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder addInitializer(onnx.Onnx.TensorProto value) { if (initializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializerIsMutable(); initializer_.add(value); onChanged(); } else { initializerBuilder_.addMessage(value); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder addInitializer( int index, onnx.Onnx.TensorProto value) { if (initializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInitializerIsMutable(); initializer_.add(index, value); onChanged(); } else { initializerBuilder_.addMessage(index, value); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder addInitializer( onnx.Onnx.TensorProto.Builder builderForValue) { if (initializerBuilder_ == null) { ensureInitializerIsMutable(); initializer_.add(builderForValue.build()); onChanged(); } else { initializerBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder addInitializer( int index, onnx.Onnx.TensorProto.Builder builderForValue) { if (initializerBuilder_ == null) { ensureInitializerIsMutable(); initializer_.add(index, builderForValue.build()); onChanged(); } else { initializerBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder addAllInitializer( java.lang.Iterable values) { if (initializerBuilder_ == null) { ensureInitializerIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, initializer_); onChanged(); } else { initializerBuilder_.addAllMessages(values); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder clearInitializer() { if (initializerBuilder_ == null) { initializer_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { initializerBuilder_.clear(); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public Builder removeInitializer(int index) { if (initializerBuilder_ == null) { ensureInitializerIsMutable(); initializer_.remove(index); onChanged(); } else { initializerBuilder_.remove(index); } return this; } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public onnx.Onnx.TensorProto.Builder getInitializerBuilder( int index) { return getInitializerFieldBuilder().getBuilder(index); } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public onnx.Onnx.TensorProtoOrBuilder getInitializerOrBuilder( int index) { if (initializerBuilder_ == null) { return initializer_.get(index); } else { return initializerBuilder_.getMessageOrBuilder(index); } } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public java.util.List getInitializerOrBuilderList() { if (initializerBuilder_ != null) { return initializerBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(initializer_); } } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public onnx.Onnx.TensorProto.Builder addInitializerBuilder() { return getInitializerFieldBuilder().addBuilder( onnx.Onnx.TensorProto.getDefaultInstance()); } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public onnx.Onnx.TensorProto.Builder addInitializerBuilder( int index) { return getInitializerFieldBuilder().addBuilder( index, onnx.Onnx.TensorProto.getDefaultInstance()); } /** *
       * A list of named tensor values, used to specify constant inputs of the graph.
       * Each initializer (both TensorProto as well SparseTensorProto) MUST have a name.
       * The name MUST be unique across both initializer and sparse_initializer,
       * but the name MAY also appear in the input list.
       * 
* * repeated .onnx.TensorProto initializer = 5; */ public java.util.List getInitializerBuilderList() { return getInitializerFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> getInitializerFieldBuilder() { if (initializerBuilder_ == null) { initializerBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder>( initializer_, ((bitField0_ & 0x00000004) != 0), getParentForChildren(), isClean()); initializer_ = null; } return initializerBuilder_; } private java.util.List sparseInitializer_ = java.util.Collections.emptyList(); private void ensureSparseInitializerIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { sparseInitializer_ = new java.util.ArrayList(sparseInitializer_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> sparseInitializerBuilder_; /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public java.util.List getSparseInitializerList() { if (sparseInitializerBuilder_ == null) { return java.util.Collections.unmodifiableList(sparseInitializer_); } else { return sparseInitializerBuilder_.getMessageList(); } } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public int getSparseInitializerCount() { if (sparseInitializerBuilder_ == null) { return sparseInitializer_.size(); } else { return sparseInitializerBuilder_.getCount(); } } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public onnx.Onnx.SparseTensorProto getSparseInitializer(int index) { if (sparseInitializerBuilder_ == null) { return sparseInitializer_.get(index); } else { return sparseInitializerBuilder_.getMessage(index); } } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder setSparseInitializer( int index, onnx.Onnx.SparseTensorProto value) { if (sparseInitializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseInitializerIsMutable(); sparseInitializer_.set(index, value); onChanged(); } else { sparseInitializerBuilder_.setMessage(index, value); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder setSparseInitializer( int index, onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); sparseInitializer_.set(index, builderForValue.build()); onChanged(); } else { sparseInitializerBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder addSparseInitializer(onnx.Onnx.SparseTensorProto value) { if (sparseInitializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseInitializerIsMutable(); sparseInitializer_.add(value); onChanged(); } else { sparseInitializerBuilder_.addMessage(value); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder addSparseInitializer( int index, onnx.Onnx.SparseTensorProto value) { if (sparseInitializerBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseInitializerIsMutable(); sparseInitializer_.add(index, value); onChanged(); } else { sparseInitializerBuilder_.addMessage(index, value); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder addSparseInitializer( onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); sparseInitializer_.add(builderForValue.build()); onChanged(); } else { sparseInitializerBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder addSparseInitializer( int index, onnx.Onnx.SparseTensorProto.Builder builderForValue) { if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); sparseInitializer_.add(index, builderForValue.build()); onChanged(); } else { sparseInitializerBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder addAllSparseInitializer( java.lang.Iterable values) { if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, sparseInitializer_); onChanged(); } else { sparseInitializerBuilder_.addAllMessages(values); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder clearSparseInitializer() { if (sparseInitializerBuilder_ == null) { sparseInitializer_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { sparseInitializerBuilder_.clear(); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public Builder removeSparseInitializer(int index) { if (sparseInitializerBuilder_ == null) { ensureSparseInitializerIsMutable(); sparseInitializer_.remove(index); onChanged(); } else { sparseInitializerBuilder_.remove(index); } return this; } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public onnx.Onnx.SparseTensorProto.Builder getSparseInitializerBuilder( int index) { return getSparseInitializerFieldBuilder().getBuilder(index); } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public onnx.Onnx.SparseTensorProtoOrBuilder getSparseInitializerOrBuilder( int index) { if (sparseInitializerBuilder_ == null) { return sparseInitializer_.get(index); } else { return sparseInitializerBuilder_.getMessageOrBuilder(index); } } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public java.util.List getSparseInitializerOrBuilderList() { if (sparseInitializerBuilder_ != null) { return sparseInitializerBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(sparseInitializer_); } } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public onnx.Onnx.SparseTensorProto.Builder addSparseInitializerBuilder() { return getSparseInitializerFieldBuilder().addBuilder( onnx.Onnx.SparseTensorProto.getDefaultInstance()); } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public onnx.Onnx.SparseTensorProto.Builder addSparseInitializerBuilder( int index) { return getSparseInitializerFieldBuilder().addBuilder( index, onnx.Onnx.SparseTensorProto.getDefaultInstance()); } /** *
       * Initializers (see above) stored in sparse format.
       * 
* * repeated .onnx.SparseTensorProto sparse_initializer = 15; */ public java.util.List getSparseInitializerBuilderList() { return getSparseInitializerFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder> getSparseInitializerFieldBuilder() { if (sparseInitializerBuilder_ == null) { sparseInitializerBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.SparseTensorProto, onnx.Onnx.SparseTensorProto.Builder, onnx.Onnx.SparseTensorProtoOrBuilder>( sparseInitializer_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); sparseInitializer_ = null; } return sparseInitializerBuilder_; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000010) != 0); } /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } /** *
       * A human-readable documentation for this graph. Markdown is allowed.
       * 
* * optional string doc_string = 10; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } private java.util.List input_ = java.util.Collections.emptyList(); private void ensureInputIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { input_ = new java.util.ArrayList(input_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> inputBuilder_; /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public java.util.List getInputList() { if (inputBuilder_ == null) { return java.util.Collections.unmodifiableList(input_); } else { return inputBuilder_.getMessageList(); } } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public int getInputCount() { if (inputBuilder_ == null) { return input_.size(); } else { return inputBuilder_.getCount(); } } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public onnx.Onnx.ValueInfoProto getInput(int index) { if (inputBuilder_ == null) { return input_.get(index); } else { return inputBuilder_.getMessage(index); } } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder setInput( int index, onnx.Onnx.ValueInfoProto value) { if (inputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.set(index, value); onChanged(); } else { inputBuilder_.setMessage(index, value); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder setInput( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (inputBuilder_ == null) { ensureInputIsMutable(); input_.set(index, builderForValue.build()); onChanged(); } else { inputBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder addInput(onnx.Onnx.ValueInfoProto value) { if (inputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(value); onChanged(); } else { inputBuilder_.addMessage(value); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder addInput( int index, onnx.Onnx.ValueInfoProto value) { if (inputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(index, value); onChanged(); } else { inputBuilder_.addMessage(index, value); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder addInput( onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (inputBuilder_ == null) { ensureInputIsMutable(); input_.add(builderForValue.build()); onChanged(); } else { inputBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder addInput( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (inputBuilder_ == null) { ensureInputIsMutable(); input_.add(index, builderForValue.build()); onChanged(); } else { inputBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder addAllInput( java.lang.Iterable values) { if (inputBuilder_ == null) { ensureInputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, input_); onChanged(); } else { inputBuilder_.addAllMessages(values); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder clearInput() { if (inputBuilder_ == null) { input_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { inputBuilder_.clear(); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public Builder removeInput(int index) { if (inputBuilder_ == null) { ensureInputIsMutable(); input_.remove(index); onChanged(); } else { inputBuilder_.remove(index); } return this; } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public onnx.Onnx.ValueInfoProto.Builder getInputBuilder( int index) { return getInputFieldBuilder().getBuilder(index); } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public onnx.Onnx.ValueInfoProtoOrBuilder getInputOrBuilder( int index) { if (inputBuilder_ == null) { return input_.get(index); } else { return inputBuilder_.getMessageOrBuilder(index); } } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public java.util.List getInputOrBuilderList() { if (inputBuilder_ != null) { return inputBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(input_); } } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public onnx.Onnx.ValueInfoProto.Builder addInputBuilder() { return getInputFieldBuilder().addBuilder( onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public onnx.Onnx.ValueInfoProto.Builder addInputBuilder( int index) { return getInputFieldBuilder().addBuilder( index, onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** *
       * The inputs and outputs of the graph.
       * 
* * repeated .onnx.ValueInfoProto input = 11; */ public java.util.List getInputBuilderList() { return getInputFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> getInputFieldBuilder() { if (inputBuilder_ == null) { inputBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder>( input_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); input_ = null; } return inputBuilder_; } private java.util.List output_ = java.util.Collections.emptyList(); private void ensureOutputIsMutable() { if (!((bitField0_ & 0x00000040) != 0)) { output_ = new java.util.ArrayList(output_); bitField0_ |= 0x00000040; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> outputBuilder_; /** * repeated .onnx.ValueInfoProto output = 12; */ public java.util.List getOutputList() { if (outputBuilder_ == null) { return java.util.Collections.unmodifiableList(output_); } else { return outputBuilder_.getMessageList(); } } /** * repeated .onnx.ValueInfoProto output = 12; */ public int getOutputCount() { if (outputBuilder_ == null) { return output_.size(); } else { return outputBuilder_.getCount(); } } /** * repeated .onnx.ValueInfoProto output = 12; */ public onnx.Onnx.ValueInfoProto getOutput(int index) { if (outputBuilder_ == null) { return output_.get(index); } else { return outputBuilder_.getMessage(index); } } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder setOutput( int index, onnx.Onnx.ValueInfoProto value) { if (outputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.set(index, value); onChanged(); } else { outputBuilder_.setMessage(index, value); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder setOutput( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (outputBuilder_ == null) { ensureOutputIsMutable(); output_.set(index, builderForValue.build()); onChanged(); } else { outputBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder addOutput(onnx.Onnx.ValueInfoProto value) { if (outputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(value); onChanged(); } else { outputBuilder_.addMessage(value); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder addOutput( int index, onnx.Onnx.ValueInfoProto value) { if (outputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(index, value); onChanged(); } else { outputBuilder_.addMessage(index, value); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder addOutput( onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (outputBuilder_ == null) { ensureOutputIsMutable(); output_.add(builderForValue.build()); onChanged(); } else { outputBuilder_.addMessage(builderForValue.build()); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder addOutput( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (outputBuilder_ == null) { ensureOutputIsMutable(); output_.add(index, builderForValue.build()); onChanged(); } else { outputBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder addAllOutput( java.lang.Iterable values) { if (outputBuilder_ == null) { ensureOutputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, output_); onChanged(); } else { outputBuilder_.addAllMessages(values); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder clearOutput() { if (outputBuilder_ == null) { output_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); } else { outputBuilder_.clear(); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public Builder removeOutput(int index) { if (outputBuilder_ == null) { ensureOutputIsMutable(); output_.remove(index); onChanged(); } else { outputBuilder_.remove(index); } return this; } /** * repeated .onnx.ValueInfoProto output = 12; */ public onnx.Onnx.ValueInfoProto.Builder getOutputBuilder( int index) { return getOutputFieldBuilder().getBuilder(index); } /** * repeated .onnx.ValueInfoProto output = 12; */ public onnx.Onnx.ValueInfoProtoOrBuilder getOutputOrBuilder( int index) { if (outputBuilder_ == null) { return output_.get(index); } else { return outputBuilder_.getMessageOrBuilder(index); } } /** * repeated .onnx.ValueInfoProto output = 12; */ public java.util.List getOutputOrBuilderList() { if (outputBuilder_ != null) { return outputBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(output_); } } /** * repeated .onnx.ValueInfoProto output = 12; */ public onnx.Onnx.ValueInfoProto.Builder addOutputBuilder() { return getOutputFieldBuilder().addBuilder( onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** * repeated .onnx.ValueInfoProto output = 12; */ public onnx.Onnx.ValueInfoProto.Builder addOutputBuilder( int index) { return getOutputFieldBuilder().addBuilder( index, onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** * repeated .onnx.ValueInfoProto output = 12; */ public java.util.List getOutputBuilderList() { return getOutputFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> getOutputFieldBuilder() { if (outputBuilder_ == null) { outputBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder>( output_, ((bitField0_ & 0x00000040) != 0), getParentForChildren(), isClean()); output_ = null; } return outputBuilder_; } private java.util.List valueInfo_ = java.util.Collections.emptyList(); private void ensureValueInfoIsMutable() { if (!((bitField0_ & 0x00000080) != 0)) { valueInfo_ = new java.util.ArrayList(valueInfo_); bitField0_ |= 0x00000080; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> valueInfoBuilder_; /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public java.util.List getValueInfoList() { if (valueInfoBuilder_ == null) { return java.util.Collections.unmodifiableList(valueInfo_); } else { return valueInfoBuilder_.getMessageList(); } } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public int getValueInfoCount() { if (valueInfoBuilder_ == null) { return valueInfo_.size(); } else { return valueInfoBuilder_.getCount(); } } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public onnx.Onnx.ValueInfoProto getValueInfo(int index) { if (valueInfoBuilder_ == null) { return valueInfo_.get(index); } else { return valueInfoBuilder_.getMessage(index); } } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder setValueInfo( int index, onnx.Onnx.ValueInfoProto value) { if (valueInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureValueInfoIsMutable(); valueInfo_.set(index, value); onChanged(); } else { valueInfoBuilder_.setMessage(index, value); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder setValueInfo( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); valueInfo_.set(index, builderForValue.build()); onChanged(); } else { valueInfoBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder addValueInfo(onnx.Onnx.ValueInfoProto value) { if (valueInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureValueInfoIsMutable(); valueInfo_.add(value); onChanged(); } else { valueInfoBuilder_.addMessage(value); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder addValueInfo( int index, onnx.Onnx.ValueInfoProto value) { if (valueInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureValueInfoIsMutable(); valueInfo_.add(index, value); onChanged(); } else { valueInfoBuilder_.addMessage(index, value); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder addValueInfo( onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); valueInfo_.add(builderForValue.build()); onChanged(); } else { valueInfoBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder addValueInfo( int index, onnx.Onnx.ValueInfoProto.Builder builderForValue) { if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); valueInfo_.add(index, builderForValue.build()); onChanged(); } else { valueInfoBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder addAllValueInfo( java.lang.Iterable values) { if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, valueInfo_); onChanged(); } else { valueInfoBuilder_.addAllMessages(values); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder clearValueInfo() { if (valueInfoBuilder_ == null) { valueInfo_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000080); onChanged(); } else { valueInfoBuilder_.clear(); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public Builder removeValueInfo(int index) { if (valueInfoBuilder_ == null) { ensureValueInfoIsMutable(); valueInfo_.remove(index); onChanged(); } else { valueInfoBuilder_.remove(index); } return this; } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public onnx.Onnx.ValueInfoProto.Builder getValueInfoBuilder( int index) { return getValueInfoFieldBuilder().getBuilder(index); } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public onnx.Onnx.ValueInfoProtoOrBuilder getValueInfoOrBuilder( int index) { if (valueInfoBuilder_ == null) { return valueInfo_.get(index); } else { return valueInfoBuilder_.getMessageOrBuilder(index); } } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public java.util.List getValueInfoOrBuilderList() { if (valueInfoBuilder_ != null) { return valueInfoBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(valueInfo_); } } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public onnx.Onnx.ValueInfoProto.Builder addValueInfoBuilder() { return getValueInfoFieldBuilder().addBuilder( onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public onnx.Onnx.ValueInfoProto.Builder addValueInfoBuilder( int index) { return getValueInfoFieldBuilder().addBuilder( index, onnx.Onnx.ValueInfoProto.getDefaultInstance()); } /** *
       * Information for the values in the graph. The ValueInfoProto.name's
       * must be distinct. It is optional for a value to appear in value_info list.
       * 
* * repeated .onnx.ValueInfoProto value_info = 13; */ public java.util.List getValueInfoBuilderList() { return getValueInfoFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder> getValueInfoFieldBuilder() { if (valueInfoBuilder_ == null) { valueInfoBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.ValueInfoProto, onnx.Onnx.ValueInfoProto.Builder, onnx.Onnx.ValueInfoProtoOrBuilder>( valueInfo_, ((bitField0_ & 0x00000080) != 0), getParentForChildren(), isClean()); valueInfo_ = null; } return valueInfoBuilder_; } private java.util.List quantizationAnnotation_ = java.util.Collections.emptyList(); private void ensureQuantizationAnnotationIsMutable() { if (!((bitField0_ & 0x00000100) != 0)) { quantizationAnnotation_ = new java.util.ArrayList(quantizationAnnotation_); bitField0_ |= 0x00000100; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorAnnotation, onnx.Onnx.TensorAnnotation.Builder, onnx.Onnx.TensorAnnotationOrBuilder> quantizationAnnotationBuilder_; /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public java.util.List getQuantizationAnnotationList() { if (quantizationAnnotationBuilder_ == null) { return java.util.Collections.unmodifiableList(quantizationAnnotation_); } else { return quantizationAnnotationBuilder_.getMessageList(); } } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public int getQuantizationAnnotationCount() { if (quantizationAnnotationBuilder_ == null) { return quantizationAnnotation_.size(); } else { return quantizationAnnotationBuilder_.getCount(); } } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public onnx.Onnx.TensorAnnotation getQuantizationAnnotation(int index) { if (quantizationAnnotationBuilder_ == null) { return quantizationAnnotation_.get(index); } else { return quantizationAnnotationBuilder_.getMessage(index); } } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder setQuantizationAnnotation( int index, onnx.Onnx.TensorAnnotation value) { if (quantizationAnnotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.set(index, value); onChanged(); } else { quantizationAnnotationBuilder_.setMessage(index, value); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder setQuantizationAnnotation( int index, onnx.Onnx.TensorAnnotation.Builder builderForValue) { if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.set(index, builderForValue.build()); onChanged(); } else { quantizationAnnotationBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder addQuantizationAnnotation(onnx.Onnx.TensorAnnotation value) { if (quantizationAnnotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.add(value); onChanged(); } else { quantizationAnnotationBuilder_.addMessage(value); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder addQuantizationAnnotation( int index, onnx.Onnx.TensorAnnotation value) { if (quantizationAnnotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.add(index, value); onChanged(); } else { quantizationAnnotationBuilder_.addMessage(index, value); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder addQuantizationAnnotation( onnx.Onnx.TensorAnnotation.Builder builderForValue) { if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.add(builderForValue.build()); onChanged(); } else { quantizationAnnotationBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder addQuantizationAnnotation( int index, onnx.Onnx.TensorAnnotation.Builder builderForValue) { if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.add(index, builderForValue.build()); onChanged(); } else { quantizationAnnotationBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder addAllQuantizationAnnotation( java.lang.Iterable values) { if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, quantizationAnnotation_); onChanged(); } else { quantizationAnnotationBuilder_.addAllMessages(values); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder clearQuantizationAnnotation() { if (quantizationAnnotationBuilder_ == null) { quantizationAnnotation_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000100); onChanged(); } else { quantizationAnnotationBuilder_.clear(); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public Builder removeQuantizationAnnotation(int index) { if (quantizationAnnotationBuilder_ == null) { ensureQuantizationAnnotationIsMutable(); quantizationAnnotation_.remove(index); onChanged(); } else { quantizationAnnotationBuilder_.remove(index); } return this; } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public onnx.Onnx.TensorAnnotation.Builder getQuantizationAnnotationBuilder( int index) { return getQuantizationAnnotationFieldBuilder().getBuilder(index); } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public onnx.Onnx.TensorAnnotationOrBuilder getQuantizationAnnotationOrBuilder( int index) { if (quantizationAnnotationBuilder_ == null) { return quantizationAnnotation_.get(index); } else { return quantizationAnnotationBuilder_.getMessageOrBuilder(index); } } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public java.util.List getQuantizationAnnotationOrBuilderList() { if (quantizationAnnotationBuilder_ != null) { return quantizationAnnotationBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(quantizationAnnotation_); } } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public onnx.Onnx.TensorAnnotation.Builder addQuantizationAnnotationBuilder() { return getQuantizationAnnotationFieldBuilder().addBuilder( onnx.Onnx.TensorAnnotation.getDefaultInstance()); } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public onnx.Onnx.TensorAnnotation.Builder addQuantizationAnnotationBuilder( int index) { return getQuantizationAnnotationFieldBuilder().addBuilder( index, onnx.Onnx.TensorAnnotation.getDefaultInstance()); } /** *
       * This field carries information to indicate the mapping among a tensor and its
       * quantization parameter tensors. For example:
       * For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
       * which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
       * 
* * repeated .onnx.TensorAnnotation quantization_annotation = 14; */ public java.util.List getQuantizationAnnotationBuilderList() { return getQuantizationAnnotationFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorAnnotation, onnx.Onnx.TensorAnnotation.Builder, onnx.Onnx.TensorAnnotationOrBuilder> getQuantizationAnnotationFieldBuilder() { if (quantizationAnnotationBuilder_ == null) { quantizationAnnotationBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorAnnotation, onnx.Onnx.TensorAnnotation.Builder, onnx.Onnx.TensorAnnotationOrBuilder>( quantizationAnnotation_, ((bitField0_ & 0x00000100) != 0), getParentForChildren(), isClean()); quantizationAnnotation_ = null; } return quantizationAnnotationBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.GraphProto) } // @@protoc_insertion_point(class_scope:onnx.GraphProto) private static final onnx.Onnx.GraphProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.GraphProto(); } public static onnx.Onnx.GraphProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public GraphProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.GraphProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TensorProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TensorProto) com.google.protobuf.MessageOrBuilder { /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @return A list containing the dims. */ java.util.List getDimsList(); /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @return The count of dims. */ int getDimsCount(); /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @param index The index of the element to return. * @return The dims at the given index. */ long getDims(int index); /** *
     * The data type of the tensor.
     * This field MUST have a valid TensorProto.DataType value
     * 
* * optional int32 data_type = 2; * @return Whether the dataType field is set. */ boolean hasDataType(); /** *
     * The data type of the tensor.
     * This field MUST have a valid TensorProto.DataType value
     * 
* * optional int32 data_type = 2; * @return The dataType. */ int getDataType(); /** * optional .onnx.TensorProto.Segment segment = 3; * @return Whether the segment field is set. */ boolean hasSegment(); /** * optional .onnx.TensorProto.Segment segment = 3; * @return The segment. */ onnx.Onnx.TensorProto.Segment getSegment(); /** * optional .onnx.TensorProto.Segment segment = 3; */ onnx.Onnx.TensorProto.SegmentOrBuilder getSegmentOrBuilder(); /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @return A list containing the floatData. */ java.util.List getFloatDataList(); /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @return The count of floatData. */ int getFloatDataCount(); /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @param index The index of the element to return. * @return The floatData at the given index. */ float getFloatData(int index); /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @return A list containing the int32Data. */ java.util.List getInt32DataList(); /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @return The count of int32Data. */ int getInt32DataCount(); /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @param index The index of the element to return. * @return The int32Data at the given index. */ int getInt32Data(int index); /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @return A list containing the stringData. */ java.util.List getStringDataList(); /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @return The count of stringData. */ int getStringDataCount(); /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @param index The index of the element to return. * @return The stringData at the given index. */ com.google.protobuf.ByteString getStringData(int index); /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @return A list containing the int64Data. */ java.util.List getInt64DataList(); /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @return The count of int64Data. */ int getInt64DataCount(); /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @param index The index of the element to return. * @return The int64Data at the given index. */ long getInt64Data(int index); /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return Whether the name field is set. */ boolean hasName(); /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return The name. */ java.lang.String getName(); /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); /** *
     * Serializations can either use one of the fields above, or use this
     * raw bytes field. The only exception is the string case, where one is
     * required to store the content in the repeated bytes string_data field.
     *
     * When this raw_data field is used to store tensor value, elements MUST
     * be stored in as fixed-width, little-endian order.
     * Floating-point data types MUST be stored in IEEE 754 format.
     * Complex64 elements must be written as two consecutive FLOAT values, real component first.
     * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
     * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
     *
     * Note: the advantage of specific field rather than the raw_data field is
     * that in some cases (e.g. int data), protobuf does a better packing via
     * variable length storage, and may lead to smaller binary footprint.
     * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
     * 
* * optional bytes raw_data = 9; * @return Whether the rawData field is set. */ boolean hasRawData(); /** *
     * Serializations can either use one of the fields above, or use this
     * raw bytes field. The only exception is the string case, where one is
     * required to store the content in the repeated bytes string_data field.
     *
     * When this raw_data field is used to store tensor value, elements MUST
     * be stored in as fixed-width, little-endian order.
     * Floating-point data types MUST be stored in IEEE 754 format.
     * Complex64 elements must be written as two consecutive FLOAT values, real component first.
     * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
     * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
     *
     * Note: the advantage of specific field rather than the raw_data field is
     * that in some cases (e.g. int data), protobuf does a better packing via
     * variable length storage, and may lead to smaller binary footprint.
     * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
     * 
* * optional bytes raw_data = 9; * @return The rawData. */ com.google.protobuf.ByteString getRawData(); /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ java.util.List getExternalDataList(); /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ onnx.Onnx.StringStringEntryProto getExternalData(int index); /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ int getExternalDataCount(); /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ java.util.List getExternalDataOrBuilderList(); /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ onnx.Onnx.StringStringEntryProtoOrBuilder getExternalDataOrBuilder( int index); /** *
     * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
     * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return Whether the dataLocation field is set. */ boolean hasDataLocation(); /** *
     * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
     * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return The dataLocation. */ onnx.Onnx.TensorProto.DataLocation getDataLocation(); /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @return A list containing the doubleData. */ java.util.List getDoubleDataList(); /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @return The count of doubleData. */ int getDoubleDataCount(); /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @param index The index of the element to return. * @return The doubleData at the given index. */ double getDoubleData(int index); /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return A list containing the uint64Data. */ java.util.List getUint64DataList(); /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return The count of uint64Data. */ int getUint64DataCount(); /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param index The index of the element to return. * @return The uint64Data at the given index. */ long getUint64Data(int index); } /** *
   * Tensors
   *
   * A serialized tensor value.
   * 
* * Protobuf type {@code onnx.TensorProto} */ public static final class TensorProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TensorProto) TensorProtoOrBuilder { private static final long serialVersionUID = 0L; // Use TensorProto.newBuilder() to construct. private TensorProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TensorProto() { dims_ = emptyLongList(); floatData_ = emptyFloatList(); int32Data_ = emptyIntList(); stringData_ = emptyList(com.google.protobuf.ByteString.class); int64Data_ = emptyLongList(); name_ = ""; docString_ = ""; rawData_ = com.google.protobuf.ByteString.EMPTY; externalData_ = java.util.Collections.emptyList(); dataLocation_ = 0; doubleData_ = emptyDoubleList(); uint64Data_ = emptyLongList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new TensorProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorProto.class, onnx.Onnx.TensorProto.Builder.class); } /** * Protobuf enum {@code onnx.TensorProto.DataType} */ public enum DataType implements com.google.protobuf.ProtocolMessageEnum { /** * UNDEFINED = 0; */ UNDEFINED(0), /** *
       * Basic types.
       * 
* * FLOAT = 1; */ FLOAT(1), /** *
       * uint8_t
       * 
* * UINT8 = 2; */ UINT8(2), /** *
       * int8_t
       * 
* * INT8 = 3; */ INT8(3), /** *
       * uint16_t
       * 
* * UINT16 = 4; */ UINT16(4), /** *
       * int16_t
       * 
* * INT16 = 5; */ INT16(5), /** *
       * int32_t
       * 
* * INT32 = 6; */ INT32(6), /** *
       * int64_t
       * 
* * INT64 = 7; */ INT64(7), /** *
       * string
       * 
* * STRING = 8; */ STRING(8), /** *
       * bool
       * 
* * BOOL = 9; */ BOOL(9), /** *
       * IEEE754 half-precision floating-point format (16 bits wide).
       * This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
       * 
* * FLOAT16 = 10; */ FLOAT16(10), /** * DOUBLE = 11; */ DOUBLE(11), /** * UINT32 = 12; */ UINT32(12), /** * UINT64 = 13; */ UINT64(13), /** *
       * complex with float32 real and imaginary components
       * 
* * COMPLEX64 = 14; */ COMPLEX64(14), /** *
       * complex with float64 real and imaginary components
       * 
* * COMPLEX128 = 15; */ COMPLEX128(15), /** *
       * Non-IEEE floating-point format based on IEEE754 single-precision
       * floating-point number truncated to 16 bits.
       * This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
       * 
* * BFLOAT16 = 16; */ BFLOAT16(16), /** *
       * Non-IEEE floating-point format based on papers
       * FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
       * 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
       * Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
       * The computation usually happens inside a block quantize / dequantize
       * fused by the runtime.
       * 
* * FLOAT8E4M3FN = 17; */ FLOAT8E4M3FN(17), /** *
       * float 8, mostly used for coefficients, supports nan, not inf, no negative zero 
       * 
* * FLOAT8E4M3FNUZ = 18; */ FLOAT8E4M3FNUZ(18), /** *
       * follows IEEE 754, supports nan, inf, mostly used for gradients
       * 
* * FLOAT8E5M2 = 19; */ FLOAT8E5M2(19), /** *
       * follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero
       * 
* * FLOAT8E5M2FNUZ = 20; */ FLOAT8E5M2FNUZ(20), ; /** * UNDEFINED = 0; */ public static final int UNDEFINED_VALUE = 0; /** *
       * Basic types.
       * 
* * FLOAT = 1; */ public static final int FLOAT_VALUE = 1; /** *
       * uint8_t
       * 
* * UINT8 = 2; */ public static final int UINT8_VALUE = 2; /** *
       * int8_t
       * 
* * INT8 = 3; */ public static final int INT8_VALUE = 3; /** *
       * uint16_t
       * 
* * UINT16 = 4; */ public static final int UINT16_VALUE = 4; /** *
       * int16_t
       * 
* * INT16 = 5; */ public static final int INT16_VALUE = 5; /** *
       * int32_t
       * 
* * INT32 = 6; */ public static final int INT32_VALUE = 6; /** *
       * int64_t
       * 
* * INT64 = 7; */ public static final int INT64_VALUE = 7; /** *
       * string
       * 
* * STRING = 8; */ public static final int STRING_VALUE = 8; /** *
       * bool
       * 
* * BOOL = 9; */ public static final int BOOL_VALUE = 9; /** *
       * IEEE754 half-precision floating-point format (16 bits wide).
       * This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
       * 
* * FLOAT16 = 10; */ public static final int FLOAT16_VALUE = 10; /** * DOUBLE = 11; */ public static final int DOUBLE_VALUE = 11; /** * UINT32 = 12; */ public static final int UINT32_VALUE = 12; /** * UINT64 = 13; */ public static final int UINT64_VALUE = 13; /** *
       * complex with float32 real and imaginary components
       * 
* * COMPLEX64 = 14; */ public static final int COMPLEX64_VALUE = 14; /** *
       * complex with float64 real and imaginary components
       * 
* * COMPLEX128 = 15; */ public static final int COMPLEX128_VALUE = 15; /** *
       * Non-IEEE floating-point format based on IEEE754 single-precision
       * floating-point number truncated to 16 bits.
       * This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
       * 
* * BFLOAT16 = 16; */ public static final int BFLOAT16_VALUE = 16; /** *
       * Non-IEEE floating-point format based on papers
       * FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433,
       * 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf.
       * Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear.
       * The computation usually happens inside a block quantize / dequantize
       * fused by the runtime.
       * 
* * FLOAT8E4M3FN = 17; */ public static final int FLOAT8E4M3FN_VALUE = 17; /** *
       * float 8, mostly used for coefficients, supports nan, not inf, no negative zero 
       * 
* * FLOAT8E4M3FNUZ = 18; */ public static final int FLOAT8E4M3FNUZ_VALUE = 18; /** *
       * follows IEEE 754, supports nan, inf, mostly used for gradients
       * 
* * FLOAT8E5M2 = 19; */ public static final int FLOAT8E5M2_VALUE = 19; /** *
       * follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero
       * 
* * FLOAT8E5M2FNUZ = 20; */ public static final int FLOAT8E5M2FNUZ_VALUE = 20; public final int getNumber() { return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static DataType valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static DataType forNumber(int value) { switch (value) { case 0: return UNDEFINED; case 1: return FLOAT; case 2: return UINT8; case 3: return INT8; case 4: return UINT16; case 5: return INT16; case 6: return INT32; case 7: return INT64; case 8: return STRING; case 9: return BOOL; case 10: return FLOAT16; case 11: return DOUBLE; case 12: return UINT32; case 13: return UINT64; case 14: return COMPLEX64; case 15: return COMPLEX128; case 16: return BFLOAT16; case 17: return FLOAT8E4M3FN; case 18: return FLOAT8E4M3FNUZ; case 19: return FLOAT8E5M2; case 20: return FLOAT8E5M2FNUZ; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< DataType> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public DataType findValueByNumber(int number) { return DataType.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return onnx.Onnx.TensorProto.getDescriptor().getEnumTypes().get(0); } private static final DataType[] VALUES = values(); public static DataType valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } return VALUES[desc.getIndex()]; } private final int value; private DataType(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:onnx.TensorProto.DataType) } /** *
     * Location of the data for this tensor. MUST be one of:
     * - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field.
     * - EXTERNAL - data stored in an external location as described by external_data field.
     * 
* * Protobuf enum {@code onnx.TensorProto.DataLocation} */ public enum DataLocation implements com.google.protobuf.ProtocolMessageEnum { /** * DEFAULT = 0; */ DEFAULT(0), /** * EXTERNAL = 1; */ EXTERNAL(1), ; /** * DEFAULT = 0; */ public static final int DEFAULT_VALUE = 0; /** * EXTERNAL = 1; */ public static final int EXTERNAL_VALUE = 1; public final int getNumber() { return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static DataLocation valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static DataLocation forNumber(int value) { switch (value) { case 0: return DEFAULT; case 1: return EXTERNAL; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< DataLocation> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public DataLocation findValueByNumber(int number) { return DataLocation.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return onnx.Onnx.TensorProto.getDescriptor().getEnumTypes().get(1); } private static final DataLocation[] VALUES = values(); public static DataLocation valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } return VALUES[desc.getIndex()]; } private final int value; private DataLocation(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:onnx.TensorProto.DataLocation) } public interface SegmentOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TensorProto.Segment) com.google.protobuf.MessageOrBuilder { /** * optional int64 begin = 1; * @return Whether the begin field is set. */ boolean hasBegin(); /** * optional int64 begin = 1; * @return The begin. */ long getBegin(); /** * optional int64 end = 2; * @return Whether the end field is set. */ boolean hasEnd(); /** * optional int64 end = 2; * @return The end. */ long getEnd(); } /** *
     * For very large tensors, we may want to store them in chunks, in which
     * case the following fields will specify the segment that is stored in
     * the current TensorProto.
     * 
* * Protobuf type {@code onnx.TensorProto.Segment} */ public static final class Segment extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TensorProto.Segment) SegmentOrBuilder { private static final long serialVersionUID = 0L; // Use Segment.newBuilder() to construct. private Segment(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Segment() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Segment(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorProto_Segment_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorProto_Segment_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorProto.Segment.class, onnx.Onnx.TensorProto.Segment.Builder.class); } private int bitField0_; public static final int BEGIN_FIELD_NUMBER = 1; private long begin_ = 0L; /** * optional int64 begin = 1; * @return Whether the begin field is set. */ @java.lang.Override public boolean hasBegin() { return ((bitField0_ & 0x00000001) != 0); } /** * optional int64 begin = 1; * @return The begin. */ @java.lang.Override public long getBegin() { return begin_; } public static final int END_FIELD_NUMBER = 2; private long end_ = 0L; /** * optional int64 end = 2; * @return Whether the end field is set. */ @java.lang.Override public boolean hasEnd() { return ((bitField0_ & 0x00000002) != 0); } /** * optional int64 end = 2; * @return The end. */ @java.lang.Override public long getEnd() { return end_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt64(1, begin_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeInt64(2, end_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(1, begin_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(2, end_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TensorProto.Segment)) { return super.equals(obj); } onnx.Onnx.TensorProto.Segment other = (onnx.Onnx.TensorProto.Segment) obj; if (hasBegin() != other.hasBegin()) return false; if (hasBegin()) { if (getBegin() != other.getBegin()) return false; } if (hasEnd() != other.hasEnd()) return false; if (hasEnd()) { if (getEnd() != other.getEnd()) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasBegin()) { hash = (37 * hash) + BEGIN_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getBegin()); } if (hasEnd()) { hash = (37 * hash) + END_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getEnd()); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TensorProto.Segment parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto.Segment parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto.Segment parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto.Segment parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto.Segment parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto.Segment parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto.Segment parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto.Segment parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorProto.Segment parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto.Segment parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorProto.Segment parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto.Segment parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TensorProto.Segment prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
       * For very large tensors, we may want to store them in chunks, in which
       * case the following fields will specify the segment that is stored in
       * the current TensorProto.
       * 
* * Protobuf type {@code onnx.TensorProto.Segment} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TensorProto.Segment) onnx.Onnx.TensorProto.SegmentOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorProto_Segment_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorProto_Segment_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorProto.Segment.class, onnx.Onnx.TensorProto.Segment.Builder.class); } // Construct using onnx.Onnx.TensorProto.Segment.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; begin_ = 0L; end_ = 0L; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TensorProto_Segment_descriptor; } @java.lang.Override public onnx.Onnx.TensorProto.Segment getDefaultInstanceForType() { return onnx.Onnx.TensorProto.Segment.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TensorProto.Segment build() { onnx.Onnx.TensorProto.Segment result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TensorProto.Segment buildPartial() { onnx.Onnx.TensorProto.Segment result = new onnx.Onnx.TensorProto.Segment(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TensorProto.Segment result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.begin_ = begin_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.end_ = end_; to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TensorProto.Segment) { return mergeFrom((onnx.Onnx.TensorProto.Segment)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TensorProto.Segment other) { if (other == onnx.Onnx.TensorProto.Segment.getDefaultInstance()) return this; if (other.hasBegin()) { setBegin(other.getBegin()); } if (other.hasEnd()) { setEnd(other.getEnd()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { begin_ = input.readInt64(); bitField0_ |= 0x00000001; break; } // case 8 case 16: { end_ = input.readInt64(); bitField0_ |= 0x00000002; break; } // case 16 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private long begin_ ; /** * optional int64 begin = 1; * @return Whether the begin field is set. */ @java.lang.Override public boolean hasBegin() { return ((bitField0_ & 0x00000001) != 0); } /** * optional int64 begin = 1; * @return The begin. */ @java.lang.Override public long getBegin() { return begin_; } /** * optional int64 begin = 1; * @param value The begin to set. * @return This builder for chaining. */ public Builder setBegin(long value) { begin_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * optional int64 begin = 1; * @return This builder for chaining. */ public Builder clearBegin() { bitField0_ = (bitField0_ & ~0x00000001); begin_ = 0L; onChanged(); return this; } private long end_ ; /** * optional int64 end = 2; * @return Whether the end field is set. */ @java.lang.Override public boolean hasEnd() { return ((bitField0_ & 0x00000002) != 0); } /** * optional int64 end = 2; * @return The end. */ @java.lang.Override public long getEnd() { return end_; } /** * optional int64 end = 2; * @param value The end to set. * @return This builder for chaining. */ public Builder setEnd(long value) { end_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional int64 end = 2; * @return This builder for chaining. */ public Builder clearEnd() { bitField0_ = (bitField0_ & ~0x00000002); end_ = 0L; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TensorProto.Segment) } // @@protoc_insertion_point(class_scope:onnx.TensorProto.Segment) private static final onnx.Onnx.TensorProto.Segment DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TensorProto.Segment(); } public static onnx.Onnx.TensorProto.Segment getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Segment parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TensorProto.Segment getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private int bitField0_; public static final int DIMS_FIELD_NUMBER = 1; @SuppressWarnings("serial") private com.google.protobuf.Internal.LongList dims_ = emptyLongList(); /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @return A list containing the dims. */ @java.lang.Override public java.util.List getDimsList() { return dims_; } /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @return The count of dims. */ public int getDimsCount() { return dims_.size(); } /** *
     * The shape of the tensor.
     * 
* * repeated int64 dims = 1; * @param index The index of the element to return. * @return The dims at the given index. */ public long getDims(int index) { return dims_.getLong(index); } public static final int DATA_TYPE_FIELD_NUMBER = 2; private int dataType_ = 0; /** *
     * The data type of the tensor.
     * This field MUST have a valid TensorProto.DataType value
     * 
* * optional int32 data_type = 2; * @return Whether the dataType field is set. */ @java.lang.Override public boolean hasDataType() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The data type of the tensor.
     * This field MUST have a valid TensorProto.DataType value
     * 
* * optional int32 data_type = 2; * @return The dataType. */ @java.lang.Override public int getDataType() { return dataType_; } public static final int SEGMENT_FIELD_NUMBER = 3; private onnx.Onnx.TensorProto.Segment segment_; /** * optional .onnx.TensorProto.Segment segment = 3; * @return Whether the segment field is set. */ @java.lang.Override public boolean hasSegment() { return ((bitField0_ & 0x00000002) != 0); } /** * optional .onnx.TensorProto.Segment segment = 3; * @return The segment. */ @java.lang.Override public onnx.Onnx.TensorProto.Segment getSegment() { return segment_ == null ? onnx.Onnx.TensorProto.Segment.getDefaultInstance() : segment_; } /** * optional .onnx.TensorProto.Segment segment = 3; */ @java.lang.Override public onnx.Onnx.TensorProto.SegmentOrBuilder getSegmentOrBuilder() { return segment_ == null ? onnx.Onnx.TensorProto.Segment.getDefaultInstance() : segment_; } public static final int FLOAT_DATA_FIELD_NUMBER = 4; @SuppressWarnings("serial") private com.google.protobuf.Internal.FloatList floatData_ = emptyFloatList(); /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @return A list containing the floatData. */ @java.lang.Override public java.util.List getFloatDataList() { return floatData_; } /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @return The count of floatData. */ public int getFloatDataCount() { return floatData_.size(); } /** *
     * For float and complex64 values
     * Complex64 tensors are encoded as a single array of floats,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
     * 
* * repeated float float_data = 4 [packed = true]; * @param index The index of the element to return. * @return The floatData at the given index. */ public float getFloatData(int index) { return floatData_.getFloat(index); } private int floatDataMemoizedSerializedSize = -1; public static final int INT32_DATA_FIELD_NUMBER = 5; @SuppressWarnings("serial") private com.google.protobuf.Internal.IntList int32Data_ = emptyIntList(); /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @return A list containing the int32Data. */ @java.lang.Override public java.util.List getInt32DataList() { return int32Data_; } /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @return The count of int32Data. */ public int getInt32DataCount() { return int32Data_.size(); } /** *
     * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
     * float16 and float8 values must be bit-wise converted to an uint16_t prior
     * to writing to the buffer.
     * When this field is present, the data_type field MUST be
     * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
     * 
* * repeated int32 int32_data = 5 [packed = true]; * @param index The index of the element to return. * @return The int32Data at the given index. */ public int getInt32Data(int index) { return int32Data_.getInt(index); } private int int32DataMemoizedSerializedSize = -1; public static final int STRING_DATA_FIELD_NUMBER = 6; @SuppressWarnings("serial") private com.google.protobuf.Internal.ProtobufList stringData_ = emptyList(com.google.protobuf.ByteString.class); /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @return A list containing the stringData. */ @java.lang.Override public java.util.List getStringDataList() { return stringData_; } /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @return The count of stringData. */ public int getStringDataCount() { return stringData_.size(); } /** *
     * For strings.
     * Each element of string_data is a UTF-8 encoded Unicode
     * string. No trailing null, no leading BOM. The protobuf "string"
     * scalar type is not used to match ML community conventions.
     * When this field is present, the data_type field MUST be STRING
     * 
* * repeated bytes string_data = 6; * @param index The index of the element to return. * @return The stringData at the given index. */ public com.google.protobuf.ByteString getStringData(int index) { return stringData_.get(index); } public static final int INT64_DATA_FIELD_NUMBER = 7; @SuppressWarnings("serial") private com.google.protobuf.Internal.LongList int64Data_ = emptyLongList(); /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @return A list containing the int64Data. */ @java.lang.Override public java.util.List getInt64DataList() { return int64Data_; } /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @return The count of int64Data. */ public int getInt64DataCount() { return int64Data_.size(); } /** *
     * For int64.
     * When this field is present, the data_type field MUST be INT64
     * 
* * repeated int64 int64_data = 7 [packed = true]; * @param index The index of the element to return. * @return The int64Data at the given index. */ public long getInt64Data(int index) { return int64Data_.getLong(index); } private int int64DataMemoizedSerializedSize = -1; public static final int NAME_FIELD_NUMBER = 8; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * Optionally, a name for the tensor.
     * 
* * optional string name = 8; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int DOC_STRING_FIELD_NUMBER = 12; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000008) != 0); } /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this tensor. Markdown is allowed.
     * 
* * optional string doc_string = 12; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int RAW_DATA_FIELD_NUMBER = 9; private com.google.protobuf.ByteString rawData_ = com.google.protobuf.ByteString.EMPTY; /** *
     * Serializations can either use one of the fields above, or use this
     * raw bytes field. The only exception is the string case, where one is
     * required to store the content in the repeated bytes string_data field.
     *
     * When this raw_data field is used to store tensor value, elements MUST
     * be stored in as fixed-width, little-endian order.
     * Floating-point data types MUST be stored in IEEE 754 format.
     * Complex64 elements must be written as two consecutive FLOAT values, real component first.
     * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
     * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
     *
     * Note: the advantage of specific field rather than the raw_data field is
     * that in some cases (e.g. int data), protobuf does a better packing via
     * variable length storage, and may lead to smaller binary footprint.
     * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
     * 
* * optional bytes raw_data = 9; * @return Whether the rawData field is set. */ @java.lang.Override public boolean hasRawData() { return ((bitField0_ & 0x00000010) != 0); } /** *
     * Serializations can either use one of the fields above, or use this
     * raw bytes field. The only exception is the string case, where one is
     * required to store the content in the repeated bytes string_data field.
     *
     * When this raw_data field is used to store tensor value, elements MUST
     * be stored in as fixed-width, little-endian order.
     * Floating-point data types MUST be stored in IEEE 754 format.
     * Complex64 elements must be written as two consecutive FLOAT values, real component first.
     * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
     * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
     *
     * Note: the advantage of specific field rather than the raw_data field is
     * that in some cases (e.g. int data), protobuf does a better packing via
     * variable length storage, and may lead to smaller binary footprint.
     * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
     * 
* * optional bytes raw_data = 9; * @return The rawData. */ @java.lang.Override public com.google.protobuf.ByteString getRawData() { return rawData_; } public static final int EXTERNAL_DATA_FIELD_NUMBER = 13; @SuppressWarnings("serial") private java.util.List externalData_; /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ @java.lang.Override public java.util.List getExternalDataList() { return externalData_; } /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ @java.lang.Override public java.util.List getExternalDataOrBuilderList() { return externalData_; } /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ @java.lang.Override public int getExternalDataCount() { return externalData_.size(); } /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ @java.lang.Override public onnx.Onnx.StringStringEntryProto getExternalData(int index) { return externalData_.get(index); } /** *
     * Data can be stored inside the protobuf file using type-specific fields or raw_data.
     * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
     * external_data stores key-value pairs describing data location. Recognized keys are:
     * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
     *                           protobuf model was stored
     * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
     *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
     * - "length" (optional) - number of bytes containing data. Integer stored as string.
     * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
     * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ @java.lang.Override public onnx.Onnx.StringStringEntryProtoOrBuilder getExternalDataOrBuilder( int index) { return externalData_.get(index); } public static final int DATA_LOCATION_FIELD_NUMBER = 14; private int dataLocation_ = 0; /** *
     * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
     * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return Whether the dataLocation field is set. */ @java.lang.Override public boolean hasDataLocation() { return ((bitField0_ & 0x00000020) != 0); } /** *
     * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
     * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return The dataLocation. */ @java.lang.Override public onnx.Onnx.TensorProto.DataLocation getDataLocation() { onnx.Onnx.TensorProto.DataLocation result = onnx.Onnx.TensorProto.DataLocation.forNumber(dataLocation_); return result == null ? onnx.Onnx.TensorProto.DataLocation.DEFAULT : result; } public static final int DOUBLE_DATA_FIELD_NUMBER = 10; @SuppressWarnings("serial") private com.google.protobuf.Internal.DoubleList doubleData_ = emptyDoubleList(); /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @return A list containing the doubleData. */ @java.lang.Override public java.util.List getDoubleDataList() { return doubleData_; } /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @return The count of doubleData. */ public int getDoubleDataCount() { return doubleData_.size(); } /** *
     * For double
     * Complex128 tensors are encoded as a single array of doubles,
     * with the real components appearing in odd numbered positions,
     * and the corresponding imaginary component appearing in the
     * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
     * is encoded as [1.0, 2.0 ,3.0 ,4.0]
     * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
     * 
* * repeated double double_data = 10 [packed = true]; * @param index The index of the element to return. * @return The doubleData at the given index. */ public double getDoubleData(int index) { return doubleData_.getDouble(index); } private int doubleDataMemoizedSerializedSize = -1; public static final int UINT64_DATA_FIELD_NUMBER = 11; @SuppressWarnings("serial") private com.google.protobuf.Internal.LongList uint64Data_ = emptyLongList(); /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return A list containing the uint64Data. */ @java.lang.Override public java.util.List getUint64DataList() { return uint64Data_; } /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return The count of uint64Data. */ public int getUint64DataCount() { return uint64Data_.size(); } /** *
     * For uint64 and uint32 values
     * When this field is present, the data_type field MUST be
     * UINT32 or UINT64
     * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param index The index of the element to return. * @return The uint64Data at the given index. */ public long getUint64Data(int index) { return uint64Data_.getLong(index); } private int uint64DataMemoizedSerializedSize = -1; private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); for (int i = 0; i < dims_.size(); i++) { output.writeInt64(1, dims_.getLong(i)); } if (((bitField0_ & 0x00000001) != 0)) { output.writeInt32(2, dataType_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(3, getSegment()); } if (getFloatDataList().size() > 0) { output.writeUInt32NoTag(34); output.writeUInt32NoTag(floatDataMemoizedSerializedSize); } for (int i = 0; i < floatData_.size(); i++) { output.writeFloatNoTag(floatData_.getFloat(i)); } if (getInt32DataList().size() > 0) { output.writeUInt32NoTag(42); output.writeUInt32NoTag(int32DataMemoizedSerializedSize); } for (int i = 0; i < int32Data_.size(); i++) { output.writeInt32NoTag(int32Data_.getInt(i)); } for (int i = 0; i < stringData_.size(); i++) { output.writeBytes(6, stringData_.get(i)); } if (getInt64DataList().size() > 0) { output.writeUInt32NoTag(58); output.writeUInt32NoTag(int64DataMemoizedSerializedSize); } for (int i = 0; i < int64Data_.size(); i++) { output.writeInt64NoTag(int64Data_.getLong(i)); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 8, name_); } if (((bitField0_ & 0x00000010) != 0)) { output.writeBytes(9, rawData_); } if (getDoubleDataList().size() > 0) { output.writeUInt32NoTag(82); output.writeUInt32NoTag(doubleDataMemoizedSerializedSize); } for (int i = 0; i < doubleData_.size(); i++) { output.writeDoubleNoTag(doubleData_.getDouble(i)); } if (getUint64DataList().size() > 0) { output.writeUInt32NoTag(90); output.writeUInt32NoTag(uint64DataMemoizedSerializedSize); } for (int i = 0; i < uint64Data_.size(); i++) { output.writeUInt64NoTag(uint64Data_.getLong(i)); } if (((bitField0_ & 0x00000008) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 12, docString_); } for (int i = 0; i < externalData_.size(); i++) { output.writeMessage(13, externalData_.get(i)); } if (((bitField0_ & 0x00000020) != 0)) { output.writeEnum(14, dataLocation_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < dims_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt64SizeNoTag(dims_.getLong(i)); } size += dataSize; size += 1 * getDimsList().size(); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(2, dataType_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, getSegment()); } { int dataSize = 0; dataSize = 4 * getFloatDataList().size(); size += dataSize; if (!getFloatDataList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } floatDataMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < int32Data_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(int32Data_.getInt(i)); } size += dataSize; if (!getInt32DataList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } int32DataMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < stringData_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeBytesSizeNoTag(stringData_.get(i)); } size += dataSize; size += 1 * getStringDataList().size(); } { int dataSize = 0; for (int i = 0; i < int64Data_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt64SizeNoTag(int64Data_.getLong(i)); } size += dataSize; if (!getInt64DataList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } int64DataMemoizedSerializedSize = dataSize; } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(8, name_); } if (((bitField0_ & 0x00000010) != 0)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(9, rawData_); } { int dataSize = 0; dataSize = 8 * getDoubleDataList().size(); size += dataSize; if (!getDoubleDataList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } doubleDataMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < uint64Data_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(uint64Data_.getLong(i)); } size += dataSize; if (!getUint64DataList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } uint64DataMemoizedSerializedSize = dataSize; } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(12, docString_); } for (int i = 0; i < externalData_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(13, externalData_.get(i)); } if (((bitField0_ & 0x00000020) != 0)) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(14, dataLocation_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TensorProto)) { return super.equals(obj); } onnx.Onnx.TensorProto other = (onnx.Onnx.TensorProto) obj; if (!getDimsList() .equals(other.getDimsList())) return false; if (hasDataType() != other.hasDataType()) return false; if (hasDataType()) { if (getDataType() != other.getDataType()) return false; } if (hasSegment() != other.hasSegment()) return false; if (hasSegment()) { if (!getSegment() .equals(other.getSegment())) return false; } if (!getFloatDataList() .equals(other.getFloatDataList())) return false; if (!getInt32DataList() .equals(other.getInt32DataList())) return false; if (!getStringDataList() .equals(other.getStringDataList())) return false; if (!getInt64DataList() .equals(other.getInt64DataList())) return false; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (hasRawData() != other.hasRawData()) return false; if (hasRawData()) { if (!getRawData() .equals(other.getRawData())) return false; } if (!getExternalDataList() .equals(other.getExternalDataList())) return false; if (hasDataLocation() != other.hasDataLocation()) return false; if (hasDataLocation()) { if (dataLocation_ != other.dataLocation_) return false; } if (!getDoubleDataList() .equals(other.getDoubleDataList())) return false; if (!getUint64DataList() .equals(other.getUint64DataList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getDimsCount() > 0) { hash = (37 * hash) + DIMS_FIELD_NUMBER; hash = (53 * hash) + getDimsList().hashCode(); } if (hasDataType()) { hash = (37 * hash) + DATA_TYPE_FIELD_NUMBER; hash = (53 * hash) + getDataType(); } if (hasSegment()) { hash = (37 * hash) + SEGMENT_FIELD_NUMBER; hash = (53 * hash) + getSegment().hashCode(); } if (getFloatDataCount() > 0) { hash = (37 * hash) + FLOAT_DATA_FIELD_NUMBER; hash = (53 * hash) + getFloatDataList().hashCode(); } if (getInt32DataCount() > 0) { hash = (37 * hash) + INT32_DATA_FIELD_NUMBER; hash = (53 * hash) + getInt32DataList().hashCode(); } if (getStringDataCount() > 0) { hash = (37 * hash) + STRING_DATA_FIELD_NUMBER; hash = (53 * hash) + getStringDataList().hashCode(); } if (getInt64DataCount() > 0) { hash = (37 * hash) + INT64_DATA_FIELD_NUMBER; hash = (53 * hash) + getInt64DataList().hashCode(); } if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } if (hasRawData()) { hash = (37 * hash) + RAW_DATA_FIELD_NUMBER; hash = (53 * hash) + getRawData().hashCode(); } if (getExternalDataCount() > 0) { hash = (37 * hash) + EXTERNAL_DATA_FIELD_NUMBER; hash = (53 * hash) + getExternalDataList().hashCode(); } if (hasDataLocation()) { hash = (37 * hash) + DATA_LOCATION_FIELD_NUMBER; hash = (53 * hash) + dataLocation_; } if (getDoubleDataCount() > 0) { hash = (37 * hash) + DOUBLE_DATA_FIELD_NUMBER; hash = (53 * hash) + getDoubleDataList().hashCode(); } if (getUint64DataCount() > 0) { hash = (37 * hash) + UINT64_DATA_FIELD_NUMBER; hash = (53 * hash) + getUint64DataList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TensorProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TensorProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Tensors
     *
     * A serialized tensor value.
     * 
* * Protobuf type {@code onnx.TensorProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TensorProto) onnx.Onnx.TensorProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorProto.class, onnx.Onnx.TensorProto.Builder.class); } // Construct using onnx.Onnx.TensorProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getSegmentFieldBuilder(); getExternalDataFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; dims_ = emptyLongList(); dataType_ = 0; segment_ = null; if (segmentBuilder_ != null) { segmentBuilder_.dispose(); segmentBuilder_ = null; } floatData_ = emptyFloatList(); int32Data_ = emptyIntList(); stringData_ = emptyList(com.google.protobuf.ByteString.class); int64Data_ = emptyLongList(); name_ = ""; docString_ = ""; rawData_ = com.google.protobuf.ByteString.EMPTY; if (externalDataBuilder_ == null) { externalData_ = java.util.Collections.emptyList(); } else { externalData_ = null; externalDataBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000400); dataLocation_ = 0; doubleData_ = emptyDoubleList(); uint64Data_ = emptyLongList(); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TensorProto_descriptor; } @java.lang.Override public onnx.Onnx.TensorProto getDefaultInstanceForType() { return onnx.Onnx.TensorProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TensorProto build() { onnx.Onnx.TensorProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TensorProto buildPartial() { onnx.Onnx.TensorProto result = new onnx.Onnx.TensorProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.TensorProto result) { if (externalDataBuilder_ == null) { if (((bitField0_ & 0x00000400) != 0)) { externalData_ = java.util.Collections.unmodifiableList(externalData_); bitField0_ = (bitField0_ & ~0x00000400); } result.externalData_ = externalData_; } else { result.externalData_ = externalDataBuilder_.build(); } } private void buildPartial0(onnx.Onnx.TensorProto result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { dims_.makeImmutable(); result.dims_ = dims_; } int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000002) != 0)) { result.dataType_ = dataType_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000004) != 0)) { result.segment_ = segmentBuilder_ == null ? segment_ : segmentBuilder_.build(); to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000008) != 0)) { floatData_.makeImmutable(); result.floatData_ = floatData_; } if (((from_bitField0_ & 0x00000010) != 0)) { int32Data_.makeImmutable(); result.int32Data_ = int32Data_; } if (((from_bitField0_ & 0x00000020) != 0)) { stringData_.makeImmutable(); result.stringData_ = stringData_; } if (((from_bitField0_ & 0x00000040) != 0)) { int64Data_.makeImmutable(); result.int64Data_ = int64Data_; } if (((from_bitField0_ & 0x00000080) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000100) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000008; } if (((from_bitField0_ & 0x00000200) != 0)) { result.rawData_ = rawData_; to_bitField0_ |= 0x00000010; } if (((from_bitField0_ & 0x00000800) != 0)) { result.dataLocation_ = dataLocation_; to_bitField0_ |= 0x00000020; } if (((from_bitField0_ & 0x00001000) != 0)) { doubleData_.makeImmutable(); result.doubleData_ = doubleData_; } if (((from_bitField0_ & 0x00002000) != 0)) { uint64Data_.makeImmutable(); result.uint64Data_ = uint64Data_; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TensorProto) { return mergeFrom((onnx.Onnx.TensorProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TensorProto other) { if (other == onnx.Onnx.TensorProto.getDefaultInstance()) return this; if (!other.dims_.isEmpty()) { if (dims_.isEmpty()) { dims_ = other.dims_; dims_.makeImmutable(); bitField0_ |= 0x00000001; } else { ensureDimsIsMutable(); dims_.addAll(other.dims_); } onChanged(); } if (other.hasDataType()) { setDataType(other.getDataType()); } if (other.hasSegment()) { mergeSegment(other.getSegment()); } if (!other.floatData_.isEmpty()) { if (floatData_.isEmpty()) { floatData_ = other.floatData_; floatData_.makeImmutable(); bitField0_ |= 0x00000008; } else { ensureFloatDataIsMutable(); floatData_.addAll(other.floatData_); } onChanged(); } if (!other.int32Data_.isEmpty()) { if (int32Data_.isEmpty()) { int32Data_ = other.int32Data_; int32Data_.makeImmutable(); bitField0_ |= 0x00000010; } else { ensureInt32DataIsMutable(); int32Data_.addAll(other.int32Data_); } onChanged(); } if (!other.stringData_.isEmpty()) { if (stringData_.isEmpty()) { stringData_ = other.stringData_; stringData_.makeImmutable(); bitField0_ |= 0x00000020; } else { ensureStringDataIsMutable(); stringData_.addAll(other.stringData_); } onChanged(); } if (!other.int64Data_.isEmpty()) { if (int64Data_.isEmpty()) { int64Data_ = other.int64Data_; int64Data_.makeImmutable(); bitField0_ |= 0x00000040; } else { ensureInt64DataIsMutable(); int64Data_.addAll(other.int64Data_); } onChanged(); } if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000080; onChanged(); } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000100; onChanged(); } if (other.hasRawData()) { setRawData(other.getRawData()); } if (externalDataBuilder_ == null) { if (!other.externalData_.isEmpty()) { if (externalData_.isEmpty()) { externalData_ = other.externalData_; bitField0_ = (bitField0_ & ~0x00000400); } else { ensureExternalDataIsMutable(); externalData_.addAll(other.externalData_); } onChanged(); } } else { if (!other.externalData_.isEmpty()) { if (externalDataBuilder_.isEmpty()) { externalDataBuilder_.dispose(); externalDataBuilder_ = null; externalData_ = other.externalData_; bitField0_ = (bitField0_ & ~0x00000400); externalDataBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getExternalDataFieldBuilder() : null; } else { externalDataBuilder_.addAllMessages(other.externalData_); } } } if (other.hasDataLocation()) { setDataLocation(other.getDataLocation()); } if (!other.doubleData_.isEmpty()) { if (doubleData_.isEmpty()) { doubleData_ = other.doubleData_; doubleData_.makeImmutable(); bitField0_ |= 0x00001000; } else { ensureDoubleDataIsMutable(); doubleData_.addAll(other.doubleData_); } onChanged(); } if (!other.uint64Data_.isEmpty()) { if (uint64Data_.isEmpty()) { uint64Data_ = other.uint64Data_; uint64Data_.makeImmutable(); bitField0_ |= 0x00002000; } else { ensureUint64DataIsMutable(); uint64Data_.addAll(other.uint64Data_); } onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { long v = input.readInt64(); ensureDimsIsMutable(); dims_.addLong(v); break; } // case 8 case 10: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureDimsIsMutable(); while (input.getBytesUntilLimit() > 0) { dims_.addLong(input.readInt64()); } input.popLimit(limit); break; } // case 10 case 16: { dataType_ = input.readInt32(); bitField0_ |= 0x00000002; break; } // case 16 case 26: { input.readMessage( getSegmentFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000004; break; } // case 26 case 37: { float v = input.readFloat(); ensureFloatDataIsMutable(); floatData_.addFloat(v); break; } // case 37 case 34: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); int alloc = length > 4096 ? 4096 : length; ensureFloatDataIsMutable(alloc / 4); while (input.getBytesUntilLimit() > 0) { floatData_.addFloat(input.readFloat()); } input.popLimit(limit); break; } // case 34 case 40: { int v = input.readInt32(); ensureInt32DataIsMutable(); int32Data_.addInt(v); break; } // case 40 case 42: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureInt32DataIsMutable(); while (input.getBytesUntilLimit() > 0) { int32Data_.addInt(input.readInt32()); } input.popLimit(limit); break; } // case 42 case 50: { com.google.protobuf.ByteString v = input.readBytes(); ensureStringDataIsMutable(); stringData_.add(v); break; } // case 50 case 56: { long v = input.readInt64(); ensureInt64DataIsMutable(); int64Data_.addLong(v); break; } // case 56 case 58: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureInt64DataIsMutable(); while (input.getBytesUntilLimit() > 0) { int64Data_.addLong(input.readInt64()); } input.popLimit(limit); break; } // case 58 case 66: { name_ = input.readBytes(); bitField0_ |= 0x00000080; break; } // case 66 case 74: { rawData_ = input.readBytes(); bitField0_ |= 0x00000200; break; } // case 74 case 81: { double v = input.readDouble(); ensureDoubleDataIsMutable(); doubleData_.addDouble(v); break; } // case 81 case 82: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); int alloc = length > 4096 ? 4096 : length; ensureDoubleDataIsMutable(alloc / 8); while (input.getBytesUntilLimit() > 0) { doubleData_.addDouble(input.readDouble()); } input.popLimit(limit); break; } // case 82 case 88: { long v = input.readUInt64(); ensureUint64DataIsMutable(); uint64Data_.addLong(v); break; } // case 88 case 90: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureUint64DataIsMutable(); while (input.getBytesUntilLimit() > 0) { uint64Data_.addLong(input.readUInt64()); } input.popLimit(limit); break; } // case 90 case 98: { docString_ = input.readBytes(); bitField0_ |= 0x00000100; break; } // case 98 case 106: { onnx.Onnx.StringStringEntryProto m = input.readMessage( onnx.Onnx.StringStringEntryProto.PARSER, extensionRegistry); if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); externalData_.add(m); } else { externalDataBuilder_.addMessage(m); } break; } // case 106 case 112: { int tmpRaw = input.readEnum(); onnx.Onnx.TensorProto.DataLocation tmpValue = onnx.Onnx.TensorProto.DataLocation.forNumber(tmpRaw); if (tmpValue == null) { mergeUnknownVarintField(14, tmpRaw); } else { dataLocation_ = tmpRaw; bitField0_ |= 0x00000800; } break; } // case 112 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.google.protobuf.Internal.LongList dims_ = emptyLongList(); private void ensureDimsIsMutable() { if (!dims_.isModifiable()) { dims_ = makeMutableCopy(dims_); } bitField0_ |= 0x00000001; } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @return A list containing the dims. */ public java.util.List getDimsList() { dims_.makeImmutable(); return dims_; } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @return The count of dims. */ public int getDimsCount() { return dims_.size(); } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @param index The index of the element to return. * @return The dims at the given index. */ public long getDims(int index) { return dims_.getLong(index); } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @param index The index to set the value at. * @param value The dims to set. * @return This builder for chaining. */ public Builder setDims( int index, long value) { ensureDimsIsMutable(); dims_.setLong(index, value); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @param value The dims to add. * @return This builder for chaining. */ public Builder addDims(long value) { ensureDimsIsMutable(); dims_.addLong(value); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @param values The dims to add. * @return This builder for chaining. */ public Builder addAllDims( java.lang.Iterable values) { ensureDimsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, dims_); bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The shape of the tensor.
       * 
* * repeated int64 dims = 1; * @return This builder for chaining. */ public Builder clearDims() { dims_ = emptyLongList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } private int dataType_ ; /** *
       * The data type of the tensor.
       * This field MUST have a valid TensorProto.DataType value
       * 
* * optional int32 data_type = 2; * @return Whether the dataType field is set. */ @java.lang.Override public boolean hasDataType() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * The data type of the tensor.
       * This field MUST have a valid TensorProto.DataType value
       * 
* * optional int32 data_type = 2; * @return The dataType. */ @java.lang.Override public int getDataType() { return dataType_; } /** *
       * The data type of the tensor.
       * This field MUST have a valid TensorProto.DataType value
       * 
* * optional int32 data_type = 2; * @param value The dataType to set. * @return This builder for chaining. */ public Builder setDataType(int value) { dataType_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The data type of the tensor.
       * This field MUST have a valid TensorProto.DataType value
       * 
* * optional int32 data_type = 2; * @return This builder for chaining. */ public Builder clearDataType() { bitField0_ = (bitField0_ & ~0x00000002); dataType_ = 0; onChanged(); return this; } private onnx.Onnx.TensorProto.Segment segment_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto.Segment, onnx.Onnx.TensorProto.Segment.Builder, onnx.Onnx.TensorProto.SegmentOrBuilder> segmentBuilder_; /** * optional .onnx.TensorProto.Segment segment = 3; * @return Whether the segment field is set. */ public boolean hasSegment() { return ((bitField0_ & 0x00000004) != 0); } /** * optional .onnx.TensorProto.Segment segment = 3; * @return The segment. */ public onnx.Onnx.TensorProto.Segment getSegment() { if (segmentBuilder_ == null) { return segment_ == null ? onnx.Onnx.TensorProto.Segment.getDefaultInstance() : segment_; } else { return segmentBuilder_.getMessage(); } } /** * optional .onnx.TensorProto.Segment segment = 3; */ public Builder setSegment(onnx.Onnx.TensorProto.Segment value) { if (segmentBuilder_ == null) { if (value == null) { throw new NullPointerException(); } segment_ = value; } else { segmentBuilder_.setMessage(value); } bitField0_ |= 0x00000004; onChanged(); return this; } /** * optional .onnx.TensorProto.Segment segment = 3; */ public Builder setSegment( onnx.Onnx.TensorProto.Segment.Builder builderForValue) { if (segmentBuilder_ == null) { segment_ = builderForValue.build(); } else { segmentBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000004; onChanged(); return this; } /** * optional .onnx.TensorProto.Segment segment = 3; */ public Builder mergeSegment(onnx.Onnx.TensorProto.Segment value) { if (segmentBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0) && segment_ != null && segment_ != onnx.Onnx.TensorProto.Segment.getDefaultInstance()) { getSegmentBuilder().mergeFrom(value); } else { segment_ = value; } } else { segmentBuilder_.mergeFrom(value); } if (segment_ != null) { bitField0_ |= 0x00000004; onChanged(); } return this; } /** * optional .onnx.TensorProto.Segment segment = 3; */ public Builder clearSegment() { bitField0_ = (bitField0_ & ~0x00000004); segment_ = null; if (segmentBuilder_ != null) { segmentBuilder_.dispose(); segmentBuilder_ = null; } onChanged(); return this; } /** * optional .onnx.TensorProto.Segment segment = 3; */ public onnx.Onnx.TensorProto.Segment.Builder getSegmentBuilder() { bitField0_ |= 0x00000004; onChanged(); return getSegmentFieldBuilder().getBuilder(); } /** * optional .onnx.TensorProto.Segment segment = 3; */ public onnx.Onnx.TensorProto.SegmentOrBuilder getSegmentOrBuilder() { if (segmentBuilder_ != null) { return segmentBuilder_.getMessageOrBuilder(); } else { return segment_ == null ? onnx.Onnx.TensorProto.Segment.getDefaultInstance() : segment_; } } /** * optional .onnx.TensorProto.Segment segment = 3; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto.Segment, onnx.Onnx.TensorProto.Segment.Builder, onnx.Onnx.TensorProto.SegmentOrBuilder> getSegmentFieldBuilder() { if (segmentBuilder_ == null) { segmentBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto.Segment, onnx.Onnx.TensorProto.Segment.Builder, onnx.Onnx.TensorProto.SegmentOrBuilder>( getSegment(), getParentForChildren(), isClean()); segment_ = null; } return segmentBuilder_; } private com.google.protobuf.Internal.FloatList floatData_ = emptyFloatList(); private void ensureFloatDataIsMutable() { if (!floatData_.isModifiable()) { floatData_ = makeMutableCopy(floatData_); } bitField0_ |= 0x00000008; } private void ensureFloatDataIsMutable(int capacity) { if (!floatData_.isModifiable()) { floatData_ = makeMutableCopy(floatData_, capacity); } bitField0_ |= 0x00000008; } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @return A list containing the floatData. */ public java.util.List getFloatDataList() { floatData_.makeImmutable(); return floatData_; } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @return The count of floatData. */ public int getFloatDataCount() { return floatData_.size(); } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @param index The index of the element to return. * @return The floatData at the given index. */ public float getFloatData(int index) { return floatData_.getFloat(index); } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @param index The index to set the value at. * @param value The floatData to set. * @return This builder for chaining. */ public Builder setFloatData( int index, float value) { ensureFloatDataIsMutable(); floatData_.setFloat(index, value); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @param value The floatData to add. * @return This builder for chaining. */ public Builder addFloatData(float value) { ensureFloatDataIsMutable(); floatData_.addFloat(value); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @param values The floatData to add. * @return This builder for chaining. */ public Builder addAllFloatData( java.lang.Iterable values) { ensureFloatDataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, floatData_); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * For float and complex64 values
       * Complex64 tensors are encoded as a single array of floats,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
       * 
* * repeated float float_data = 4 [packed = true]; * @return This builder for chaining. */ public Builder clearFloatData() { floatData_ = emptyFloatList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); return this; } private com.google.protobuf.Internal.IntList int32Data_ = emptyIntList(); private void ensureInt32DataIsMutable() { if (!int32Data_.isModifiable()) { int32Data_ = makeMutableCopy(int32Data_); } bitField0_ |= 0x00000010; } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @return A list containing the int32Data. */ public java.util.List getInt32DataList() { int32Data_.makeImmutable(); return int32Data_; } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @return The count of int32Data. */ public int getInt32DataCount() { return int32Data_.size(); } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @param index The index of the element to return. * @return The int32Data at the given index. */ public int getInt32Data(int index) { return int32Data_.getInt(index); } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @param index The index to set the value at. * @param value The int32Data to set. * @return This builder for chaining. */ public Builder setInt32Data( int index, int value) { ensureInt32DataIsMutable(); int32Data_.setInt(index, value); bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @param value The int32Data to add. * @return This builder for chaining. */ public Builder addInt32Data(int value) { ensureInt32DataIsMutable(); int32Data_.addInt(value); bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @param values The int32Data to add. * @return This builder for chaining. */ public Builder addAllInt32Data( java.lang.Iterable values) { ensureInt32DataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, int32Data_); bitField0_ |= 0x00000010; onChanged(); return this; } /** *
       * For int32, uint8, int8, uint16, int16, bool, float8, and float16 values
       * float16 and float8 values must be bit-wise converted to an uint16_t prior
       * to writing to the buffer.
       * When this field is present, the data_type field MUST be
       * INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ
       * 
* * repeated int32 int32_data = 5 [packed = true]; * @return This builder for chaining. */ public Builder clearInt32Data() { int32Data_ = emptyIntList(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } private com.google.protobuf.Internal.ProtobufList stringData_ = emptyList(com.google.protobuf.ByteString.class); private void ensureStringDataIsMutable() { if (!stringData_.isModifiable()) { stringData_ = makeMutableCopy(stringData_); } bitField0_ |= 0x00000020; } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @return A list containing the stringData. */ public java.util.List getStringDataList() { stringData_.makeImmutable(); return stringData_; } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @return The count of stringData. */ public int getStringDataCount() { return stringData_.size(); } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @param index The index of the element to return. * @return The stringData at the given index. */ public com.google.protobuf.ByteString getStringData(int index) { return stringData_.get(index); } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @param index The index to set the value at. * @param value The stringData to set. * @return This builder for chaining. */ public Builder setStringData( int index, com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureStringDataIsMutable(); stringData_.set(index, value); bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @param value The stringData to add. * @return This builder for chaining. */ public Builder addStringData(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureStringDataIsMutable(); stringData_.add(value); bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @param values The stringData to add. * @return This builder for chaining. */ public Builder addAllStringData( java.lang.Iterable values) { ensureStringDataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, stringData_); bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * For strings.
       * Each element of string_data is a UTF-8 encoded Unicode
       * string. No trailing null, no leading BOM. The protobuf "string"
       * scalar type is not used to match ML community conventions.
       * When this field is present, the data_type field MUST be STRING
       * 
* * repeated bytes string_data = 6; * @return This builder for chaining. */ public Builder clearStringData() { stringData_ = emptyList(com.google.protobuf.ByteString.class); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); return this; } private com.google.protobuf.Internal.LongList int64Data_ = emptyLongList(); private void ensureInt64DataIsMutable() { if (!int64Data_.isModifiable()) { int64Data_ = makeMutableCopy(int64Data_); } bitField0_ |= 0x00000040; } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @return A list containing the int64Data. */ public java.util.List getInt64DataList() { int64Data_.makeImmutable(); return int64Data_; } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @return The count of int64Data. */ public int getInt64DataCount() { return int64Data_.size(); } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @param index The index of the element to return. * @return The int64Data at the given index. */ public long getInt64Data(int index) { return int64Data_.getLong(index); } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @param index The index to set the value at. * @param value The int64Data to set. * @return This builder for chaining. */ public Builder setInt64Data( int index, long value) { ensureInt64DataIsMutable(); int64Data_.setLong(index, value); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @param value The int64Data to add. * @return This builder for chaining. */ public Builder addInt64Data(long value) { ensureInt64DataIsMutable(); int64Data_.addLong(value); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @param values The int64Data to add. * @return This builder for chaining. */ public Builder addAllInt64Data( java.lang.Iterable values) { ensureInt64DataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, int64Data_); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * For int64.
       * When this field is present, the data_type field MUST be INT64
       * 
* * repeated int64 int64_data = 7 [packed = true]; * @return This builder for chaining. */ public Builder clearInt64Data() { int64Data_ = emptyLongList(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); return this; } private java.lang.Object name_ = ""; /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000080) != 0); } /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000080); onChanged(); return this; } /** *
       * Optionally, a name for the tensor.
       * 
* * optional string name = 8; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000100) != 0); } /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000100); onChanged(); return this; } /** *
       * A human-readable documentation for this tensor. Markdown is allowed.
       * 
* * optional string doc_string = 12; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } private com.google.protobuf.ByteString rawData_ = com.google.protobuf.ByteString.EMPTY; /** *
       * Serializations can either use one of the fields above, or use this
       * raw bytes field. The only exception is the string case, where one is
       * required to store the content in the repeated bytes string_data field.
       *
       * When this raw_data field is used to store tensor value, elements MUST
       * be stored in as fixed-width, little-endian order.
       * Floating-point data types MUST be stored in IEEE 754 format.
       * Complex64 elements must be written as two consecutive FLOAT values, real component first.
       * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
       * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
       *
       * Note: the advantage of specific field rather than the raw_data field is
       * that in some cases (e.g. int data), protobuf does a better packing via
       * variable length storage, and may lead to smaller binary footprint.
       * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
       * 
* * optional bytes raw_data = 9; * @return Whether the rawData field is set. */ @java.lang.Override public boolean hasRawData() { return ((bitField0_ & 0x00000200) != 0); } /** *
       * Serializations can either use one of the fields above, or use this
       * raw bytes field. The only exception is the string case, where one is
       * required to store the content in the repeated bytes string_data field.
       *
       * When this raw_data field is used to store tensor value, elements MUST
       * be stored in as fixed-width, little-endian order.
       * Floating-point data types MUST be stored in IEEE 754 format.
       * Complex64 elements must be written as two consecutive FLOAT values, real component first.
       * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
       * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
       *
       * Note: the advantage of specific field rather than the raw_data field is
       * that in some cases (e.g. int data), protobuf does a better packing via
       * variable length storage, and may lead to smaller binary footprint.
       * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
       * 
* * optional bytes raw_data = 9; * @return The rawData. */ @java.lang.Override public com.google.protobuf.ByteString getRawData() { return rawData_; } /** *
       * Serializations can either use one of the fields above, or use this
       * raw bytes field. The only exception is the string case, where one is
       * required to store the content in the repeated bytes string_data field.
       *
       * When this raw_data field is used to store tensor value, elements MUST
       * be stored in as fixed-width, little-endian order.
       * Floating-point data types MUST be stored in IEEE 754 format.
       * Complex64 elements must be written as two consecutive FLOAT values, real component first.
       * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
       * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
       *
       * Note: the advantage of specific field rather than the raw_data field is
       * that in some cases (e.g. int data), protobuf does a better packing via
       * variable length storage, and may lead to smaller binary footprint.
       * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
       * 
* * optional bytes raw_data = 9; * @param value The rawData to set. * @return This builder for chaining. */ public Builder setRawData(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } rawData_ = value; bitField0_ |= 0x00000200; onChanged(); return this; } /** *
       * Serializations can either use one of the fields above, or use this
       * raw bytes field. The only exception is the string case, where one is
       * required to store the content in the repeated bytes string_data field.
       *
       * When this raw_data field is used to store tensor value, elements MUST
       * be stored in as fixed-width, little-endian order.
       * Floating-point data types MUST be stored in IEEE 754 format.
       * Complex64 elements must be written as two consecutive FLOAT values, real component first.
       * Complex128 elements must be written as two consecutive DOUBLE values, real component first.
       * Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
       *
       * Note: the advantage of specific field rather than the raw_data field is
       * that in some cases (e.g. int data), protobuf does a better packing via
       * variable length storage, and may lead to smaller binary footprint.
       * When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
       * 
* * optional bytes raw_data = 9; * @return This builder for chaining. */ public Builder clearRawData() { bitField0_ = (bitField0_ & ~0x00000200); rawData_ = getDefaultInstance().getRawData(); onChanged(); return this; } private java.util.List externalData_ = java.util.Collections.emptyList(); private void ensureExternalDataIsMutable() { if (!((bitField0_ & 0x00000400) != 0)) { externalData_ = new java.util.ArrayList(externalData_); bitField0_ |= 0x00000400; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> externalDataBuilder_; /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public java.util.List getExternalDataList() { if (externalDataBuilder_ == null) { return java.util.Collections.unmodifiableList(externalData_); } else { return externalDataBuilder_.getMessageList(); } } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public int getExternalDataCount() { if (externalDataBuilder_ == null) { return externalData_.size(); } else { return externalDataBuilder_.getCount(); } } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public onnx.Onnx.StringStringEntryProto getExternalData(int index) { if (externalDataBuilder_ == null) { return externalData_.get(index); } else { return externalDataBuilder_.getMessage(index); } } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder setExternalData( int index, onnx.Onnx.StringStringEntryProto value) { if (externalDataBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExternalDataIsMutable(); externalData_.set(index, value); onChanged(); } else { externalDataBuilder_.setMessage(index, value); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder setExternalData( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); externalData_.set(index, builderForValue.build()); onChanged(); } else { externalDataBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder addExternalData(onnx.Onnx.StringStringEntryProto value) { if (externalDataBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExternalDataIsMutable(); externalData_.add(value); onChanged(); } else { externalDataBuilder_.addMessage(value); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder addExternalData( int index, onnx.Onnx.StringStringEntryProto value) { if (externalDataBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureExternalDataIsMutable(); externalData_.add(index, value); onChanged(); } else { externalDataBuilder_.addMessage(index, value); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder addExternalData( onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); externalData_.add(builderForValue.build()); onChanged(); } else { externalDataBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder addExternalData( int index, onnx.Onnx.StringStringEntryProto.Builder builderForValue) { if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); externalData_.add(index, builderForValue.build()); onChanged(); } else { externalDataBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder addAllExternalData( java.lang.Iterable values) { if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, externalData_); onChanged(); } else { externalDataBuilder_.addAllMessages(values); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder clearExternalData() { if (externalDataBuilder_ == null) { externalData_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000400); onChanged(); } else { externalDataBuilder_.clear(); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public Builder removeExternalData(int index) { if (externalDataBuilder_ == null) { ensureExternalDataIsMutable(); externalData_.remove(index); onChanged(); } else { externalDataBuilder_.remove(index); } return this; } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public onnx.Onnx.StringStringEntryProto.Builder getExternalDataBuilder( int index) { return getExternalDataFieldBuilder().getBuilder(index); } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public onnx.Onnx.StringStringEntryProtoOrBuilder getExternalDataOrBuilder( int index) { if (externalDataBuilder_ == null) { return externalData_.get(index); } else { return externalDataBuilder_.getMessageOrBuilder(index); } } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public java.util.List getExternalDataOrBuilderList() { if (externalDataBuilder_ != null) { return externalDataBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(externalData_); } } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public onnx.Onnx.StringStringEntryProto.Builder addExternalDataBuilder() { return getExternalDataFieldBuilder().addBuilder( onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public onnx.Onnx.StringStringEntryProto.Builder addExternalDataBuilder( int index) { return getExternalDataFieldBuilder().addBuilder( index, onnx.Onnx.StringStringEntryProto.getDefaultInstance()); } /** *
       * Data can be stored inside the protobuf file using type-specific fields or raw_data.
       * Alternatively, raw bytes data can be stored in an external file, using the external_data field.
       * external_data stores key-value pairs describing data location. Recognized keys are:
       * - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
       *                           protobuf model was stored
       * - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
       *                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
       * - "length" (optional) - number of bytes containing data. Integer stored as string.
       * - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
       * 
* * repeated .onnx.StringStringEntryProto external_data = 13; */ public java.util.List getExternalDataBuilderList() { return getExternalDataFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder> getExternalDataFieldBuilder() { if (externalDataBuilder_ == null) { externalDataBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.StringStringEntryProto, onnx.Onnx.StringStringEntryProto.Builder, onnx.Onnx.StringStringEntryProtoOrBuilder>( externalData_, ((bitField0_ & 0x00000400) != 0), getParentForChildren(), isClean()); externalData_ = null; } return externalDataBuilder_; } private int dataLocation_ = 0; /** *
       * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
       * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return Whether the dataLocation field is set. */ @java.lang.Override public boolean hasDataLocation() { return ((bitField0_ & 0x00000800) != 0); } /** *
       * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
       * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return The dataLocation. */ @java.lang.Override public onnx.Onnx.TensorProto.DataLocation getDataLocation() { onnx.Onnx.TensorProto.DataLocation result = onnx.Onnx.TensorProto.DataLocation.forNumber(dataLocation_); return result == null ? onnx.Onnx.TensorProto.DataLocation.DEFAULT : result; } /** *
       * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
       * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @param value The dataLocation to set. * @return This builder for chaining. */ public Builder setDataLocation(onnx.Onnx.TensorProto.DataLocation value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000800; dataLocation_ = value.getNumber(); onChanged(); return this; } /** *
       * If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
       * 
* * optional .onnx.TensorProto.DataLocation data_location = 14; * @return This builder for chaining. */ public Builder clearDataLocation() { bitField0_ = (bitField0_ & ~0x00000800); dataLocation_ = 0; onChanged(); return this; } private com.google.protobuf.Internal.DoubleList doubleData_ = emptyDoubleList(); private void ensureDoubleDataIsMutable() { if (!doubleData_.isModifiable()) { doubleData_ = makeMutableCopy(doubleData_); } bitField0_ |= 0x00001000; } private void ensureDoubleDataIsMutable(int capacity) { if (!doubleData_.isModifiable()) { doubleData_ = makeMutableCopy(doubleData_, capacity); } bitField0_ |= 0x00001000; } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @return A list containing the doubleData. */ public java.util.List getDoubleDataList() { doubleData_.makeImmutable(); return doubleData_; } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @return The count of doubleData. */ public int getDoubleDataCount() { return doubleData_.size(); } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @param index The index of the element to return. * @return The doubleData at the given index. */ public double getDoubleData(int index) { return doubleData_.getDouble(index); } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @param index The index to set the value at. * @param value The doubleData to set. * @return This builder for chaining. */ public Builder setDoubleData( int index, double value) { ensureDoubleDataIsMutable(); doubleData_.setDouble(index, value); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @param value The doubleData to add. * @return This builder for chaining. */ public Builder addDoubleData(double value) { ensureDoubleDataIsMutable(); doubleData_.addDouble(value); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @param values The doubleData to add. * @return This builder for chaining. */ public Builder addAllDoubleData( java.lang.Iterable values) { ensureDoubleDataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, doubleData_); bitField0_ |= 0x00001000; onChanged(); return this; } /** *
       * For double
       * Complex128 tensors are encoded as a single array of doubles,
       * with the real components appearing in odd numbered positions,
       * and the corresponding imaginary component appearing in the
       * subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
       * is encoded as [1.0, 2.0 ,3.0 ,4.0]
       * When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
       * 
* * repeated double double_data = 10 [packed = true]; * @return This builder for chaining. */ public Builder clearDoubleData() { doubleData_ = emptyDoubleList(); bitField0_ = (bitField0_ & ~0x00001000); onChanged(); return this; } private com.google.protobuf.Internal.LongList uint64Data_ = emptyLongList(); private void ensureUint64DataIsMutable() { if (!uint64Data_.isModifiable()) { uint64Data_ = makeMutableCopy(uint64Data_); } bitField0_ |= 0x00002000; } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return A list containing the uint64Data. */ public java.util.List getUint64DataList() { uint64Data_.makeImmutable(); return uint64Data_; } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return The count of uint64Data. */ public int getUint64DataCount() { return uint64Data_.size(); } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param index The index of the element to return. * @return The uint64Data at the given index. */ public long getUint64Data(int index) { return uint64Data_.getLong(index); } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param index The index to set the value at. * @param value The uint64Data to set. * @return This builder for chaining. */ public Builder setUint64Data( int index, long value) { ensureUint64DataIsMutable(); uint64Data_.setLong(index, value); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param value The uint64Data to add. * @return This builder for chaining. */ public Builder addUint64Data(long value) { ensureUint64DataIsMutable(); uint64Data_.addLong(value); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @param values The uint64Data to add. * @return This builder for chaining. */ public Builder addAllUint64Data( java.lang.Iterable values) { ensureUint64DataIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, uint64Data_); bitField0_ |= 0x00002000; onChanged(); return this; } /** *
       * For uint64 and uint32 values
       * When this field is present, the data_type field MUST be
       * UINT32 or UINT64
       * 
* * repeated uint64 uint64_data = 11 [packed = true]; * @return This builder for chaining. */ public Builder clearUint64Data() { uint64Data_ = emptyLongList(); bitField0_ = (bitField0_ & ~0x00002000); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TensorProto) } // @@protoc_insertion_point(class_scope:onnx.TensorProto) private static final onnx.Onnx.TensorProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TensorProto(); } public static onnx.Onnx.TensorProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TensorProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TensorProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface SparseTensorProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.SparseTensorProto) com.google.protobuf.MessageOrBuilder { /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; * @return Whether the values field is set. */ boolean hasValues(); /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; * @return The values. */ onnx.Onnx.TensorProto getValues(); /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; */ onnx.Onnx.TensorProtoOrBuilder getValuesOrBuilder(); /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; * @return Whether the indices field is set. */ boolean hasIndices(); /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; * @return The indices. */ onnx.Onnx.TensorProto getIndices(); /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; */ onnx.Onnx.TensorProtoOrBuilder getIndicesOrBuilder(); /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @return A list containing the dims. */ java.util.List getDimsList(); /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @return The count of dims. */ int getDimsCount(); /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @param index The index of the element to return. * @return The dims at the given index. */ long getDims(int index); } /** *
   * A serialized sparse-tensor value
   * 
* * Protobuf type {@code onnx.SparseTensorProto} */ public static final class SparseTensorProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.SparseTensorProto) SparseTensorProtoOrBuilder { private static final long serialVersionUID = 0L; // Use SparseTensorProto.newBuilder() to construct. private SparseTensorProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private SparseTensorProto() { dims_ = emptyLongList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new SparseTensorProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_SparseTensorProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_SparseTensorProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.SparseTensorProto.class, onnx.Onnx.SparseTensorProto.Builder.class); } private int bitField0_; public static final int VALUES_FIELD_NUMBER = 1; private onnx.Onnx.TensorProto values_; /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; * @return Whether the values field is set. */ @java.lang.Override public boolean hasValues() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; * @return The values. */ @java.lang.Override public onnx.Onnx.TensorProto getValues() { return values_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : values_; } /** *
     * The sequence of non-default values are encoded as a tensor of shape [NNZ].
     * The default-value is zero for numeric tensors, and empty-string for string tensors.
     * values must have a non-empty name present which serves as a name for SparseTensorProto
     * when used in sparse_initializer list.
     * 
* * optional .onnx.TensorProto values = 1; */ @java.lang.Override public onnx.Onnx.TensorProtoOrBuilder getValuesOrBuilder() { return values_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : values_; } public static final int INDICES_FIELD_NUMBER = 2; private onnx.Onnx.TensorProto indices_; /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; * @return Whether the indices field is set. */ @java.lang.Override public boolean hasIndices() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; * @return The indices. */ @java.lang.Override public onnx.Onnx.TensorProto getIndices() { return indices_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : indices_; } /** *
     * The indices of the non-default values, which may be stored in one of two formats.
     * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
     * corresponding to the j-th index of the i-th value (in the values tensor).
     * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
     * must be the linearized-index of the i-th value (in the values tensor).
     * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
     * using the shape provided below.
     * The indices must appear in ascending order without duplication.
     * In the first format, the ordering is lexicographic-ordering:
     * e.g., index-value [1,4] must appear before [2,1]
     * 
* * optional .onnx.TensorProto indices = 2; */ @java.lang.Override public onnx.Onnx.TensorProtoOrBuilder getIndicesOrBuilder() { return indices_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : indices_; } public static final int DIMS_FIELD_NUMBER = 3; @SuppressWarnings("serial") private com.google.protobuf.Internal.LongList dims_ = emptyLongList(); /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @return A list containing the dims. */ @java.lang.Override public java.util.List getDimsList() { return dims_; } /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @return The count of dims. */ public int getDimsCount() { return dims_.size(); } /** *
     * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
     * 
* * repeated int64 dims = 3; * @param index The index of the element to return. * @return The dims at the given index. */ public long getDims(int index) { return dims_.getLong(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getValues()); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getIndices()); } for (int i = 0; i < dims_.size(); i++) { output.writeInt64(3, dims_.getLong(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getValues()); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getIndices()); } { int dataSize = 0; for (int i = 0; i < dims_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt64SizeNoTag(dims_.getLong(i)); } size += dataSize; size += 1 * getDimsList().size(); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.SparseTensorProto)) { return super.equals(obj); } onnx.Onnx.SparseTensorProto other = (onnx.Onnx.SparseTensorProto) obj; if (hasValues() != other.hasValues()) return false; if (hasValues()) { if (!getValues() .equals(other.getValues())) return false; } if (hasIndices() != other.hasIndices()) return false; if (hasIndices()) { if (!getIndices() .equals(other.getIndices())) return false; } if (!getDimsList() .equals(other.getDimsList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasValues()) { hash = (37 * hash) + VALUES_FIELD_NUMBER; hash = (53 * hash) + getValues().hashCode(); } if (hasIndices()) { hash = (37 * hash) + INDICES_FIELD_NUMBER; hash = (53 * hash) + getIndices().hashCode(); } if (getDimsCount() > 0) { hash = (37 * hash) + DIMS_FIELD_NUMBER; hash = (53 * hash) + getDimsList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.SparseTensorProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.SparseTensorProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.SparseTensorProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.SparseTensorProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.SparseTensorProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.SparseTensorProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.SparseTensorProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.SparseTensorProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.SparseTensorProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.SparseTensorProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.SparseTensorProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.SparseTensorProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.SparseTensorProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * A serialized sparse-tensor value
     * 
* * Protobuf type {@code onnx.SparseTensorProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.SparseTensorProto) onnx.Onnx.SparseTensorProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_SparseTensorProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_SparseTensorProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.SparseTensorProto.class, onnx.Onnx.SparseTensorProto.Builder.class); } // Construct using onnx.Onnx.SparseTensorProto.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getValuesFieldBuilder(); getIndicesFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; values_ = null; if (valuesBuilder_ != null) { valuesBuilder_.dispose(); valuesBuilder_ = null; } indices_ = null; if (indicesBuilder_ != null) { indicesBuilder_.dispose(); indicesBuilder_ = null; } dims_ = emptyLongList(); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_SparseTensorProto_descriptor; } @java.lang.Override public onnx.Onnx.SparseTensorProto getDefaultInstanceForType() { return onnx.Onnx.SparseTensorProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.SparseTensorProto build() { onnx.Onnx.SparseTensorProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.SparseTensorProto buildPartial() { onnx.Onnx.SparseTensorProto result = new onnx.Onnx.SparseTensorProto(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.SparseTensorProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.values_ = valuesBuilder_ == null ? values_ : valuesBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.indices_ = indicesBuilder_ == null ? indices_ : indicesBuilder_.build(); to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000004) != 0)) { dims_.makeImmutable(); result.dims_ = dims_; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.SparseTensorProto) { return mergeFrom((onnx.Onnx.SparseTensorProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.SparseTensorProto other) { if (other == onnx.Onnx.SparseTensorProto.getDefaultInstance()) return this; if (other.hasValues()) { mergeValues(other.getValues()); } if (other.hasIndices()) { mergeIndices(other.getIndices()); } if (!other.dims_.isEmpty()) { if (dims_.isEmpty()) { dims_ = other.dims_; dims_.makeImmutable(); bitField0_ |= 0x00000004; } else { ensureDimsIsMutable(); dims_.addAll(other.dims_); } onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getValuesFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 case 18: { input.readMessage( getIndicesFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 case 24: { long v = input.readInt64(); ensureDimsIsMutable(); dims_.addLong(v); break; } // case 24 case 26: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureDimsIsMutable(); while (input.getBytesUntilLimit() > 0) { dims_.addLong(input.readInt64()); } input.popLimit(limit); break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private onnx.Onnx.TensorProto values_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> valuesBuilder_; /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; * @return Whether the values field is set. */ public boolean hasValues() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; * @return The values. */ public onnx.Onnx.TensorProto getValues() { if (valuesBuilder_ == null) { return values_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : values_; } else { return valuesBuilder_.getMessage(); } } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public Builder setValues(onnx.Onnx.TensorProto value) { if (valuesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } values_ = value; } else { valuesBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public Builder setValues( onnx.Onnx.TensorProto.Builder builderForValue) { if (valuesBuilder_ == null) { values_ = builderForValue.build(); } else { valuesBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public Builder mergeValues(onnx.Onnx.TensorProto value) { if (valuesBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && values_ != null && values_ != onnx.Onnx.TensorProto.getDefaultInstance()) { getValuesBuilder().mergeFrom(value); } else { values_ = value; } } else { valuesBuilder_.mergeFrom(value); } if (values_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public Builder clearValues() { bitField0_ = (bitField0_ & ~0x00000001); values_ = null; if (valuesBuilder_ != null) { valuesBuilder_.dispose(); valuesBuilder_ = null; } onChanged(); return this; } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public onnx.Onnx.TensorProto.Builder getValuesBuilder() { bitField0_ |= 0x00000001; onChanged(); return getValuesFieldBuilder().getBuilder(); } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ public onnx.Onnx.TensorProtoOrBuilder getValuesOrBuilder() { if (valuesBuilder_ != null) { return valuesBuilder_.getMessageOrBuilder(); } else { return values_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : values_; } } /** *
       * The sequence of non-default values are encoded as a tensor of shape [NNZ].
       * The default-value is zero for numeric tensors, and empty-string for string tensors.
       * values must have a non-empty name present which serves as a name for SparseTensorProto
       * when used in sparse_initializer list.
       * 
* * optional .onnx.TensorProto values = 1; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> getValuesFieldBuilder() { if (valuesBuilder_ == null) { valuesBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder>( getValues(), getParentForChildren(), isClean()); values_ = null; } return valuesBuilder_; } private onnx.Onnx.TensorProto indices_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> indicesBuilder_; /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; * @return Whether the indices field is set. */ public boolean hasIndices() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; * @return The indices. */ public onnx.Onnx.TensorProto getIndices() { if (indicesBuilder_ == null) { return indices_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : indices_; } else { return indicesBuilder_.getMessage(); } } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public Builder setIndices(onnx.Onnx.TensorProto value) { if (indicesBuilder_ == null) { if (value == null) { throw new NullPointerException(); } indices_ = value; } else { indicesBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public Builder setIndices( onnx.Onnx.TensorProto.Builder builderForValue) { if (indicesBuilder_ == null) { indices_ = builderForValue.build(); } else { indicesBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public Builder mergeIndices(onnx.Onnx.TensorProto value) { if (indicesBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && indices_ != null && indices_ != onnx.Onnx.TensorProto.getDefaultInstance()) { getIndicesBuilder().mergeFrom(value); } else { indices_ = value; } } else { indicesBuilder_.mergeFrom(value); } if (indices_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public Builder clearIndices() { bitField0_ = (bitField0_ & ~0x00000002); indices_ = null; if (indicesBuilder_ != null) { indicesBuilder_.dispose(); indicesBuilder_ = null; } onChanged(); return this; } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public onnx.Onnx.TensorProto.Builder getIndicesBuilder() { bitField0_ |= 0x00000002; onChanged(); return getIndicesFieldBuilder().getBuilder(); } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ public onnx.Onnx.TensorProtoOrBuilder getIndicesOrBuilder() { if (indicesBuilder_ != null) { return indicesBuilder_.getMessageOrBuilder(); } else { return indices_ == null ? onnx.Onnx.TensorProto.getDefaultInstance() : indices_; } } /** *
       * The indices of the non-default values, which may be stored in one of two formats.
       * (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
       * corresponding to the j-th index of the i-th value (in the values tensor).
       * (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
       * must be the linearized-index of the i-th value (in the values tensor).
       * The linearized-index can be converted into an index tuple (k_1,...,k_rank)
       * using the shape provided below.
       * The indices must appear in ascending order without duplication.
       * In the first format, the ordering is lexicographic-ordering:
       * e.g., index-value [1,4] must appear before [2,1]
       * 
* * optional .onnx.TensorProto indices = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder> getIndicesFieldBuilder() { if (indicesBuilder_ == null) { indicesBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorProto, onnx.Onnx.TensorProto.Builder, onnx.Onnx.TensorProtoOrBuilder>( getIndices(), getParentForChildren(), isClean()); indices_ = null; } return indicesBuilder_; } private com.google.protobuf.Internal.LongList dims_ = emptyLongList(); private void ensureDimsIsMutable() { if (!dims_.isModifiable()) { dims_ = makeMutableCopy(dims_); } bitField0_ |= 0x00000004; } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @return A list containing the dims. */ public java.util.List getDimsList() { dims_.makeImmutable(); return dims_; } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @return The count of dims. */ public int getDimsCount() { return dims_.size(); } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @param index The index of the element to return. * @return The dims at the given index. */ public long getDims(int index) { return dims_.getLong(index); } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @param index The index to set the value at. * @param value The dims to set. * @return This builder for chaining. */ public Builder setDims( int index, long value) { ensureDimsIsMutable(); dims_.setLong(index, value); bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @param value The dims to add. * @return This builder for chaining. */ public Builder addDims(long value) { ensureDimsIsMutable(); dims_.addLong(value); bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @param values The dims to add. * @return This builder for chaining. */ public Builder addAllDims( java.lang.Iterable values) { ensureDimsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, dims_); bitField0_ |= 0x00000004; onChanged(); return this; } /** *
       * The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
       * 
* * repeated int64 dims = 3; * @return This builder for chaining. */ public Builder clearDims() { dims_ = emptyLongList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.SparseTensorProto) } // @@protoc_insertion_point(class_scope:onnx.SparseTensorProto) private static final onnx.Onnx.SparseTensorProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.SparseTensorProto(); } public static onnx.Onnx.SparseTensorProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public SparseTensorProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.SparseTensorProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TensorShapeProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TensorShapeProto) com.google.protobuf.MessageOrBuilder { /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ java.util.List getDimList(); /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ onnx.Onnx.TensorShapeProto.Dimension getDim(int index); /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ int getDimCount(); /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ java.util.List getDimOrBuilderList(); /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ onnx.Onnx.TensorShapeProto.DimensionOrBuilder getDimOrBuilder( int index); } /** *
   * Defines a tensor shape. A dimension can be either an integer value
   * or a symbolic variable. A symbolic variable represents an unknown
   * dimension.
   * 
* * Protobuf type {@code onnx.TensorShapeProto} */ public static final class TensorShapeProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TensorShapeProto) TensorShapeProtoOrBuilder { private static final long serialVersionUID = 0L; // Use TensorShapeProto.newBuilder() to construct. private TensorShapeProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TensorShapeProto() { dim_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new TensorShapeProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorShapeProto.class, onnx.Onnx.TensorShapeProto.Builder.class); } public interface DimensionOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TensorShapeProto.Dimension) com.google.protobuf.MessageOrBuilder { /** * int64 dim_value = 1; * @return Whether the dimValue field is set. */ boolean hasDimValue(); /** * int64 dim_value = 1; * @return The dimValue. */ long getDimValue(); /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return Whether the dimParam field is set. */ boolean hasDimParam(); /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return The dimParam. */ java.lang.String getDimParam(); /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return The bytes for dimParam. */ com.google.protobuf.ByteString getDimParamBytes(); /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return Whether the denotation field is set. */ boolean hasDenotation(); /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return The denotation. */ java.lang.String getDenotation(); /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return The bytes for denotation. */ com.google.protobuf.ByteString getDenotationBytes(); onnx.Onnx.TensorShapeProto.Dimension.ValueCase getValueCase(); } /** * Protobuf type {@code onnx.TensorShapeProto.Dimension} */ public static final class Dimension extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TensorShapeProto.Dimension) DimensionOrBuilder { private static final long serialVersionUID = 0L; // Use Dimension.newBuilder() to construct. private Dimension(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Dimension() { denotation_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Dimension(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_Dimension_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_Dimension_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorShapeProto.Dimension.class, onnx.Onnx.TensorShapeProto.Dimension.Builder.class); } private int bitField0_; private int valueCase_ = 0; @SuppressWarnings("serial") private java.lang.Object value_; public enum ValueCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { DIM_VALUE(1), DIM_PARAM(2), VALUE_NOT_SET(0); private final int value; private ValueCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static ValueCase valueOf(int value) { return forNumber(value); } public static ValueCase forNumber(int value) { switch (value) { case 1: return DIM_VALUE; case 2: return DIM_PARAM; case 0: return VALUE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public ValueCase getValueCase() { return ValueCase.forNumber( valueCase_); } public static final int DIM_VALUE_FIELD_NUMBER = 1; /** * int64 dim_value = 1; * @return Whether the dimValue field is set. */ @java.lang.Override public boolean hasDimValue() { return valueCase_ == 1; } /** * int64 dim_value = 1; * @return The dimValue. */ @java.lang.Override public long getDimValue() { if (valueCase_ == 1) { return (java.lang.Long) value_; } return 0L; } public static final int DIM_PARAM_FIELD_NUMBER = 2; /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return Whether the dimParam field is set. */ public boolean hasDimParam() { return valueCase_ == 2; } /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return The dimParam. */ public java.lang.String getDimParam() { java.lang.Object ref = ""; if (valueCase_ == 2) { ref = value_; } if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8() && (valueCase_ == 2)) { value_ = s; } return s; } } /** *
       * namespace Shape
       * 
* * string dim_param = 2; * @return The bytes for dimParam. */ public com.google.protobuf.ByteString getDimParamBytes() { java.lang.Object ref = ""; if (valueCase_ == 2) { ref = value_; } if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); if (valueCase_ == 2) { value_ = b; } return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int DENOTATION_FIELD_NUMBER = 3; @SuppressWarnings("serial") private volatile java.lang.Object denotation_ = ""; /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return Whether the denotation field is set. */ @java.lang.Override public boolean hasDenotation() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return The denotation. */ @java.lang.Override public java.lang.String getDenotation() { java.lang.Object ref = denotation_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { denotation_ = s; } return s; } } /** *
       * Standard denotation can optionally be used to denote tensor
       * dimensions with standard semantic descriptions to ensure
       * that operations are applied to the correct axis of a tensor.
       * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
       * for pre-defined dimension denotations.
       * 
* * optional string denotation = 3; * @return The bytes for denotation. */ @java.lang.Override public com.google.protobuf.ByteString getDenotationBytes() { java.lang.Object ref = denotation_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); denotation_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (valueCase_ == 1) { output.writeInt64( 1, (long)((java.lang.Long) value_)); } if (valueCase_ == 2) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, value_); } if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, denotation_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (valueCase_ == 1) { size += com.google.protobuf.CodedOutputStream .computeInt64Size( 1, (long)((java.lang.Long) value_)); } if (valueCase_ == 2) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, value_); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, denotation_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TensorShapeProto.Dimension)) { return super.equals(obj); } onnx.Onnx.TensorShapeProto.Dimension other = (onnx.Onnx.TensorShapeProto.Dimension) obj; if (hasDenotation() != other.hasDenotation()) return false; if (hasDenotation()) { if (!getDenotation() .equals(other.getDenotation())) return false; } if (!getValueCase().equals(other.getValueCase())) return false; switch (valueCase_) { case 1: if (getDimValue() != other.getDimValue()) return false; break; case 2: if (!getDimParam() .equals(other.getDimParam())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasDenotation()) { hash = (37 * hash) + DENOTATION_FIELD_NUMBER; hash = (53 * hash) + getDenotation().hashCode(); } switch (valueCase_) { case 1: hash = (37 * hash) + DIM_VALUE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getDimValue()); break; case 2: hash = (37 * hash) + DIM_PARAM_FIELD_NUMBER; hash = (53 * hash) + getDimParam().hashCode(); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorShapeProto.Dimension parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto.Dimension parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto.Dimension parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TensorShapeProto.Dimension prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code onnx.TensorShapeProto.Dimension} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TensorShapeProto.Dimension) onnx.Onnx.TensorShapeProto.DimensionOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_Dimension_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_Dimension_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorShapeProto.Dimension.class, onnx.Onnx.TensorShapeProto.Dimension.Builder.class); } // Construct using onnx.Onnx.TensorShapeProto.Dimension.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; denotation_ = ""; valueCase_ = 0; value_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_Dimension_descriptor; } @java.lang.Override public onnx.Onnx.TensorShapeProto.Dimension getDefaultInstanceForType() { return onnx.Onnx.TensorShapeProto.Dimension.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TensorShapeProto.Dimension build() { onnx.Onnx.TensorShapeProto.Dimension result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TensorShapeProto.Dimension buildPartial() { onnx.Onnx.TensorShapeProto.Dimension result = new onnx.Onnx.TensorShapeProto.Dimension(this); if (bitField0_ != 0) { buildPartial0(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TensorShapeProto.Dimension result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000004) != 0)) { result.denotation_ = denotation_; to_bitField0_ |= 0x00000001; } result.bitField0_ |= to_bitField0_; } private void buildPartialOneofs(onnx.Onnx.TensorShapeProto.Dimension result) { result.valueCase_ = valueCase_; result.value_ = this.value_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TensorShapeProto.Dimension) { return mergeFrom((onnx.Onnx.TensorShapeProto.Dimension)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TensorShapeProto.Dimension other) { if (other == onnx.Onnx.TensorShapeProto.Dimension.getDefaultInstance()) return this; if (other.hasDenotation()) { denotation_ = other.denotation_; bitField0_ |= 0x00000004; onChanged(); } switch (other.getValueCase()) { case DIM_VALUE: { setDimValue(other.getDimValue()); break; } case DIM_PARAM: { valueCase_ = 2; value_ = other.value_; onChanged(); break; } case VALUE_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { value_ = input.readInt64(); valueCase_ = 1; break; } // case 8 case 18: { com.google.protobuf.ByteString bs = input.readBytes(); valueCase_ = 2; value_ = bs; break; } // case 18 case 26: { denotation_ = input.readBytes(); bitField0_ |= 0x00000004; break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int valueCase_ = 0; private java.lang.Object value_; public ValueCase getValueCase() { return ValueCase.forNumber( valueCase_); } public Builder clearValue() { valueCase_ = 0; value_ = null; onChanged(); return this; } private int bitField0_; /** * int64 dim_value = 1; * @return Whether the dimValue field is set. */ public boolean hasDimValue() { return valueCase_ == 1; } /** * int64 dim_value = 1; * @return The dimValue. */ public long getDimValue() { if (valueCase_ == 1) { return (java.lang.Long) value_; } return 0L; } /** * int64 dim_value = 1; * @param value The dimValue to set. * @return This builder for chaining. */ public Builder setDimValue(long value) { valueCase_ = 1; value_ = value; onChanged(); return this; } /** * int64 dim_value = 1; * @return This builder for chaining. */ public Builder clearDimValue() { if (valueCase_ == 1) { valueCase_ = 0; value_ = null; onChanged(); } return this; } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @return Whether the dimParam field is set. */ @java.lang.Override public boolean hasDimParam() { return valueCase_ == 2; } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @return The dimParam. */ @java.lang.Override public java.lang.String getDimParam() { java.lang.Object ref = ""; if (valueCase_ == 2) { ref = value_; } if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (valueCase_ == 2) { if (bs.isValidUtf8()) { value_ = s; } } return s; } else { return (java.lang.String) ref; } } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @return The bytes for dimParam. */ @java.lang.Override public com.google.protobuf.ByteString getDimParamBytes() { java.lang.Object ref = ""; if (valueCase_ == 2) { ref = value_; } if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); if (valueCase_ == 2) { value_ = b; } return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @param value The dimParam to set. * @return This builder for chaining. */ public Builder setDimParam( java.lang.String value) { if (value == null) { throw new NullPointerException(); } valueCase_ = 2; value_ = value; onChanged(); return this; } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @return This builder for chaining. */ public Builder clearDimParam() { if (valueCase_ == 2) { valueCase_ = 0; value_ = null; onChanged(); } return this; } /** *
         * namespace Shape
         * 
* * string dim_param = 2; * @param value The bytes for dimParam to set. * @return This builder for chaining. */ public Builder setDimParamBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } valueCase_ = 2; value_ = value; onChanged(); return this; } private java.lang.Object denotation_ = ""; /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @return Whether the denotation field is set. */ public boolean hasDenotation() { return ((bitField0_ & 0x00000004) != 0); } /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @return The denotation. */ public java.lang.String getDenotation() { java.lang.Object ref = denotation_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { denotation_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @return The bytes for denotation. */ public com.google.protobuf.ByteString getDenotationBytes() { java.lang.Object ref = denotation_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); denotation_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @param value The denotation to set. * @return This builder for chaining. */ public Builder setDenotation( java.lang.String value) { if (value == null) { throw new NullPointerException(); } denotation_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @return This builder for chaining. */ public Builder clearDenotation() { denotation_ = getDefaultInstance().getDenotation(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
         * Standard denotation can optionally be used to denote tensor
         * dimensions with standard semantic descriptions to ensure
         * that operations are applied to the correct axis of a tensor.
         * Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition
         * for pre-defined dimension denotations.
         * 
* * optional string denotation = 3; * @param value The bytes for denotation to set. * @return This builder for chaining. */ public Builder setDenotationBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } denotation_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TensorShapeProto.Dimension) } // @@protoc_insertion_point(class_scope:onnx.TensorShapeProto.Dimension) private static final onnx.Onnx.TensorShapeProto.Dimension DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TensorShapeProto.Dimension(); } public static onnx.Onnx.TensorShapeProto.Dimension getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Dimension parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TensorShapeProto.Dimension getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public static final int DIM_FIELD_NUMBER = 1; @SuppressWarnings("serial") private java.util.List dim_; /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ @java.lang.Override public java.util.List getDimList() { return dim_; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ @java.lang.Override public java.util.List getDimOrBuilderList() { return dim_; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ @java.lang.Override public int getDimCount() { return dim_.size(); } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ @java.lang.Override public onnx.Onnx.TensorShapeProto.Dimension getDim(int index) { return dim_.get(index); } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ @java.lang.Override public onnx.Onnx.TensorShapeProto.DimensionOrBuilder getDimOrBuilder( int index) { return dim_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < dim_.size(); i++) { output.writeMessage(1, dim_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; for (int i = 0; i < dim_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, dim_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TensorShapeProto)) { return super.equals(obj); } onnx.Onnx.TensorShapeProto other = (onnx.Onnx.TensorShapeProto) obj; if (!getDimList() .equals(other.getDimList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getDimCount() > 0) { hash = (37 * hash) + DIM_FIELD_NUMBER; hash = (53 * hash) + getDimList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TensorShapeProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TensorShapeProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TensorShapeProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorShapeProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TensorShapeProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TensorShapeProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TensorShapeProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Defines a tensor shape. A dimension can be either an integer value
     * or a symbolic variable. A symbolic variable represents an unknown
     * dimension.
     * 
* * Protobuf type {@code onnx.TensorShapeProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TensorShapeProto) onnx.Onnx.TensorShapeProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TensorShapeProto.class, onnx.Onnx.TensorShapeProto.Builder.class); } // Construct using onnx.Onnx.TensorShapeProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (dimBuilder_ == null) { dim_ = java.util.Collections.emptyList(); } else { dim_ = null; dimBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000001); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TensorShapeProto_descriptor; } @java.lang.Override public onnx.Onnx.TensorShapeProto getDefaultInstanceForType() { return onnx.Onnx.TensorShapeProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TensorShapeProto build() { onnx.Onnx.TensorShapeProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TensorShapeProto buildPartial() { onnx.Onnx.TensorShapeProto result = new onnx.Onnx.TensorShapeProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.TensorShapeProto result) { if (dimBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0)) { dim_ = java.util.Collections.unmodifiableList(dim_); bitField0_ = (bitField0_ & ~0x00000001); } result.dim_ = dim_; } else { result.dim_ = dimBuilder_.build(); } } private void buildPartial0(onnx.Onnx.TensorShapeProto result) { int from_bitField0_ = bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TensorShapeProto) { return mergeFrom((onnx.Onnx.TensorShapeProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TensorShapeProto other) { if (other == onnx.Onnx.TensorShapeProto.getDefaultInstance()) return this; if (dimBuilder_ == null) { if (!other.dim_.isEmpty()) { if (dim_.isEmpty()) { dim_ = other.dim_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureDimIsMutable(); dim_.addAll(other.dim_); } onChanged(); } } else { if (!other.dim_.isEmpty()) { if (dimBuilder_.isEmpty()) { dimBuilder_.dispose(); dimBuilder_ = null; dim_ = other.dim_; bitField0_ = (bitField0_ & ~0x00000001); dimBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getDimFieldBuilder() : null; } else { dimBuilder_.addAllMessages(other.dim_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { onnx.Onnx.TensorShapeProto.Dimension m = input.readMessage( onnx.Onnx.TensorShapeProto.Dimension.PARSER, extensionRegistry); if (dimBuilder_ == null) { ensureDimIsMutable(); dim_.add(m); } else { dimBuilder_.addMessage(m); } break; } // case 10 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.util.List dim_ = java.util.Collections.emptyList(); private void ensureDimIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { dim_ = new java.util.ArrayList(dim_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorShapeProto.Dimension, onnx.Onnx.TensorShapeProto.Dimension.Builder, onnx.Onnx.TensorShapeProto.DimensionOrBuilder> dimBuilder_; /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public java.util.List getDimList() { if (dimBuilder_ == null) { return java.util.Collections.unmodifiableList(dim_); } else { return dimBuilder_.getMessageList(); } } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public int getDimCount() { if (dimBuilder_ == null) { return dim_.size(); } else { return dimBuilder_.getCount(); } } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public onnx.Onnx.TensorShapeProto.Dimension getDim(int index) { if (dimBuilder_ == null) { return dim_.get(index); } else { return dimBuilder_.getMessage(index); } } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder setDim( int index, onnx.Onnx.TensorShapeProto.Dimension value) { if (dimBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureDimIsMutable(); dim_.set(index, value); onChanged(); } else { dimBuilder_.setMessage(index, value); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder setDim( int index, onnx.Onnx.TensorShapeProto.Dimension.Builder builderForValue) { if (dimBuilder_ == null) { ensureDimIsMutable(); dim_.set(index, builderForValue.build()); onChanged(); } else { dimBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder addDim(onnx.Onnx.TensorShapeProto.Dimension value) { if (dimBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureDimIsMutable(); dim_.add(value); onChanged(); } else { dimBuilder_.addMessage(value); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder addDim( int index, onnx.Onnx.TensorShapeProto.Dimension value) { if (dimBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureDimIsMutable(); dim_.add(index, value); onChanged(); } else { dimBuilder_.addMessage(index, value); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder addDim( onnx.Onnx.TensorShapeProto.Dimension.Builder builderForValue) { if (dimBuilder_ == null) { ensureDimIsMutable(); dim_.add(builderForValue.build()); onChanged(); } else { dimBuilder_.addMessage(builderForValue.build()); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder addDim( int index, onnx.Onnx.TensorShapeProto.Dimension.Builder builderForValue) { if (dimBuilder_ == null) { ensureDimIsMutable(); dim_.add(index, builderForValue.build()); onChanged(); } else { dimBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder addAllDim( java.lang.Iterable values) { if (dimBuilder_ == null) { ensureDimIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, dim_); onChanged(); } else { dimBuilder_.addAllMessages(values); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder clearDim() { if (dimBuilder_ == null) { dim_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { dimBuilder_.clear(); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public Builder removeDim(int index) { if (dimBuilder_ == null) { ensureDimIsMutable(); dim_.remove(index); onChanged(); } else { dimBuilder_.remove(index); } return this; } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public onnx.Onnx.TensorShapeProto.Dimension.Builder getDimBuilder( int index) { return getDimFieldBuilder().getBuilder(index); } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public onnx.Onnx.TensorShapeProto.DimensionOrBuilder getDimOrBuilder( int index) { if (dimBuilder_ == null) { return dim_.get(index); } else { return dimBuilder_.getMessageOrBuilder(index); } } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public java.util.List getDimOrBuilderList() { if (dimBuilder_ != null) { return dimBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(dim_); } } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public onnx.Onnx.TensorShapeProto.Dimension.Builder addDimBuilder() { return getDimFieldBuilder().addBuilder( onnx.Onnx.TensorShapeProto.Dimension.getDefaultInstance()); } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public onnx.Onnx.TensorShapeProto.Dimension.Builder addDimBuilder( int index) { return getDimFieldBuilder().addBuilder( index, onnx.Onnx.TensorShapeProto.Dimension.getDefaultInstance()); } /** * repeated .onnx.TensorShapeProto.Dimension dim = 1; */ public java.util.List getDimBuilderList() { return getDimFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorShapeProto.Dimension, onnx.Onnx.TensorShapeProto.Dimension.Builder, onnx.Onnx.TensorShapeProto.DimensionOrBuilder> getDimFieldBuilder() { if (dimBuilder_ == null) { dimBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.TensorShapeProto.Dimension, onnx.Onnx.TensorShapeProto.Dimension.Builder, onnx.Onnx.TensorShapeProto.DimensionOrBuilder>( dim_, ((bitField0_ & 0x00000001) != 0), getParentForChildren(), isClean()); dim_ = null; } return dimBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TensorShapeProto) } // @@protoc_insertion_point(class_scope:onnx.TensorShapeProto) private static final onnx.Onnx.TensorShapeProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TensorShapeProto(); } public static onnx.Onnx.TensorShapeProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TensorShapeProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TensorShapeProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface TypeProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto) com.google.protobuf.MessageOrBuilder { /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return Whether the tensorType field is set. */ boolean hasTensorType(); /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return The tensorType. */ onnx.Onnx.TypeProto.Tensor getTensorType(); /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ onnx.Onnx.TypeProto.TensorOrBuilder getTensorTypeOrBuilder(); /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return Whether the sequenceType field is set. */ boolean hasSequenceType(); /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return The sequenceType. */ onnx.Onnx.TypeProto.Sequence getSequenceType(); /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ onnx.Onnx.TypeProto.SequenceOrBuilder getSequenceTypeOrBuilder(); /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; * @return Whether the mapType field is set. */ boolean hasMapType(); /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; * @return The mapType. */ onnx.Onnx.TypeProto.Map getMapType(); /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; */ onnx.Onnx.TypeProto.MapOrBuilder getMapTypeOrBuilder(); /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return Whether the optionalType field is set. */ boolean hasOptionalType(); /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return The optionalType. */ onnx.Onnx.TypeProto.Optional getOptionalType(); /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; */ onnx.Onnx.TypeProto.OptionalOrBuilder getOptionalTypeOrBuilder(); /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return Whether the sparseTensorType field is set. */ boolean hasSparseTensorType(); /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return The sparseTensorType. */ onnx.Onnx.TypeProto.SparseTensor getSparseTensorType(); /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ onnx.Onnx.TypeProto.SparseTensorOrBuilder getSparseTensorTypeOrBuilder(); /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return Whether the denotation field is set. */ boolean hasDenotation(); /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return The denotation. */ java.lang.String getDenotation(); /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return The bytes for denotation. */ com.google.protobuf.ByteString getDenotationBytes(); onnx.Onnx.TypeProto.ValueCase getValueCase(); } /** *
   * Types
   *
   * The standard ONNX data types.
   * 
* * Protobuf type {@code onnx.TypeProto} */ public static final class TypeProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto) TypeProtoOrBuilder { private static final long serialVersionUID = 0L; // Use TypeProto.newBuilder() to construct. private TypeProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TypeProto() { denotation_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new TypeProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.class, onnx.Onnx.TypeProto.Builder.class); } public interface TensorOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto.Tensor) com.google.protobuf.MessageOrBuilder { /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ boolean hasElemType(); /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return The elemType. */ int getElemType(); /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ boolean hasShape(); /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ onnx.Onnx.TensorShapeProto getShape(); /** * optional .onnx.TensorShapeProto shape = 2; */ onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder(); } /** * Protobuf type {@code onnx.TypeProto.Tensor} */ public static final class Tensor extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto.Tensor) TensorOrBuilder { private static final long serialVersionUID = 0L; // Use Tensor.newBuilder() to construct. private Tensor(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Tensor() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Tensor(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Tensor_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Tensor_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Tensor.class, onnx.Onnx.TypeProto.Tensor.Builder.class); } private int bitField0_; public static final int ELEM_TYPE_FIELD_NUMBER = 1; private int elemType_ = 0; /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return The elemType. */ @java.lang.Override public int getElemType() { return elemType_; } public static final int SHAPE_FIELD_NUMBER = 2; private onnx.Onnx.TensorShapeProto shape_; /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ @java.lang.Override public boolean hasShape() { return ((bitField0_ & 0x00000002) != 0); } /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ @java.lang.Override public onnx.Onnx.TensorShapeProto getShape() { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } /** * optional .onnx.TensorShapeProto shape = 2; */ @java.lang.Override public onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder() { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt32(1, elemType_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getShape()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(1, elemType_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getShape()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto.Tensor)) { return super.equals(obj); } onnx.Onnx.TypeProto.Tensor other = (onnx.Onnx.TypeProto.Tensor) obj; if (hasElemType() != other.hasElemType()) return false; if (hasElemType()) { if (getElemType() != other.getElemType()) return false; } if (hasShape() != other.hasShape()) return false; if (hasShape()) { if (!getShape() .equals(other.getShape())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasElemType()) { hash = (37 * hash) + ELEM_TYPE_FIELD_NUMBER; hash = (53 * hash) + getElemType(); } if (hasShape()) { hash = (37 * hash) + SHAPE_FIELD_NUMBER; hash = (53 * hash) + getShape().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto.Tensor parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Tensor parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Tensor parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Tensor parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Tensor parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Tensor parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Tensor parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Tensor parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Tensor parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Tensor parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Tensor parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Tensor parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto.Tensor prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code onnx.TypeProto.Tensor} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto.Tensor) onnx.Onnx.TypeProto.TensorOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Tensor_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Tensor_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Tensor.class, onnx.Onnx.TypeProto.Tensor.Builder.class); } // Construct using onnx.Onnx.TypeProto.Tensor.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getShapeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; elemType_ = 0; shape_ = null; if (shapeBuilder_ != null) { shapeBuilder_.dispose(); shapeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_Tensor_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto.Tensor getDefaultInstanceForType() { return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto.Tensor build() { onnx.Onnx.TypeProto.Tensor result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto.Tensor buildPartial() { onnx.Onnx.TypeProto.Tensor result = new onnx.Onnx.TypeProto.Tensor(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto.Tensor result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.elemType_ = elemType_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.shape_ = shapeBuilder_ == null ? shape_ : shapeBuilder_.build(); to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto.Tensor) { return mergeFrom((onnx.Onnx.TypeProto.Tensor)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto.Tensor other) { if (other == onnx.Onnx.TypeProto.Tensor.getDefaultInstance()) return this; if (other.hasElemType()) { setElemType(other.getElemType()); } if (other.hasShape()) { mergeShape(other.getShape()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { elemType_ = input.readInt32(); bitField0_ |= 0x00000001; break; } // case 8 case 18: { input.readMessage( getShapeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private int elemType_ ; /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return The elemType. */ @java.lang.Override public int getElemType() { return elemType_; } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @param value The elemType to set. * @return This builder for chaining. */ public Builder setElemType(int value) { elemType_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return This builder for chaining. */ public Builder clearElemType() { bitField0_ = (bitField0_ & ~0x00000001); elemType_ = 0; onChanged(); return this; } private onnx.Onnx.TensorShapeProto shape_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder> shapeBuilder_; /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ public boolean hasShape() { return ((bitField0_ & 0x00000002) != 0); } /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ public onnx.Onnx.TensorShapeProto getShape() { if (shapeBuilder_ == null) { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } else { return shapeBuilder_.getMessage(); } } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder setShape(onnx.Onnx.TensorShapeProto value) { if (shapeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } shape_ = value; } else { shapeBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder setShape( onnx.Onnx.TensorShapeProto.Builder builderForValue) { if (shapeBuilder_ == null) { shape_ = builderForValue.build(); } else { shapeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder mergeShape(onnx.Onnx.TensorShapeProto value) { if (shapeBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && shape_ != null && shape_ != onnx.Onnx.TensorShapeProto.getDefaultInstance()) { getShapeBuilder().mergeFrom(value); } else { shape_ = value; } } else { shapeBuilder_.mergeFrom(value); } if (shape_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder clearShape() { bitField0_ = (bitField0_ & ~0x00000002); shape_ = null; if (shapeBuilder_ != null) { shapeBuilder_.dispose(); shapeBuilder_ = null; } onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public onnx.Onnx.TensorShapeProto.Builder getShapeBuilder() { bitField0_ |= 0x00000002; onChanged(); return getShapeFieldBuilder().getBuilder(); } /** * optional .onnx.TensorShapeProto shape = 2; */ public onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder() { if (shapeBuilder_ != null) { return shapeBuilder_.getMessageOrBuilder(); } else { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } } /** * optional .onnx.TensorShapeProto shape = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder> getShapeFieldBuilder() { if (shapeBuilder_ == null) { shapeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder>( getShape(), getParentForChildren(), isClean()); shape_ = null; } return shapeBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto.Tensor) } // @@protoc_insertion_point(class_scope:onnx.TypeProto.Tensor) private static final onnx.Onnx.TypeProto.Tensor DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto.Tensor(); } public static onnx.Onnx.TypeProto.Tensor getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Tensor parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto.Tensor getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface SequenceOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto.Sequence) com.google.protobuf.MessageOrBuilder { /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ boolean hasElemType(); /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ onnx.Onnx.TypeProto getElemType(); /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; */ onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder(); } /** *
     * repeated T
     * 
* * Protobuf type {@code onnx.TypeProto.Sequence} */ public static final class Sequence extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto.Sequence) SequenceOrBuilder { private static final long serialVersionUID = 0L; // Use Sequence.newBuilder() to construct. private Sequence(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Sequence() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Sequence(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Sequence_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Sequence_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Sequence.class, onnx.Onnx.TypeProto.Sequence.Builder.class); } private int bitField0_; public static final int ELEM_TYPE_FIELD_NUMBER = 1; private onnx.Onnx.TypeProto elemType_; /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ @java.lang.Override public onnx.Onnx.TypeProto getElemType() { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } /** *
       * The type and optional shape of each element of the sequence.
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto elem_type = 1; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder() { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getElemType()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getElemType()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto.Sequence)) { return super.equals(obj); } onnx.Onnx.TypeProto.Sequence other = (onnx.Onnx.TypeProto.Sequence) obj; if (hasElemType() != other.hasElemType()) return false; if (hasElemType()) { if (!getElemType() .equals(other.getElemType())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasElemType()) { hash = (37 * hash) + ELEM_TYPE_FIELD_NUMBER; hash = (53 * hash) + getElemType().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto.Sequence parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Sequence parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Sequence parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Sequence parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Sequence parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Sequence parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Sequence parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Sequence parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Sequence parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Sequence parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Sequence parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Sequence parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto.Sequence prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
       * repeated T
       * 
* * Protobuf type {@code onnx.TypeProto.Sequence} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto.Sequence) onnx.Onnx.TypeProto.SequenceOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Sequence_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Sequence_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Sequence.class, onnx.Onnx.TypeProto.Sequence.Builder.class); } // Construct using onnx.Onnx.TypeProto.Sequence.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getElemTypeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; elemType_ = null; if (elemTypeBuilder_ != null) { elemTypeBuilder_.dispose(); elemTypeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_Sequence_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto.Sequence getDefaultInstanceForType() { return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto.Sequence build() { onnx.Onnx.TypeProto.Sequence result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto.Sequence buildPartial() { onnx.Onnx.TypeProto.Sequence result = new onnx.Onnx.TypeProto.Sequence(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto.Sequence result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.elemType_ = elemTypeBuilder_ == null ? elemType_ : elemTypeBuilder_.build(); to_bitField0_ |= 0x00000001; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto.Sequence) { return mergeFrom((onnx.Onnx.TypeProto.Sequence)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto.Sequence other) { if (other == onnx.Onnx.TypeProto.Sequence.getDefaultInstance()) return this; if (other.hasElemType()) { mergeElemType(other.getElemType()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getElemTypeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private onnx.Onnx.TypeProto elemType_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> elemTypeBuilder_; /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ public onnx.Onnx.TypeProto getElemType() { if (elemTypeBuilder_ == null) { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } else { return elemTypeBuilder_.getMessage(); } } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder setElemType(onnx.Onnx.TypeProto value) { if (elemTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } elemType_ = value; } else { elemTypeBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder setElemType( onnx.Onnx.TypeProto.Builder builderForValue) { if (elemTypeBuilder_ == null) { elemType_ = builderForValue.build(); } else { elemTypeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder mergeElemType(onnx.Onnx.TypeProto value) { if (elemTypeBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && elemType_ != null && elemType_ != onnx.Onnx.TypeProto.getDefaultInstance()) { getElemTypeBuilder().mergeFrom(value); } else { elemType_ = value; } } else { elemTypeBuilder_.mergeFrom(value); } if (elemType_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder clearElemType() { bitField0_ = (bitField0_ & ~0x00000001); elemType_ = null; if (elemTypeBuilder_ != null) { elemTypeBuilder_.dispose(); elemTypeBuilder_ = null; } onChanged(); return this; } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public onnx.Onnx.TypeProto.Builder getElemTypeBuilder() { bitField0_ |= 0x00000001; onChanged(); return getElemTypeFieldBuilder().getBuilder(); } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder() { if (elemTypeBuilder_ != null) { return elemTypeBuilder_.getMessageOrBuilder(); } else { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } } /** *
         * The type and optional shape of each element of the sequence.
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto elem_type = 1; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getElemTypeFieldBuilder() { if (elemTypeBuilder_ == null) { elemTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( getElemType(), getParentForChildren(), isClean()); elemType_ = null; } return elemTypeBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto.Sequence) } // @@protoc_insertion_point(class_scope:onnx.TypeProto.Sequence) private static final onnx.Onnx.TypeProto.Sequence DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto.Sequence(); } public static onnx.Onnx.TypeProto.Sequence getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Sequence parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto.Sequence getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface MapOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto.Map) com.google.protobuf.MessageOrBuilder { /** *
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
       * 
* * optional int32 key_type = 1; * @return Whether the keyType field is set. */ boolean hasKeyType(); /** *
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
       * 
* * optional int32 key_type = 1; * @return The keyType. */ int getKeyType(); /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; * @return Whether the valueType field is set. */ boolean hasValueType(); /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; * @return The valueType. */ onnx.Onnx.TypeProto getValueType(); /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; */ onnx.Onnx.TypeProtoOrBuilder getValueTypeOrBuilder(); } /** *
     * map<K,V>
     * 
* * Protobuf type {@code onnx.TypeProto.Map} */ public static final class Map extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto.Map) MapOrBuilder { private static final long serialVersionUID = 0L; // Use Map.newBuilder() to construct. private Map(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Map() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Map(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Map_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Map_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Map.class, onnx.Onnx.TypeProto.Map.Builder.class); } private int bitField0_; public static final int KEY_TYPE_FIELD_NUMBER = 1; private int keyType_ = 0; /** *
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
       * 
* * optional int32 key_type = 1; * @return Whether the keyType field is set. */ @java.lang.Override public boolean hasKeyType() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
       * 
* * optional int32 key_type = 1; * @return The keyType. */ @java.lang.Override public int getKeyType() { return keyType_; } public static final int VALUE_TYPE_FIELD_NUMBER = 2; private onnx.Onnx.TypeProto valueType_; /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; * @return Whether the valueType field is set. */ @java.lang.Override public boolean hasValueType() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; * @return The valueType. */ @java.lang.Override public onnx.Onnx.TypeProto getValueType() { return valueType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : valueType_; } /** *
       * This field MUST be present for this version of the IR.
       * 
* * optional .onnx.TypeProto value_type = 2; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getValueTypeOrBuilder() { return valueType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : valueType_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt32(1, keyType_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getValueType()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(1, keyType_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getValueType()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto.Map)) { return super.equals(obj); } onnx.Onnx.TypeProto.Map other = (onnx.Onnx.TypeProto.Map) obj; if (hasKeyType() != other.hasKeyType()) return false; if (hasKeyType()) { if (getKeyType() != other.getKeyType()) return false; } if (hasValueType() != other.hasValueType()) return false; if (hasValueType()) { if (!getValueType() .equals(other.getValueType())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasKeyType()) { hash = (37 * hash) + KEY_TYPE_FIELD_NUMBER; hash = (53 * hash) + getKeyType(); } if (hasValueType()) { hash = (37 * hash) + VALUE_TYPE_FIELD_NUMBER; hash = (53 * hash) + getValueType().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto.Map parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Map parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Map parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Map parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Map parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Map parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Map parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Map parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Map parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Map parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Map parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Map parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto.Map prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
       * map<K,V>
       * 
* * Protobuf type {@code onnx.TypeProto.Map} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto.Map) onnx.Onnx.TypeProto.MapOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Map_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Map_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Map.class, onnx.Onnx.TypeProto.Map.Builder.class); } // Construct using onnx.Onnx.TypeProto.Map.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getValueTypeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; keyType_ = 0; valueType_ = null; if (valueTypeBuilder_ != null) { valueTypeBuilder_.dispose(); valueTypeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_Map_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto.Map getDefaultInstanceForType() { return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto.Map build() { onnx.Onnx.TypeProto.Map result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto.Map buildPartial() { onnx.Onnx.TypeProto.Map result = new onnx.Onnx.TypeProto.Map(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto.Map result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.keyType_ = keyType_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.valueType_ = valueTypeBuilder_ == null ? valueType_ : valueTypeBuilder_.build(); to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto.Map) { return mergeFrom((onnx.Onnx.TypeProto.Map)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto.Map other) { if (other == onnx.Onnx.TypeProto.Map.getDefaultInstance()) return this; if (other.hasKeyType()) { setKeyType(other.getKeyType()); } if (other.hasValueType()) { mergeValueType(other.getValueType()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { keyType_ = input.readInt32(); bitField0_ |= 0x00000001; break; } // case 8 case 18: { input.readMessage( getValueTypeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private int keyType_ ; /** *
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
         * 
* * optional int32 key_type = 1; * @return Whether the keyType field is set. */ @java.lang.Override public boolean hasKeyType() { return ((bitField0_ & 0x00000001) != 0); } /** *
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
         * 
* * optional int32 key_type = 1; * @return The keyType. */ @java.lang.Override public int getKeyType() { return keyType_; } /** *
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
         * 
* * optional int32 key_type = 1; * @param value The keyType to set. * @return This builder for chaining. */ public Builder setKeyType(int value) { keyType_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
         * 
* * optional int32 key_type = 1; * @return This builder for chaining. */ public Builder clearKeyType() { bitField0_ = (bitField0_ & ~0x00000001); keyType_ = 0; onChanged(); return this; } private onnx.Onnx.TypeProto valueType_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> valueTypeBuilder_; /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; * @return Whether the valueType field is set. */ public boolean hasValueType() { return ((bitField0_ & 0x00000002) != 0); } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; * @return The valueType. */ public onnx.Onnx.TypeProto getValueType() { if (valueTypeBuilder_ == null) { return valueType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : valueType_; } else { return valueTypeBuilder_.getMessage(); } } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public Builder setValueType(onnx.Onnx.TypeProto value) { if (valueTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } valueType_ = value; } else { valueTypeBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public Builder setValueType( onnx.Onnx.TypeProto.Builder builderForValue) { if (valueTypeBuilder_ == null) { valueType_ = builderForValue.build(); } else { valueTypeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public Builder mergeValueType(onnx.Onnx.TypeProto value) { if (valueTypeBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && valueType_ != null && valueType_ != onnx.Onnx.TypeProto.getDefaultInstance()) { getValueTypeBuilder().mergeFrom(value); } else { valueType_ = value; } } else { valueTypeBuilder_.mergeFrom(value); } if (valueType_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public Builder clearValueType() { bitField0_ = (bitField0_ & ~0x00000002); valueType_ = null; if (valueTypeBuilder_ != null) { valueTypeBuilder_.dispose(); valueTypeBuilder_ = null; } onChanged(); return this; } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public onnx.Onnx.TypeProto.Builder getValueTypeBuilder() { bitField0_ |= 0x00000002; onChanged(); return getValueTypeFieldBuilder().getBuilder(); } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ public onnx.Onnx.TypeProtoOrBuilder getValueTypeOrBuilder() { if (valueTypeBuilder_ != null) { return valueTypeBuilder_.getMessageOrBuilder(); } else { return valueType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : valueType_; } } /** *
         * This field MUST be present for this version of the IR.
         * 
* * optional .onnx.TypeProto value_type = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getValueTypeFieldBuilder() { if (valueTypeBuilder_ == null) { valueTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( getValueType(), getParentForChildren(), isClean()); valueType_ = null; } return valueTypeBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto.Map) } // @@protoc_insertion_point(class_scope:onnx.TypeProto.Map) private static final onnx.Onnx.TypeProto.Map DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto.Map(); } public static onnx.Onnx.TypeProto.Map getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Map parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto.Map getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface OptionalOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto.Optional) com.google.protobuf.MessageOrBuilder { /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ boolean hasElemType(); /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ onnx.Onnx.TypeProto getElemType(); /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; */ onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder(); } /** *
     * wrapper for Tensor, Sequence, or Map
     * 
* * Protobuf type {@code onnx.TypeProto.Optional} */ public static final class Optional extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto.Optional) OptionalOrBuilder { private static final long serialVersionUID = 0L; // Use Optional.newBuilder() to construct. private Optional(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Optional() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Optional(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Optional_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Optional_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Optional.class, onnx.Onnx.TypeProto.Optional.Builder.class); } private int bitField0_; public static final int ELEM_TYPE_FIELD_NUMBER = 1; private onnx.Onnx.TypeProto elemType_; /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ @java.lang.Override public onnx.Onnx.TypeProto getElemType() { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } /** *
       * The type and optional shape of the element wrapped.
       * This field MUST be present for this version of the IR.
       * Possible values correspond to OptionalProto.DataType enum
       * 
* * optional .onnx.TypeProto elem_type = 1; */ @java.lang.Override public onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder() { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getElemType()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getElemType()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto.Optional)) { return super.equals(obj); } onnx.Onnx.TypeProto.Optional other = (onnx.Onnx.TypeProto.Optional) obj; if (hasElemType() != other.hasElemType()) return false; if (hasElemType()) { if (!getElemType() .equals(other.getElemType())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasElemType()) { hash = (37 * hash) + ELEM_TYPE_FIELD_NUMBER; hash = (53 * hash) + getElemType().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto.Optional parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Optional parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Optional parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Optional parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Optional parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.Optional parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.Optional parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Optional parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Optional parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Optional parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.Optional parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.Optional parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto.Optional prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
       * wrapper for Tensor, Sequence, or Map
       * 
* * Protobuf type {@code onnx.TypeProto.Optional} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto.Optional) onnx.Onnx.TypeProto.OptionalOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_Optional_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_Optional_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.Optional.class, onnx.Onnx.TypeProto.Optional.Builder.class); } // Construct using onnx.Onnx.TypeProto.Optional.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getElemTypeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; elemType_ = null; if (elemTypeBuilder_ != null) { elemTypeBuilder_.dispose(); elemTypeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_Optional_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto.Optional getDefaultInstanceForType() { return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto.Optional build() { onnx.Onnx.TypeProto.Optional result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto.Optional buildPartial() { onnx.Onnx.TypeProto.Optional result = new onnx.Onnx.TypeProto.Optional(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto.Optional result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.elemType_ = elemTypeBuilder_ == null ? elemType_ : elemTypeBuilder_.build(); to_bitField0_ |= 0x00000001; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto.Optional) { return mergeFrom((onnx.Onnx.TypeProto.Optional)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto.Optional other) { if (other == onnx.Onnx.TypeProto.Optional.getDefaultInstance()) return this; if (other.hasElemType()) { mergeElemType(other.getElemType()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getElemTypeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private onnx.Onnx.TypeProto elemType_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> elemTypeBuilder_; /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; * @return Whether the elemType field is set. */ public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; * @return The elemType. */ public onnx.Onnx.TypeProto getElemType() { if (elemTypeBuilder_ == null) { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } else { return elemTypeBuilder_.getMessage(); } } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder setElemType(onnx.Onnx.TypeProto value) { if (elemTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } elemType_ = value; } else { elemTypeBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder setElemType( onnx.Onnx.TypeProto.Builder builderForValue) { if (elemTypeBuilder_ == null) { elemType_ = builderForValue.build(); } else { elemTypeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder mergeElemType(onnx.Onnx.TypeProto value) { if (elemTypeBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && elemType_ != null && elemType_ != onnx.Onnx.TypeProto.getDefaultInstance()) { getElemTypeBuilder().mergeFrom(value); } else { elemType_ = value; } } else { elemTypeBuilder_.mergeFrom(value); } if (elemType_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public Builder clearElemType() { bitField0_ = (bitField0_ & ~0x00000001); elemType_ = null; if (elemTypeBuilder_ != null) { elemTypeBuilder_.dispose(); elemTypeBuilder_ = null; } onChanged(); return this; } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public onnx.Onnx.TypeProto.Builder getElemTypeBuilder() { bitField0_ |= 0x00000001; onChanged(); return getElemTypeFieldBuilder().getBuilder(); } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ public onnx.Onnx.TypeProtoOrBuilder getElemTypeOrBuilder() { if (elemTypeBuilder_ != null) { return elemTypeBuilder_.getMessageOrBuilder(); } else { return elemType_ == null ? onnx.Onnx.TypeProto.getDefaultInstance() : elemType_; } } /** *
         * The type and optional shape of the element wrapped.
         * This field MUST be present for this version of the IR.
         * Possible values correspond to OptionalProto.DataType enum
         * 
* * optional .onnx.TypeProto elem_type = 1; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder> getElemTypeFieldBuilder() { if (elemTypeBuilder_ == null) { elemTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto, onnx.Onnx.TypeProto.Builder, onnx.Onnx.TypeProtoOrBuilder>( getElemType(), getParentForChildren(), isClean()); elemType_ = null; } return elemTypeBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto.Optional) } // @@protoc_insertion_point(class_scope:onnx.TypeProto.Optional) private static final onnx.Onnx.TypeProto.Optional DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto.Optional(); } public static onnx.Onnx.TypeProto.Optional getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Optional parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto.Optional getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface SparseTensorOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.TypeProto.SparseTensor) com.google.protobuf.MessageOrBuilder { /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ boolean hasElemType(); /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return The elemType. */ int getElemType(); /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ boolean hasShape(); /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ onnx.Onnx.TensorShapeProto getShape(); /** * optional .onnx.TensorShapeProto shape = 2; */ onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder(); } /** * Protobuf type {@code onnx.TypeProto.SparseTensor} */ public static final class SparseTensor extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.TypeProto.SparseTensor) SparseTensorOrBuilder { private static final long serialVersionUID = 0L; // Use SparseTensor.newBuilder() to construct. private SparseTensor(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private SparseTensor() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new SparseTensor(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_SparseTensor_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_SparseTensor_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.SparseTensor.class, onnx.Onnx.TypeProto.SparseTensor.Builder.class); } private int bitField0_; public static final int ELEM_TYPE_FIELD_NUMBER = 1; private int elemType_ = 0; /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * This field MUST NOT have the value of UNDEFINED
       * This field MUST have a valid TensorProto.DataType value
       * This field MUST be present for this version of the IR.
       * 
* * optional int32 elem_type = 1; * @return The elemType. */ @java.lang.Override public int getElemType() { return elemType_; } public static final int SHAPE_FIELD_NUMBER = 2; private onnx.Onnx.TensorShapeProto shape_; /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ @java.lang.Override public boolean hasShape() { return ((bitField0_ & 0x00000002) != 0); } /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ @java.lang.Override public onnx.Onnx.TensorShapeProto getShape() { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } /** * optional .onnx.TensorShapeProto shape = 2; */ @java.lang.Override public onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder() { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt32(1, elemType_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(2, getShape()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(1, elemType_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getShape()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto.SparseTensor)) { return super.equals(obj); } onnx.Onnx.TypeProto.SparseTensor other = (onnx.Onnx.TypeProto.SparseTensor) obj; if (hasElemType() != other.hasElemType()) return false; if (hasElemType()) { if (getElemType() != other.getElemType()) return false; } if (hasShape() != other.hasShape()) return false; if (hasShape()) { if (!getShape() .equals(other.getShape())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasElemType()) { hash = (37 * hash) + ELEM_TYPE_FIELD_NUMBER; hash = (53 * hash) + getElemType(); } if (hasShape()) { hash = (37 * hash) + SHAPE_FIELD_NUMBER; hash = (53 * hash) + getShape().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.SparseTensor parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.SparseTensor parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto.SparseTensor parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto.SparseTensor prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code onnx.TypeProto.SparseTensor} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto.SparseTensor) onnx.Onnx.TypeProto.SparseTensorOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_SparseTensor_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_SparseTensor_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.SparseTensor.class, onnx.Onnx.TypeProto.SparseTensor.Builder.class); } // Construct using onnx.Onnx.TypeProto.SparseTensor.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getShapeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; elemType_ = 0; shape_ = null; if (shapeBuilder_ != null) { shapeBuilder_.dispose(); shapeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_SparseTensor_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor getDefaultInstanceForType() { return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor build() { onnx.Onnx.TypeProto.SparseTensor result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor buildPartial() { onnx.Onnx.TypeProto.SparseTensor result = new onnx.Onnx.TypeProto.SparseTensor(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto.SparseTensor result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.elemType_ = elemType_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.shape_ = shapeBuilder_ == null ? shape_ : shapeBuilder_.build(); to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto.SparseTensor) { return mergeFrom((onnx.Onnx.TypeProto.SparseTensor)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto.SparseTensor other) { if (other == onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance()) return this; if (other.hasElemType()) { setElemType(other.getElemType()); } if (other.hasShape()) { mergeShape(other.getShape()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { elemType_ = input.readInt32(); bitField0_ |= 0x00000001; break; } // case 8 case 18: { input.readMessage( getShapeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private int elemType_ ; /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return Whether the elemType field is set. */ @java.lang.Override public boolean hasElemType() { return ((bitField0_ & 0x00000001) != 0); } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return The elemType. */ @java.lang.Override public int getElemType() { return elemType_; } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @param value The elemType to set. * @return This builder for chaining. */ public Builder setElemType(int value) { elemType_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
         * This field MUST NOT have the value of UNDEFINED
         * This field MUST have a valid TensorProto.DataType value
         * This field MUST be present for this version of the IR.
         * 
* * optional int32 elem_type = 1; * @return This builder for chaining. */ public Builder clearElemType() { bitField0_ = (bitField0_ & ~0x00000001); elemType_ = 0; onChanged(); return this; } private onnx.Onnx.TensorShapeProto shape_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder> shapeBuilder_; /** * optional .onnx.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ public boolean hasShape() { return ((bitField0_ & 0x00000002) != 0); } /** * optional .onnx.TensorShapeProto shape = 2; * @return The shape. */ public onnx.Onnx.TensorShapeProto getShape() { if (shapeBuilder_ == null) { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } else { return shapeBuilder_.getMessage(); } } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder setShape(onnx.Onnx.TensorShapeProto value) { if (shapeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } shape_ = value; } else { shapeBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder setShape( onnx.Onnx.TensorShapeProto.Builder builderForValue) { if (shapeBuilder_ == null) { shape_ = builderForValue.build(); } else { shapeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder mergeShape(onnx.Onnx.TensorShapeProto value) { if (shapeBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && shape_ != null && shape_ != onnx.Onnx.TensorShapeProto.getDefaultInstance()) { getShapeBuilder().mergeFrom(value); } else { shape_ = value; } } else { shapeBuilder_.mergeFrom(value); } if (shape_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public Builder clearShape() { bitField0_ = (bitField0_ & ~0x00000002); shape_ = null; if (shapeBuilder_ != null) { shapeBuilder_.dispose(); shapeBuilder_ = null; } onChanged(); return this; } /** * optional .onnx.TensorShapeProto shape = 2; */ public onnx.Onnx.TensorShapeProto.Builder getShapeBuilder() { bitField0_ |= 0x00000002; onChanged(); return getShapeFieldBuilder().getBuilder(); } /** * optional .onnx.TensorShapeProto shape = 2; */ public onnx.Onnx.TensorShapeProtoOrBuilder getShapeOrBuilder() { if (shapeBuilder_ != null) { return shapeBuilder_.getMessageOrBuilder(); } else { return shape_ == null ? onnx.Onnx.TensorShapeProto.getDefaultInstance() : shape_; } } /** * optional .onnx.TensorShapeProto shape = 2; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder> getShapeFieldBuilder() { if (shapeBuilder_ == null) { shapeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TensorShapeProto, onnx.Onnx.TensorShapeProto.Builder, onnx.Onnx.TensorShapeProtoOrBuilder>( getShape(), getParentForChildren(), isClean()); shape_ = null; } return shapeBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto.SparseTensor) } // @@protoc_insertion_point(class_scope:onnx.TypeProto.SparseTensor) private static final onnx.Onnx.TypeProto.SparseTensor DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto.SparseTensor(); } public static onnx.Onnx.TypeProto.SparseTensor getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public SparseTensor parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private int bitField0_; private int valueCase_ = 0; @SuppressWarnings("serial") private java.lang.Object value_; public enum ValueCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { TENSOR_TYPE(1), SEQUENCE_TYPE(4), MAP_TYPE(5), OPTIONAL_TYPE(9), SPARSE_TENSOR_TYPE(8), VALUE_NOT_SET(0); private final int value; private ValueCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static ValueCase valueOf(int value) { return forNumber(value); } public static ValueCase forNumber(int value) { switch (value) { case 1: return TENSOR_TYPE; case 4: return SEQUENCE_TYPE; case 5: return MAP_TYPE; case 9: return OPTIONAL_TYPE; case 8: return SPARSE_TENSOR_TYPE; case 0: return VALUE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public ValueCase getValueCase() { return ValueCase.forNumber( valueCase_); } public static final int TENSOR_TYPE_FIELD_NUMBER = 1; /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return Whether the tensorType field is set. */ @java.lang.Override public boolean hasTensorType() { return valueCase_ == 1; } /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return The tensorType. */ @java.lang.Override public onnx.Onnx.TypeProto.Tensor getTensorType() { if (valueCase_ == 1) { return (onnx.Onnx.TypeProto.Tensor) value_; } return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } /** *
     * The type of a tensor.
     * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ @java.lang.Override public onnx.Onnx.TypeProto.TensorOrBuilder getTensorTypeOrBuilder() { if (valueCase_ == 1) { return (onnx.Onnx.TypeProto.Tensor) value_; } return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } public static final int SEQUENCE_TYPE_FIELD_NUMBER = 4; /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return Whether the sequenceType field is set. */ @java.lang.Override public boolean hasSequenceType() { return valueCase_ == 4; } /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return The sequenceType. */ @java.lang.Override public onnx.Onnx.TypeProto.Sequence getSequenceType() { if (valueCase_ == 4) { return (onnx.Onnx.TypeProto.Sequence) value_; } return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } /** *
     * The type of a sequence.
     * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ @java.lang.Override public onnx.Onnx.TypeProto.SequenceOrBuilder getSequenceTypeOrBuilder() { if (valueCase_ == 4) { return (onnx.Onnx.TypeProto.Sequence) value_; } return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } public static final int MAP_TYPE_FIELD_NUMBER = 5; /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; * @return Whether the mapType field is set. */ @java.lang.Override public boolean hasMapType() { return valueCase_ == 5; } /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; * @return The mapType. */ @java.lang.Override public onnx.Onnx.TypeProto.Map getMapType() { if (valueCase_ == 5) { return (onnx.Onnx.TypeProto.Map) value_; } return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } /** *
     * The type of a map.
     * 
* * .onnx.TypeProto.Map map_type = 5; */ @java.lang.Override public onnx.Onnx.TypeProto.MapOrBuilder getMapTypeOrBuilder() { if (valueCase_ == 5) { return (onnx.Onnx.TypeProto.Map) value_; } return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } public static final int OPTIONAL_TYPE_FIELD_NUMBER = 9; /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return Whether the optionalType field is set. */ @java.lang.Override public boolean hasOptionalType() { return valueCase_ == 9; } /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return The optionalType. */ @java.lang.Override public onnx.Onnx.TypeProto.Optional getOptionalType() { if (valueCase_ == 9) { return (onnx.Onnx.TypeProto.Optional) value_; } return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } /** *
     * The type of an optional.
     * 
* * .onnx.TypeProto.Optional optional_type = 9; */ @java.lang.Override public onnx.Onnx.TypeProto.OptionalOrBuilder getOptionalTypeOrBuilder() { if (valueCase_ == 9) { return (onnx.Onnx.TypeProto.Optional) value_; } return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } public static final int SPARSE_TENSOR_TYPE_FIELD_NUMBER = 8; /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return Whether the sparseTensorType field is set. */ @java.lang.Override public boolean hasSparseTensorType() { return valueCase_ == 8; } /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return The sparseTensorType. */ @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor getSparseTensorType() { if (valueCase_ == 8) { return (onnx.Onnx.TypeProto.SparseTensor) value_; } return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } /** *
     * Type of the sparse tensor
     * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ @java.lang.Override public onnx.Onnx.TypeProto.SparseTensorOrBuilder getSparseTensorTypeOrBuilder() { if (valueCase_ == 8) { return (onnx.Onnx.TypeProto.SparseTensor) value_; } return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } public static final int DENOTATION_FIELD_NUMBER = 6; @SuppressWarnings("serial") private volatile java.lang.Object denotation_ = ""; /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return Whether the denotation field is set. */ @java.lang.Override public boolean hasDenotation() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return The denotation. */ @java.lang.Override public java.lang.String getDenotation() { java.lang.Object ref = denotation_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { denotation_ = s; } return s; } } /** *
     * An optional denotation can be used to denote the whole
     * type with a standard semantic description as to what is
     * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
     * for pre-defined type denotations.
     * 
* * optional string denotation = 6; * @return The bytes for denotation. */ @java.lang.Override public com.google.protobuf.ByteString getDenotationBytes() { java.lang.Object ref = denotation_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); denotation_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (valueCase_ == 1) { output.writeMessage(1, (onnx.Onnx.TypeProto.Tensor) value_); } if (valueCase_ == 4) { output.writeMessage(4, (onnx.Onnx.TypeProto.Sequence) value_); } if (valueCase_ == 5) { output.writeMessage(5, (onnx.Onnx.TypeProto.Map) value_); } if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, denotation_); } if (valueCase_ == 8) { output.writeMessage(8, (onnx.Onnx.TypeProto.SparseTensor) value_); } if (valueCase_ == 9) { output.writeMessage(9, (onnx.Onnx.TypeProto.Optional) value_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (valueCase_ == 1) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, (onnx.Onnx.TypeProto.Tensor) value_); } if (valueCase_ == 4) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, (onnx.Onnx.TypeProto.Sequence) value_); } if (valueCase_ == 5) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(5, (onnx.Onnx.TypeProto.Map) value_); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(6, denotation_); } if (valueCase_ == 8) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(8, (onnx.Onnx.TypeProto.SparseTensor) value_); } if (valueCase_ == 9) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(9, (onnx.Onnx.TypeProto.Optional) value_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.TypeProto)) { return super.equals(obj); } onnx.Onnx.TypeProto other = (onnx.Onnx.TypeProto) obj; if (hasDenotation() != other.hasDenotation()) return false; if (hasDenotation()) { if (!getDenotation() .equals(other.getDenotation())) return false; } if (!getValueCase().equals(other.getValueCase())) return false; switch (valueCase_) { case 1: if (!getTensorType() .equals(other.getTensorType())) return false; break; case 4: if (!getSequenceType() .equals(other.getSequenceType())) return false; break; case 5: if (!getMapType() .equals(other.getMapType())) return false; break; case 9: if (!getOptionalType() .equals(other.getOptionalType())) return false; break; case 8: if (!getSparseTensorType() .equals(other.getSparseTensorType())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasDenotation()) { hash = (37 * hash) + DENOTATION_FIELD_NUMBER; hash = (53 * hash) + getDenotation().hashCode(); } switch (valueCase_) { case 1: hash = (37 * hash) + TENSOR_TYPE_FIELD_NUMBER; hash = (53 * hash) + getTensorType().hashCode(); break; case 4: hash = (37 * hash) + SEQUENCE_TYPE_FIELD_NUMBER; hash = (53 * hash) + getSequenceType().hashCode(); break; case 5: hash = (37 * hash) + MAP_TYPE_FIELD_NUMBER; hash = (53 * hash) + getMapType().hashCode(); break; case 9: hash = (37 * hash) + OPTIONAL_TYPE_FIELD_NUMBER; hash = (53 * hash) + getOptionalType().hashCode(); break; case 8: hash = (37 * hash) + SPARSE_TENSOR_TYPE_FIELD_NUMBER; hash = (53 * hash) + getSparseTensorType().hashCode(); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.TypeProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.TypeProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.TypeProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.TypeProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.TypeProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.TypeProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Types
     *
     * The standard ONNX data types.
     * 
* * Protobuf type {@code onnx.TypeProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.TypeProto) onnx.Onnx.TypeProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_TypeProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_TypeProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.TypeProto.class, onnx.Onnx.TypeProto.Builder.class); } // Construct using onnx.Onnx.TypeProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (tensorTypeBuilder_ != null) { tensorTypeBuilder_.clear(); } if (sequenceTypeBuilder_ != null) { sequenceTypeBuilder_.clear(); } if (mapTypeBuilder_ != null) { mapTypeBuilder_.clear(); } if (optionalTypeBuilder_ != null) { optionalTypeBuilder_.clear(); } if (sparseTensorTypeBuilder_ != null) { sparseTensorTypeBuilder_.clear(); } denotation_ = ""; valueCase_ = 0; value_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_TypeProto_descriptor; } @java.lang.Override public onnx.Onnx.TypeProto getDefaultInstanceForType() { return onnx.Onnx.TypeProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.TypeProto build() { onnx.Onnx.TypeProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.TypeProto buildPartial() { onnx.Onnx.TypeProto result = new onnx.Onnx.TypeProto(this); if (bitField0_ != 0) { buildPartial0(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartial0(onnx.Onnx.TypeProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000020) != 0)) { result.denotation_ = denotation_; to_bitField0_ |= 0x00000001; } result.bitField0_ |= to_bitField0_; } private void buildPartialOneofs(onnx.Onnx.TypeProto result) { result.valueCase_ = valueCase_; result.value_ = this.value_; if (valueCase_ == 1 && tensorTypeBuilder_ != null) { result.value_ = tensorTypeBuilder_.build(); } if (valueCase_ == 4 && sequenceTypeBuilder_ != null) { result.value_ = sequenceTypeBuilder_.build(); } if (valueCase_ == 5 && mapTypeBuilder_ != null) { result.value_ = mapTypeBuilder_.build(); } if (valueCase_ == 9 && optionalTypeBuilder_ != null) { result.value_ = optionalTypeBuilder_.build(); } if (valueCase_ == 8 && sparseTensorTypeBuilder_ != null) { result.value_ = sparseTensorTypeBuilder_.build(); } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.TypeProto) { return mergeFrom((onnx.Onnx.TypeProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.TypeProto other) { if (other == onnx.Onnx.TypeProto.getDefaultInstance()) return this; if (other.hasDenotation()) { denotation_ = other.denotation_; bitField0_ |= 0x00000020; onChanged(); } switch (other.getValueCase()) { case TENSOR_TYPE: { mergeTensorType(other.getTensorType()); break; } case SEQUENCE_TYPE: { mergeSequenceType(other.getSequenceType()); break; } case MAP_TYPE: { mergeMapType(other.getMapType()); break; } case OPTIONAL_TYPE: { mergeOptionalType(other.getOptionalType()); break; } case SPARSE_TENSOR_TYPE: { mergeSparseTensorType(other.getSparseTensorType()); break; } case VALUE_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getTensorTypeFieldBuilder().getBuilder(), extensionRegistry); valueCase_ = 1; break; } // case 10 case 34: { input.readMessage( getSequenceTypeFieldBuilder().getBuilder(), extensionRegistry); valueCase_ = 4; break; } // case 34 case 42: { input.readMessage( getMapTypeFieldBuilder().getBuilder(), extensionRegistry); valueCase_ = 5; break; } // case 42 case 50: { denotation_ = input.readBytes(); bitField0_ |= 0x00000020; break; } // case 50 case 66: { input.readMessage( getSparseTensorTypeFieldBuilder().getBuilder(), extensionRegistry); valueCase_ = 8; break; } // case 66 case 74: { input.readMessage( getOptionalTypeFieldBuilder().getBuilder(), extensionRegistry); valueCase_ = 9; break; } // case 74 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int valueCase_ = 0; private java.lang.Object value_; public ValueCase getValueCase() { return ValueCase.forNumber( valueCase_); } public Builder clearValue() { valueCase_ = 0; value_ = null; onChanged(); return this; } private int bitField0_; private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Tensor, onnx.Onnx.TypeProto.Tensor.Builder, onnx.Onnx.TypeProto.TensorOrBuilder> tensorTypeBuilder_; /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return Whether the tensorType field is set. */ @java.lang.Override public boolean hasTensorType() { return valueCase_ == 1; } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; * @return The tensorType. */ @java.lang.Override public onnx.Onnx.TypeProto.Tensor getTensorType() { if (tensorTypeBuilder_ == null) { if (valueCase_ == 1) { return (onnx.Onnx.TypeProto.Tensor) value_; } return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } else { if (valueCase_ == 1) { return tensorTypeBuilder_.getMessage(); } return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ public Builder setTensorType(onnx.Onnx.TypeProto.Tensor value) { if (tensorTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } value_ = value; onChanged(); } else { tensorTypeBuilder_.setMessage(value); } valueCase_ = 1; return this; } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ public Builder setTensorType( onnx.Onnx.TypeProto.Tensor.Builder builderForValue) { if (tensorTypeBuilder_ == null) { value_ = builderForValue.build(); onChanged(); } else { tensorTypeBuilder_.setMessage(builderForValue.build()); } valueCase_ = 1; return this; } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ public Builder mergeTensorType(onnx.Onnx.TypeProto.Tensor value) { if (tensorTypeBuilder_ == null) { if (valueCase_ == 1 && value_ != onnx.Onnx.TypeProto.Tensor.getDefaultInstance()) { value_ = onnx.Onnx.TypeProto.Tensor.newBuilder((onnx.Onnx.TypeProto.Tensor) value_) .mergeFrom(value).buildPartial(); } else { value_ = value; } onChanged(); } else { if (valueCase_ == 1) { tensorTypeBuilder_.mergeFrom(value); } else { tensorTypeBuilder_.setMessage(value); } } valueCase_ = 1; return this; } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ public Builder clearTensorType() { if (tensorTypeBuilder_ == null) { if (valueCase_ == 1) { valueCase_ = 0; value_ = null; onChanged(); } } else { if (valueCase_ == 1) { valueCase_ = 0; value_ = null; } tensorTypeBuilder_.clear(); } return this; } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ public onnx.Onnx.TypeProto.Tensor.Builder getTensorTypeBuilder() { return getTensorTypeFieldBuilder().getBuilder(); } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ @java.lang.Override public onnx.Onnx.TypeProto.TensorOrBuilder getTensorTypeOrBuilder() { if ((valueCase_ == 1) && (tensorTypeBuilder_ != null)) { return tensorTypeBuilder_.getMessageOrBuilder(); } else { if (valueCase_ == 1) { return (onnx.Onnx.TypeProto.Tensor) value_; } return onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } } /** *
       * The type of a tensor.
       * 
* * .onnx.TypeProto.Tensor tensor_type = 1; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Tensor, onnx.Onnx.TypeProto.Tensor.Builder, onnx.Onnx.TypeProto.TensorOrBuilder> getTensorTypeFieldBuilder() { if (tensorTypeBuilder_ == null) { if (!(valueCase_ == 1)) { value_ = onnx.Onnx.TypeProto.Tensor.getDefaultInstance(); } tensorTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Tensor, onnx.Onnx.TypeProto.Tensor.Builder, onnx.Onnx.TypeProto.TensorOrBuilder>( (onnx.Onnx.TypeProto.Tensor) value_, getParentForChildren(), isClean()); value_ = null; } valueCase_ = 1; onChanged(); return tensorTypeBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Sequence, onnx.Onnx.TypeProto.Sequence.Builder, onnx.Onnx.TypeProto.SequenceOrBuilder> sequenceTypeBuilder_; /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return Whether the sequenceType field is set. */ @java.lang.Override public boolean hasSequenceType() { return valueCase_ == 4; } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; * @return The sequenceType. */ @java.lang.Override public onnx.Onnx.TypeProto.Sequence getSequenceType() { if (sequenceTypeBuilder_ == null) { if (valueCase_ == 4) { return (onnx.Onnx.TypeProto.Sequence) value_; } return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } else { if (valueCase_ == 4) { return sequenceTypeBuilder_.getMessage(); } return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ public Builder setSequenceType(onnx.Onnx.TypeProto.Sequence value) { if (sequenceTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } value_ = value; onChanged(); } else { sequenceTypeBuilder_.setMessage(value); } valueCase_ = 4; return this; } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ public Builder setSequenceType( onnx.Onnx.TypeProto.Sequence.Builder builderForValue) { if (sequenceTypeBuilder_ == null) { value_ = builderForValue.build(); onChanged(); } else { sequenceTypeBuilder_.setMessage(builderForValue.build()); } valueCase_ = 4; return this; } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ public Builder mergeSequenceType(onnx.Onnx.TypeProto.Sequence value) { if (sequenceTypeBuilder_ == null) { if (valueCase_ == 4 && value_ != onnx.Onnx.TypeProto.Sequence.getDefaultInstance()) { value_ = onnx.Onnx.TypeProto.Sequence.newBuilder((onnx.Onnx.TypeProto.Sequence) value_) .mergeFrom(value).buildPartial(); } else { value_ = value; } onChanged(); } else { if (valueCase_ == 4) { sequenceTypeBuilder_.mergeFrom(value); } else { sequenceTypeBuilder_.setMessage(value); } } valueCase_ = 4; return this; } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ public Builder clearSequenceType() { if (sequenceTypeBuilder_ == null) { if (valueCase_ == 4) { valueCase_ = 0; value_ = null; onChanged(); } } else { if (valueCase_ == 4) { valueCase_ = 0; value_ = null; } sequenceTypeBuilder_.clear(); } return this; } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ public onnx.Onnx.TypeProto.Sequence.Builder getSequenceTypeBuilder() { return getSequenceTypeFieldBuilder().getBuilder(); } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ @java.lang.Override public onnx.Onnx.TypeProto.SequenceOrBuilder getSequenceTypeOrBuilder() { if ((valueCase_ == 4) && (sequenceTypeBuilder_ != null)) { return sequenceTypeBuilder_.getMessageOrBuilder(); } else { if (valueCase_ == 4) { return (onnx.Onnx.TypeProto.Sequence) value_; } return onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } } /** *
       * The type of a sequence.
       * 
* * .onnx.TypeProto.Sequence sequence_type = 4; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Sequence, onnx.Onnx.TypeProto.Sequence.Builder, onnx.Onnx.TypeProto.SequenceOrBuilder> getSequenceTypeFieldBuilder() { if (sequenceTypeBuilder_ == null) { if (!(valueCase_ == 4)) { value_ = onnx.Onnx.TypeProto.Sequence.getDefaultInstance(); } sequenceTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Sequence, onnx.Onnx.TypeProto.Sequence.Builder, onnx.Onnx.TypeProto.SequenceOrBuilder>( (onnx.Onnx.TypeProto.Sequence) value_, getParentForChildren(), isClean()); value_ = null; } valueCase_ = 4; onChanged(); return sequenceTypeBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Map, onnx.Onnx.TypeProto.Map.Builder, onnx.Onnx.TypeProto.MapOrBuilder> mapTypeBuilder_; /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; * @return Whether the mapType field is set. */ @java.lang.Override public boolean hasMapType() { return valueCase_ == 5; } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; * @return The mapType. */ @java.lang.Override public onnx.Onnx.TypeProto.Map getMapType() { if (mapTypeBuilder_ == null) { if (valueCase_ == 5) { return (onnx.Onnx.TypeProto.Map) value_; } return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } else { if (valueCase_ == 5) { return mapTypeBuilder_.getMessage(); } return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ public Builder setMapType(onnx.Onnx.TypeProto.Map value) { if (mapTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } value_ = value; onChanged(); } else { mapTypeBuilder_.setMessage(value); } valueCase_ = 5; return this; } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ public Builder setMapType( onnx.Onnx.TypeProto.Map.Builder builderForValue) { if (mapTypeBuilder_ == null) { value_ = builderForValue.build(); onChanged(); } else { mapTypeBuilder_.setMessage(builderForValue.build()); } valueCase_ = 5; return this; } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ public Builder mergeMapType(onnx.Onnx.TypeProto.Map value) { if (mapTypeBuilder_ == null) { if (valueCase_ == 5 && value_ != onnx.Onnx.TypeProto.Map.getDefaultInstance()) { value_ = onnx.Onnx.TypeProto.Map.newBuilder((onnx.Onnx.TypeProto.Map) value_) .mergeFrom(value).buildPartial(); } else { value_ = value; } onChanged(); } else { if (valueCase_ == 5) { mapTypeBuilder_.mergeFrom(value); } else { mapTypeBuilder_.setMessage(value); } } valueCase_ = 5; return this; } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ public Builder clearMapType() { if (mapTypeBuilder_ == null) { if (valueCase_ == 5) { valueCase_ = 0; value_ = null; onChanged(); } } else { if (valueCase_ == 5) { valueCase_ = 0; value_ = null; } mapTypeBuilder_.clear(); } return this; } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ public onnx.Onnx.TypeProto.Map.Builder getMapTypeBuilder() { return getMapTypeFieldBuilder().getBuilder(); } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ @java.lang.Override public onnx.Onnx.TypeProto.MapOrBuilder getMapTypeOrBuilder() { if ((valueCase_ == 5) && (mapTypeBuilder_ != null)) { return mapTypeBuilder_.getMessageOrBuilder(); } else { if (valueCase_ == 5) { return (onnx.Onnx.TypeProto.Map) value_; } return onnx.Onnx.TypeProto.Map.getDefaultInstance(); } } /** *
       * The type of a map.
       * 
* * .onnx.TypeProto.Map map_type = 5; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Map, onnx.Onnx.TypeProto.Map.Builder, onnx.Onnx.TypeProto.MapOrBuilder> getMapTypeFieldBuilder() { if (mapTypeBuilder_ == null) { if (!(valueCase_ == 5)) { value_ = onnx.Onnx.TypeProto.Map.getDefaultInstance(); } mapTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Map, onnx.Onnx.TypeProto.Map.Builder, onnx.Onnx.TypeProto.MapOrBuilder>( (onnx.Onnx.TypeProto.Map) value_, getParentForChildren(), isClean()); value_ = null; } valueCase_ = 5; onChanged(); return mapTypeBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Optional, onnx.Onnx.TypeProto.Optional.Builder, onnx.Onnx.TypeProto.OptionalOrBuilder> optionalTypeBuilder_; /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return Whether the optionalType field is set. */ @java.lang.Override public boolean hasOptionalType() { return valueCase_ == 9; } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; * @return The optionalType. */ @java.lang.Override public onnx.Onnx.TypeProto.Optional getOptionalType() { if (optionalTypeBuilder_ == null) { if (valueCase_ == 9) { return (onnx.Onnx.TypeProto.Optional) value_; } return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } else { if (valueCase_ == 9) { return optionalTypeBuilder_.getMessage(); } return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ public Builder setOptionalType(onnx.Onnx.TypeProto.Optional value) { if (optionalTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } value_ = value; onChanged(); } else { optionalTypeBuilder_.setMessage(value); } valueCase_ = 9; return this; } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ public Builder setOptionalType( onnx.Onnx.TypeProto.Optional.Builder builderForValue) { if (optionalTypeBuilder_ == null) { value_ = builderForValue.build(); onChanged(); } else { optionalTypeBuilder_.setMessage(builderForValue.build()); } valueCase_ = 9; return this; } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ public Builder mergeOptionalType(onnx.Onnx.TypeProto.Optional value) { if (optionalTypeBuilder_ == null) { if (valueCase_ == 9 && value_ != onnx.Onnx.TypeProto.Optional.getDefaultInstance()) { value_ = onnx.Onnx.TypeProto.Optional.newBuilder((onnx.Onnx.TypeProto.Optional) value_) .mergeFrom(value).buildPartial(); } else { value_ = value; } onChanged(); } else { if (valueCase_ == 9) { optionalTypeBuilder_.mergeFrom(value); } else { optionalTypeBuilder_.setMessage(value); } } valueCase_ = 9; return this; } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ public Builder clearOptionalType() { if (optionalTypeBuilder_ == null) { if (valueCase_ == 9) { valueCase_ = 0; value_ = null; onChanged(); } } else { if (valueCase_ == 9) { valueCase_ = 0; value_ = null; } optionalTypeBuilder_.clear(); } return this; } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ public onnx.Onnx.TypeProto.Optional.Builder getOptionalTypeBuilder() { return getOptionalTypeFieldBuilder().getBuilder(); } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ @java.lang.Override public onnx.Onnx.TypeProto.OptionalOrBuilder getOptionalTypeOrBuilder() { if ((valueCase_ == 9) && (optionalTypeBuilder_ != null)) { return optionalTypeBuilder_.getMessageOrBuilder(); } else { if (valueCase_ == 9) { return (onnx.Onnx.TypeProto.Optional) value_; } return onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } } /** *
       * The type of an optional.
       * 
* * .onnx.TypeProto.Optional optional_type = 9; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Optional, onnx.Onnx.TypeProto.Optional.Builder, onnx.Onnx.TypeProto.OptionalOrBuilder> getOptionalTypeFieldBuilder() { if (optionalTypeBuilder_ == null) { if (!(valueCase_ == 9)) { value_ = onnx.Onnx.TypeProto.Optional.getDefaultInstance(); } optionalTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.Optional, onnx.Onnx.TypeProto.Optional.Builder, onnx.Onnx.TypeProto.OptionalOrBuilder>( (onnx.Onnx.TypeProto.Optional) value_, getParentForChildren(), isClean()); value_ = null; } valueCase_ = 9; onChanged(); return optionalTypeBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.SparseTensor, onnx.Onnx.TypeProto.SparseTensor.Builder, onnx.Onnx.TypeProto.SparseTensorOrBuilder> sparseTensorTypeBuilder_; /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return Whether the sparseTensorType field is set. */ @java.lang.Override public boolean hasSparseTensorType() { return valueCase_ == 8; } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; * @return The sparseTensorType. */ @java.lang.Override public onnx.Onnx.TypeProto.SparseTensor getSparseTensorType() { if (sparseTensorTypeBuilder_ == null) { if (valueCase_ == 8) { return (onnx.Onnx.TypeProto.SparseTensor) value_; } return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } else { if (valueCase_ == 8) { return sparseTensorTypeBuilder_.getMessage(); } return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ public Builder setSparseTensorType(onnx.Onnx.TypeProto.SparseTensor value) { if (sparseTensorTypeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } value_ = value; onChanged(); } else { sparseTensorTypeBuilder_.setMessage(value); } valueCase_ = 8; return this; } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ public Builder setSparseTensorType( onnx.Onnx.TypeProto.SparseTensor.Builder builderForValue) { if (sparseTensorTypeBuilder_ == null) { value_ = builderForValue.build(); onChanged(); } else { sparseTensorTypeBuilder_.setMessage(builderForValue.build()); } valueCase_ = 8; return this; } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ public Builder mergeSparseTensorType(onnx.Onnx.TypeProto.SparseTensor value) { if (sparseTensorTypeBuilder_ == null) { if (valueCase_ == 8 && value_ != onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance()) { value_ = onnx.Onnx.TypeProto.SparseTensor.newBuilder((onnx.Onnx.TypeProto.SparseTensor) value_) .mergeFrom(value).buildPartial(); } else { value_ = value; } onChanged(); } else { if (valueCase_ == 8) { sparseTensorTypeBuilder_.mergeFrom(value); } else { sparseTensorTypeBuilder_.setMessage(value); } } valueCase_ = 8; return this; } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ public Builder clearSparseTensorType() { if (sparseTensorTypeBuilder_ == null) { if (valueCase_ == 8) { valueCase_ = 0; value_ = null; onChanged(); } } else { if (valueCase_ == 8) { valueCase_ = 0; value_ = null; } sparseTensorTypeBuilder_.clear(); } return this; } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ public onnx.Onnx.TypeProto.SparseTensor.Builder getSparseTensorTypeBuilder() { return getSparseTensorTypeFieldBuilder().getBuilder(); } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ @java.lang.Override public onnx.Onnx.TypeProto.SparseTensorOrBuilder getSparseTensorTypeOrBuilder() { if ((valueCase_ == 8) && (sparseTensorTypeBuilder_ != null)) { return sparseTensorTypeBuilder_.getMessageOrBuilder(); } else { if (valueCase_ == 8) { return (onnx.Onnx.TypeProto.SparseTensor) value_; } return onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } } /** *
       * Type of the sparse tensor
       * 
* * .onnx.TypeProto.SparseTensor sparse_tensor_type = 8; */ private com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.SparseTensor, onnx.Onnx.TypeProto.SparseTensor.Builder, onnx.Onnx.TypeProto.SparseTensorOrBuilder> getSparseTensorTypeFieldBuilder() { if (sparseTensorTypeBuilder_ == null) { if (!(valueCase_ == 8)) { value_ = onnx.Onnx.TypeProto.SparseTensor.getDefaultInstance(); } sparseTensorTypeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< onnx.Onnx.TypeProto.SparseTensor, onnx.Onnx.TypeProto.SparseTensor.Builder, onnx.Onnx.TypeProto.SparseTensorOrBuilder>( (onnx.Onnx.TypeProto.SparseTensor) value_, getParentForChildren(), isClean()); value_ = null; } valueCase_ = 8; onChanged(); return sparseTensorTypeBuilder_; } private java.lang.Object denotation_ = ""; /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @return Whether the denotation field is set. */ public boolean hasDenotation() { return ((bitField0_ & 0x00000020) != 0); } /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @return The denotation. */ public java.lang.String getDenotation() { java.lang.Object ref = denotation_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { denotation_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @return The bytes for denotation. */ public com.google.protobuf.ByteString getDenotationBytes() { java.lang.Object ref = denotation_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); denotation_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @param value The denotation to set. * @return This builder for chaining. */ public Builder setDenotation( java.lang.String value) { if (value == null) { throw new NullPointerException(); } denotation_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @return This builder for chaining. */ public Builder clearDenotation() { denotation_ = getDefaultInstance().getDenotation(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); return this; } /** *
       * An optional denotation can be used to denote the whole
       * type with a standard semantic description as to what is
       * stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition
       * for pre-defined type denotations.
       * 
* * optional string denotation = 6; * @param value The bytes for denotation to set. * @return This builder for chaining. */ public Builder setDenotationBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } denotation_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.TypeProto) } // @@protoc_insertion_point(class_scope:onnx.TypeProto) private static final onnx.Onnx.TypeProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.TypeProto(); } public static onnx.Onnx.TypeProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TypeProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.TypeProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface OperatorSetIdProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.OperatorSetIdProto) com.google.protobuf.MessageOrBuilder { /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return Whether the domain field is set. */ boolean hasDomain(); /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return The domain. */ java.lang.String getDomain(); /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return The bytes for domain. */ com.google.protobuf.ByteString getDomainBytes(); /** *
     * The version of the operator set being identified.
     * This field MUST be present in this version of the IR.
     * 
* * optional int64 version = 2; * @return Whether the version field is set. */ boolean hasVersion(); /** *
     * The version of the operator set being identified.
     * This field MUST be present in this version of the IR.
     * 
* * optional int64 version = 2; * @return The version. */ long getVersion(); } /** *
   * Operator Sets
   *
   * OperatorSets are uniquely identified by a (domain, opset_version) pair.
   * 
* * Protobuf type {@code onnx.OperatorSetIdProto} */ public static final class OperatorSetIdProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.OperatorSetIdProto) OperatorSetIdProtoOrBuilder { private static final long serialVersionUID = 0L; // Use OperatorSetIdProto.newBuilder() to construct. private OperatorSetIdProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private OperatorSetIdProto() { domain_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new OperatorSetIdProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_OperatorSetIdProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_OperatorSetIdProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.OperatorSetIdProto.class, onnx.Onnx.OperatorSetIdProto.Builder.class); } private int bitField0_; public static final int DOMAIN_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object domain_ = ""; /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return Whether the domain field is set. */ @java.lang.Override public boolean hasDomain() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return The domain. */ @java.lang.Override public java.lang.String getDomain() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } } /** *
     * The domain of the operator set being identified.
     * The empty string ("") or absence of this field implies the operator
     * set that is defined as part of the ONNX specification.
     * This field MUST be present in this version of the IR when referring to any other operator set.
     * 
* * optional string domain = 1; * @return The bytes for domain. */ @java.lang.Override public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int VERSION_FIELD_NUMBER = 2; private long version_ = 0L; /** *
     * The version of the operator set being identified.
     * This field MUST be present in this version of the IR.
     * 
* * optional int64 version = 2; * @return Whether the version field is set. */ @java.lang.Override public boolean hasVersion() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * The version of the operator set being identified.
     * This field MUST be present in this version of the IR.
     * 
* * optional int64 version = 2; * @return The version. */ @java.lang.Override public long getVersion() { return version_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, domain_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeInt64(2, version_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, domain_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(2, version_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.OperatorSetIdProto)) { return super.equals(obj); } onnx.Onnx.OperatorSetIdProto other = (onnx.Onnx.OperatorSetIdProto) obj; if (hasDomain() != other.hasDomain()) return false; if (hasDomain()) { if (!getDomain() .equals(other.getDomain())) return false; } if (hasVersion() != other.hasVersion()) return false; if (hasVersion()) { if (getVersion() != other.getVersion()) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasDomain()) { hash = (37 * hash) + DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getDomain().hashCode(); } if (hasVersion()) { hash = (37 * hash) + VERSION_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getVersion()); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.OperatorSetIdProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.OperatorSetIdProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.OperatorSetIdProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.OperatorSetIdProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.OperatorSetIdProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.OperatorSetIdProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.OperatorSetIdProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.OperatorSetIdProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.OperatorSetIdProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.OperatorSetIdProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.OperatorSetIdProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.OperatorSetIdProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.OperatorSetIdProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Operator Sets
     *
     * OperatorSets are uniquely identified by a (domain, opset_version) pair.
     * 
* * Protobuf type {@code onnx.OperatorSetIdProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.OperatorSetIdProto) onnx.Onnx.OperatorSetIdProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_OperatorSetIdProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_OperatorSetIdProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.OperatorSetIdProto.class, onnx.Onnx.OperatorSetIdProto.Builder.class); } // Construct using onnx.Onnx.OperatorSetIdProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; domain_ = ""; version_ = 0L; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_OperatorSetIdProto_descriptor; } @java.lang.Override public onnx.Onnx.OperatorSetIdProto getDefaultInstanceForType() { return onnx.Onnx.OperatorSetIdProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.OperatorSetIdProto build() { onnx.Onnx.OperatorSetIdProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.OperatorSetIdProto buildPartial() { onnx.Onnx.OperatorSetIdProto result = new onnx.Onnx.OperatorSetIdProto(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(onnx.Onnx.OperatorSetIdProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.domain_ = domain_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.version_ = version_; to_bitField0_ |= 0x00000002; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.OperatorSetIdProto) { return mergeFrom((onnx.Onnx.OperatorSetIdProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.OperatorSetIdProto other) { if (other == onnx.Onnx.OperatorSetIdProto.getDefaultInstance()) return this; if (other.hasDomain()) { domain_ = other.domain_; bitField0_ |= 0x00000001; onChanged(); } if (other.hasVersion()) { setVersion(other.getVersion()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { domain_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 16: { version_ = input.readInt64(); bitField0_ |= 0x00000002; break; } // case 16 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object domain_ = ""; /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @return Whether the domain field is set. */ public boolean hasDomain() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @return The domain. */ public java.lang.String getDomain() { java.lang.Object ref = domain_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @return The bytes for domain. */ public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @param value The domain to set. * @return This builder for chaining. */ public Builder setDomain( java.lang.String value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @return This builder for chaining. */ public Builder clearDomain() { domain_ = getDefaultInstance().getDomain(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** *
       * The domain of the operator set being identified.
       * The empty string ("") or absence of this field implies the operator
       * set that is defined as part of the ONNX specification.
       * This field MUST be present in this version of the IR when referring to any other operator set.
       * 
* * optional string domain = 1; * @param value The bytes for domain to set. * @return This builder for chaining. */ public Builder setDomainBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private long version_ ; /** *
       * The version of the operator set being identified.
       * This field MUST be present in this version of the IR.
       * 
* * optional int64 version = 2; * @return Whether the version field is set. */ @java.lang.Override public boolean hasVersion() { return ((bitField0_ & 0x00000002) != 0); } /** *
       * The version of the operator set being identified.
       * This field MUST be present in this version of the IR.
       * 
* * optional int64 version = 2; * @return The version. */ @java.lang.Override public long getVersion() { return version_; } /** *
       * The version of the operator set being identified.
       * This field MUST be present in this version of the IR.
       * 
* * optional int64 version = 2; * @param value The version to set. * @return This builder for chaining. */ public Builder setVersion(long value) { version_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The version of the operator set being identified.
       * This field MUST be present in this version of the IR.
       * 
* * optional int64 version = 2; * @return This builder for chaining. */ public Builder clearVersion() { bitField0_ = (bitField0_ & ~0x00000002); version_ = 0L; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.OperatorSetIdProto) } // @@protoc_insertion_point(class_scope:onnx.OperatorSetIdProto) private static final onnx.Onnx.OperatorSetIdProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.OperatorSetIdProto(); } public static onnx.Onnx.OperatorSetIdProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public OperatorSetIdProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.OperatorSetIdProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface FunctionProtoOrBuilder extends // @@protoc_insertion_point(interface_extends:onnx.FunctionProto) com.google.protobuf.MessageOrBuilder { /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ boolean hasName(); /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return The name. */ java.lang.String getName(); /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return The bytes for name. */ com.google.protobuf.ByteString getNameBytes(); /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @return A list containing the input. */ java.util.List getInputList(); /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @return The count of input. */ int getInputCount(); /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @param index The index of the element to return. * @return The input at the given index. */ java.lang.String getInput(int index); /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ com.google.protobuf.ByteString getInputBytes(int index); /** * repeated string output = 5; * @return A list containing the output. */ java.util.List getOutputList(); /** * repeated string output = 5; * @return The count of output. */ int getOutputCount(); /** * repeated string output = 5; * @param index The index of the element to return. * @return The output at the given index. */ java.lang.String getOutput(int index); /** * repeated string output = 5; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ com.google.protobuf.ByteString getOutputBytes(int index); /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @return A list containing the attribute. */ java.util.List getAttributeList(); /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @return The count of attribute. */ int getAttributeCount(); /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @param index The index of the element to return. * @return The attribute at the given index. */ java.lang.String getAttribute(int index); /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @param index The index of the value to return. * @return The bytes of the attribute at the given index. */ com.google.protobuf.ByteString getAttributeBytes(int index); /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ java.util.List getAttributeProtoList(); /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ onnx.Onnx.AttributeProto getAttributeProto(int index); /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ int getAttributeProtoCount(); /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ java.util.List getAttributeProtoOrBuilderList(); /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ onnx.Onnx.AttributeProtoOrBuilder getAttributeProtoOrBuilder( int index); /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ java.util.List getNodeList(); /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ onnx.Onnx.NodeProto getNode(int index); /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ int getNodeCount(); /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ java.util.List getNodeOrBuilderList(); /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index); /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return Whether the docString field is set. */ boolean hasDocString(); /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return The docString. */ java.lang.String getDocString(); /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return The bytes for docString. */ com.google.protobuf.ByteString getDocStringBytes(); /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ java.util.List getOpsetImportList(); /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ onnx.Onnx.OperatorSetIdProto getOpsetImport(int index); /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ int getOpsetImportCount(); /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ java.util.List getOpsetImportOrBuilderList(); /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index); /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return Whether the domain field is set. */ boolean hasDomain(); /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return The domain. */ java.lang.String getDomain(); /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return The bytes for domain. */ com.google.protobuf.ByteString getDomainBytes(); } /** * Protobuf type {@code onnx.FunctionProto} */ public static final class FunctionProto extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:onnx.FunctionProto) FunctionProtoOrBuilder { private static final long serialVersionUID = 0L; // Use FunctionProto.newBuilder() to construct. private FunctionProto(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private FunctionProto() { name_ = ""; input_ = com.google.protobuf.LazyStringArrayList.emptyList(); output_ = com.google.protobuf.LazyStringArrayList.emptyList(); attribute_ = com.google.protobuf.LazyStringArrayList.emptyList(); attributeProto_ = java.util.Collections.emptyList(); node_ = java.util.Collections.emptyList(); docString_ = ""; opsetImport_ = java.util.Collections.emptyList(); domain_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new FunctionProto(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_FunctionProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_FunctionProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.FunctionProto.class, onnx.Onnx.FunctionProto.Builder.class); } private int bitField0_; public static final int NAME_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object name_ = ""; /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return Whether the name field is set. */ @java.lang.Override public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return The name. */ @java.lang.Override public java.lang.String getName() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } } /** *
     * The name of the function, similar usage of op_type in OperatorProto.
     * Combined with FunctionProto.domain, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string name = 1; * @return The bytes for name. */ @java.lang.Override public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int INPUT_FIELD_NUMBER = 4; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList input_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @return A list containing the input. */ public com.google.protobuf.ProtocolStringList getInputList() { return input_; } /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @return The count of input. */ public int getInputCount() { return input_.size(); } /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @param index The index of the element to return. * @return The input at the given index. */ public java.lang.String getInput(int index) { return input_.get(index); } /** *
     * The inputs and outputs of the function.
     * 
* * repeated string input = 4; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ public com.google.protobuf.ByteString getInputBytes(int index) { return input_.getByteString(index); } public static final int OUTPUT_FIELD_NUMBER = 5; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList output_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** * repeated string output = 5; * @return A list containing the output. */ public com.google.protobuf.ProtocolStringList getOutputList() { return output_; } /** * repeated string output = 5; * @return The count of output. */ public int getOutputCount() { return output_.size(); } /** * repeated string output = 5; * @param index The index of the element to return. * @return The output at the given index. */ public java.lang.String getOutput(int index) { return output_.get(index); } /** * repeated string output = 5; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ public com.google.protobuf.ByteString getOutputBytes(int index) { return output_.getByteString(index); } public static final int ATTRIBUTE_FIELD_NUMBER = 6; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList attribute_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @return A list containing the attribute. */ public com.google.protobuf.ProtocolStringList getAttributeList() { return attribute_; } /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @return The count of attribute. */ public int getAttributeCount() { return attribute_.size(); } /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @param index The index of the element to return. * @return The attribute at the given index. */ public java.lang.String getAttribute(int index) { return attribute_.get(index); } /** *
     * The attribute parameters of the function.
     * It is for function parameters without default values.
     * 
* * repeated string attribute = 6; * @param index The index of the value to return. * @return The bytes of the attribute at the given index. */ public com.google.protobuf.ByteString getAttributeBytes(int index) { return attribute_.getByteString(index); } public static final int ATTRIBUTE_PROTO_FIELD_NUMBER = 11; @SuppressWarnings("serial") private java.util.List attributeProto_; /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ @java.lang.Override public java.util.List getAttributeProtoList() { return attributeProto_; } /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ @java.lang.Override public java.util.List getAttributeProtoOrBuilderList() { return attributeProto_; } /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ @java.lang.Override public int getAttributeProtoCount() { return attributeProto_.size(); } /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ @java.lang.Override public onnx.Onnx.AttributeProto getAttributeProto(int index) { return attributeProto_.get(index); } /** *
     * The attribute protos of the function.
     * It is for function attributes with default values.
     * A function attribute shall be represented either as
     * a string attribute or an AttributeProto, not both.
     * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ @java.lang.Override public onnx.Onnx.AttributeProtoOrBuilder getAttributeProtoOrBuilder( int index) { return attributeProto_.get(index); } public static final int NODE_FIELD_NUMBER = 7; @SuppressWarnings("serial") private java.util.List node_; /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ @java.lang.Override public java.util.List getNodeList() { return node_; } /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ @java.lang.Override public java.util.List getNodeOrBuilderList() { return node_; } /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ @java.lang.Override public int getNodeCount() { return node_.size(); } /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ @java.lang.Override public onnx.Onnx.NodeProto getNode(int index) { return node_.get(index); } /** *
     * The nodes in the function.
     * 
* * repeated .onnx.NodeProto node = 7; */ @java.lang.Override public onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index) { return node_.get(index); } public static final int DOC_STRING_FIELD_NUMBER = 8; @SuppressWarnings("serial") private volatile java.lang.Object docString_ = ""; /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return Whether the docString field is set. */ @java.lang.Override public boolean hasDocString() { return ((bitField0_ & 0x00000002) != 0); } /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return The docString. */ @java.lang.Override public java.lang.String getDocString() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } } /** *
     * A human-readable documentation for this function. Markdown is allowed.
     * 
* * optional string doc_string = 8; * @return The bytes for docString. */ @java.lang.Override public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int OPSET_IMPORT_FIELD_NUMBER = 9; @SuppressWarnings("serial") private java.util.List opsetImport_; /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ @java.lang.Override public java.util.List getOpsetImportList() { return opsetImport_; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ @java.lang.Override public java.util.List getOpsetImportOrBuilderList() { return opsetImport_; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ @java.lang.Override public int getOpsetImportCount() { return opsetImport_.size(); } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ @java.lang.Override public onnx.Onnx.OperatorSetIdProto getOpsetImport(int index) { return opsetImport_.get(index); } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ @java.lang.Override public onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index) { return opsetImport_.get(index); } public static final int DOMAIN_FIELD_NUMBER = 10; @SuppressWarnings("serial") private volatile java.lang.Object domain_ = ""; /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return Whether the domain field is set. */ @java.lang.Override public boolean hasDomain() { return ((bitField0_ & 0x00000004) != 0); } /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return The domain. */ @java.lang.Override public java.lang.String getDomain() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } } /** *
     * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
     * the FunctionProto.
     * 
* * optional string domain = 10; * @return The bytes for domain. */ @java.lang.Override public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, name_); } for (int i = 0; i < input_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, input_.getRaw(i)); } for (int i = 0; i < output_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 5, output_.getRaw(i)); } for (int i = 0; i < attribute_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 6, attribute_.getRaw(i)); } for (int i = 0; i < node_.size(); i++) { output.writeMessage(7, node_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 8, docString_); } for (int i = 0; i < opsetImport_.size(); i++) { output.writeMessage(9, opsetImport_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 10, domain_); } for (int i = 0; i < attributeProto_.size(); i++) { output.writeMessage(11, attributeProto_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, name_); } { int dataSize = 0; for (int i = 0; i < input_.size(); i++) { dataSize += computeStringSizeNoTag(input_.getRaw(i)); } size += dataSize; size += 1 * getInputList().size(); } { int dataSize = 0; for (int i = 0; i < output_.size(); i++) { dataSize += computeStringSizeNoTag(output_.getRaw(i)); } size += dataSize; size += 1 * getOutputList().size(); } { int dataSize = 0; for (int i = 0; i < attribute_.size(); i++) { dataSize += computeStringSizeNoTag(attribute_.getRaw(i)); } size += dataSize; size += 1 * getAttributeList().size(); } for (int i = 0; i < node_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(7, node_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(8, docString_); } for (int i = 0; i < opsetImport_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(9, opsetImport_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(10, domain_); } for (int i = 0; i < attributeProto_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(11, attributeProto_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof onnx.Onnx.FunctionProto)) { return super.equals(obj); } onnx.Onnx.FunctionProto other = (onnx.Onnx.FunctionProto) obj; if (hasName() != other.hasName()) return false; if (hasName()) { if (!getName() .equals(other.getName())) return false; } if (!getInputList() .equals(other.getInputList())) return false; if (!getOutputList() .equals(other.getOutputList())) return false; if (!getAttributeList() .equals(other.getAttributeList())) return false; if (!getAttributeProtoList() .equals(other.getAttributeProtoList())) return false; if (!getNodeList() .equals(other.getNodeList())) return false; if (hasDocString() != other.hasDocString()) return false; if (hasDocString()) { if (!getDocString() .equals(other.getDocString())) return false; } if (!getOpsetImportList() .equals(other.getOpsetImportList())) return false; if (hasDomain() != other.hasDomain()) return false; if (hasDomain()) { if (!getDomain() .equals(other.getDomain())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasName()) { hash = (37 * hash) + NAME_FIELD_NUMBER; hash = (53 * hash) + getName().hashCode(); } if (getInputCount() > 0) { hash = (37 * hash) + INPUT_FIELD_NUMBER; hash = (53 * hash) + getInputList().hashCode(); } if (getOutputCount() > 0) { hash = (37 * hash) + OUTPUT_FIELD_NUMBER; hash = (53 * hash) + getOutputList().hashCode(); } if (getAttributeCount() > 0) { hash = (37 * hash) + ATTRIBUTE_FIELD_NUMBER; hash = (53 * hash) + getAttributeList().hashCode(); } if (getAttributeProtoCount() > 0) { hash = (37 * hash) + ATTRIBUTE_PROTO_FIELD_NUMBER; hash = (53 * hash) + getAttributeProtoList().hashCode(); } if (getNodeCount() > 0) { hash = (37 * hash) + NODE_FIELD_NUMBER; hash = (53 * hash) + getNodeList().hashCode(); } if (hasDocString()) { hash = (37 * hash) + DOC_STRING_FIELD_NUMBER; hash = (53 * hash) + getDocString().hashCode(); } if (getOpsetImportCount() > 0) { hash = (37 * hash) + OPSET_IMPORT_FIELD_NUMBER; hash = (53 * hash) + getOpsetImportList().hashCode(); } if (hasDomain()) { hash = (37 * hash) + DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getDomain().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static onnx.Onnx.FunctionProto parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.FunctionProto parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.FunctionProto parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.FunctionProto parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.FunctionProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static onnx.Onnx.FunctionProto parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static onnx.Onnx.FunctionProto parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.FunctionProto parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.FunctionProto parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static onnx.Onnx.FunctionProto parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static onnx.Onnx.FunctionProto parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static onnx.Onnx.FunctionProto parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(onnx.Onnx.FunctionProto prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code onnx.FunctionProto} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:onnx.FunctionProto) onnx.Onnx.FunctionProtoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return onnx.Onnx.internal_static_onnx_FunctionProto_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return onnx.Onnx.internal_static_onnx_FunctionProto_fieldAccessorTable .ensureFieldAccessorsInitialized( onnx.Onnx.FunctionProto.class, onnx.Onnx.FunctionProto.Builder.class); } // Construct using onnx.Onnx.FunctionProto.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; name_ = ""; input_ = com.google.protobuf.LazyStringArrayList.emptyList(); output_ = com.google.protobuf.LazyStringArrayList.emptyList(); attribute_ = com.google.protobuf.LazyStringArrayList.emptyList(); if (attributeProtoBuilder_ == null) { attributeProto_ = java.util.Collections.emptyList(); } else { attributeProto_ = null; attributeProtoBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000010); if (nodeBuilder_ == null) { node_ = java.util.Collections.emptyList(); } else { node_ = null; nodeBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); docString_ = ""; if (opsetImportBuilder_ == null) { opsetImport_ = java.util.Collections.emptyList(); } else { opsetImport_ = null; opsetImportBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000080); domain_ = ""; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return onnx.Onnx.internal_static_onnx_FunctionProto_descriptor; } @java.lang.Override public onnx.Onnx.FunctionProto getDefaultInstanceForType() { return onnx.Onnx.FunctionProto.getDefaultInstance(); } @java.lang.Override public onnx.Onnx.FunctionProto build() { onnx.Onnx.FunctionProto result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public onnx.Onnx.FunctionProto buildPartial() { onnx.Onnx.FunctionProto result = new onnx.Onnx.FunctionProto(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(onnx.Onnx.FunctionProto result) { if (attributeProtoBuilder_ == null) { if (((bitField0_ & 0x00000010) != 0)) { attributeProto_ = java.util.Collections.unmodifiableList(attributeProto_); bitField0_ = (bitField0_ & ~0x00000010); } result.attributeProto_ = attributeProto_; } else { result.attributeProto_ = attributeProtoBuilder_.build(); } if (nodeBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { node_ = java.util.Collections.unmodifiableList(node_); bitField0_ = (bitField0_ & ~0x00000020); } result.node_ = node_; } else { result.node_ = nodeBuilder_.build(); } if (opsetImportBuilder_ == null) { if (((bitField0_ & 0x00000080) != 0)) { opsetImport_ = java.util.Collections.unmodifiableList(opsetImport_); bitField0_ = (bitField0_ & ~0x00000080); } result.opsetImport_ = opsetImport_; } else { result.opsetImport_ = opsetImportBuilder_.build(); } } private void buildPartial0(onnx.Onnx.FunctionProto result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.name_ = name_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { input_.makeImmutable(); result.input_ = input_; } if (((from_bitField0_ & 0x00000004) != 0)) { output_.makeImmutable(); result.output_ = output_; } if (((from_bitField0_ & 0x00000008) != 0)) { attribute_.makeImmutable(); result.attribute_ = attribute_; } if (((from_bitField0_ & 0x00000040) != 0)) { result.docString_ = docString_; to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000100) != 0)) { result.domain_ = domain_; to_bitField0_ |= 0x00000004; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof onnx.Onnx.FunctionProto) { return mergeFrom((onnx.Onnx.FunctionProto)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(onnx.Onnx.FunctionProto other) { if (other == onnx.Onnx.FunctionProto.getDefaultInstance()) return this; if (other.hasName()) { name_ = other.name_; bitField0_ |= 0x00000001; onChanged(); } if (!other.input_.isEmpty()) { if (input_.isEmpty()) { input_ = other.input_; bitField0_ |= 0x00000002; } else { ensureInputIsMutable(); input_.addAll(other.input_); } onChanged(); } if (!other.output_.isEmpty()) { if (output_.isEmpty()) { output_ = other.output_; bitField0_ |= 0x00000004; } else { ensureOutputIsMutable(); output_.addAll(other.output_); } onChanged(); } if (!other.attribute_.isEmpty()) { if (attribute_.isEmpty()) { attribute_ = other.attribute_; bitField0_ |= 0x00000008; } else { ensureAttributeIsMutable(); attribute_.addAll(other.attribute_); } onChanged(); } if (attributeProtoBuilder_ == null) { if (!other.attributeProto_.isEmpty()) { if (attributeProto_.isEmpty()) { attributeProto_ = other.attributeProto_; bitField0_ = (bitField0_ & ~0x00000010); } else { ensureAttributeProtoIsMutable(); attributeProto_.addAll(other.attributeProto_); } onChanged(); } } else { if (!other.attributeProto_.isEmpty()) { if (attributeProtoBuilder_.isEmpty()) { attributeProtoBuilder_.dispose(); attributeProtoBuilder_ = null; attributeProto_ = other.attributeProto_; bitField0_ = (bitField0_ & ~0x00000010); attributeProtoBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getAttributeProtoFieldBuilder() : null; } else { attributeProtoBuilder_.addAllMessages(other.attributeProto_); } } } if (nodeBuilder_ == null) { if (!other.node_.isEmpty()) { if (node_.isEmpty()) { node_ = other.node_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureNodeIsMutable(); node_.addAll(other.node_); } onChanged(); } } else { if (!other.node_.isEmpty()) { if (nodeBuilder_.isEmpty()) { nodeBuilder_.dispose(); nodeBuilder_ = null; node_ = other.node_; bitField0_ = (bitField0_ & ~0x00000020); nodeBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getNodeFieldBuilder() : null; } else { nodeBuilder_.addAllMessages(other.node_); } } } if (other.hasDocString()) { docString_ = other.docString_; bitField0_ |= 0x00000040; onChanged(); } if (opsetImportBuilder_ == null) { if (!other.opsetImport_.isEmpty()) { if (opsetImport_.isEmpty()) { opsetImport_ = other.opsetImport_; bitField0_ = (bitField0_ & ~0x00000080); } else { ensureOpsetImportIsMutable(); opsetImport_.addAll(other.opsetImport_); } onChanged(); } } else { if (!other.opsetImport_.isEmpty()) { if (opsetImportBuilder_.isEmpty()) { opsetImportBuilder_.dispose(); opsetImportBuilder_ = null; opsetImport_ = other.opsetImport_; bitField0_ = (bitField0_ & ~0x00000080); opsetImportBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getOpsetImportFieldBuilder() : null; } else { opsetImportBuilder_.addAllMessages(other.opsetImport_); } } } if (other.hasDomain()) { domain_ = other.domain_; bitField0_ |= 0x00000100; onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { name_ = input.readBytes(); bitField0_ |= 0x00000001; break; } // case 10 case 34: { com.google.protobuf.ByteString bs = input.readBytes(); ensureInputIsMutable(); input_.add(bs); break; } // case 34 case 42: { com.google.protobuf.ByteString bs = input.readBytes(); ensureOutputIsMutable(); output_.add(bs); break; } // case 42 case 50: { com.google.protobuf.ByteString bs = input.readBytes(); ensureAttributeIsMutable(); attribute_.add(bs); break; } // case 50 case 58: { onnx.Onnx.NodeProto m = input.readMessage( onnx.Onnx.NodeProto.PARSER, extensionRegistry); if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(m); } else { nodeBuilder_.addMessage(m); } break; } // case 58 case 66: { docString_ = input.readBytes(); bitField0_ |= 0x00000040; break; } // case 66 case 74: { onnx.Onnx.OperatorSetIdProto m = input.readMessage( onnx.Onnx.OperatorSetIdProto.PARSER, extensionRegistry); if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(m); } else { opsetImportBuilder_.addMessage(m); } break; } // case 74 case 82: { domain_ = input.readBytes(); bitField0_ |= 0x00000100; break; } // case 82 case 90: { onnx.Onnx.AttributeProto m = input.readMessage( onnx.Onnx.AttributeProto.PARSER, extensionRegistry); if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); attributeProto_.add(m); } else { attributeProtoBuilder_.addMessage(m); } break; } // case 90 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object name_ = ""; /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @return Whether the name field is set. */ public boolean hasName() { return ((bitField0_ & 0x00000001) != 0); } /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @return The name. */ public java.lang.String getName() { java.lang.Object ref = name_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { name_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @return The bytes for name. */ public com.google.protobuf.ByteString getNameBytes() { java.lang.Object ref = name_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); name_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @param value The name to set. * @return This builder for chaining. */ public Builder setName( java.lang.String value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @return This builder for chaining. */ public Builder clearName() { name_ = getDefaultInstance().getName(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** *
       * The name of the function, similar usage of op_type in OperatorProto.
       * Combined with FunctionProto.domain, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string name = 1; * @param value The bytes for name to set. * @return This builder for chaining. */ public Builder setNameBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } name_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList input_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureInputIsMutable() { if (!input_.isModifiable()) { input_ = new com.google.protobuf.LazyStringArrayList(input_); } bitField0_ |= 0x00000002; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @return A list containing the input. */ public com.google.protobuf.ProtocolStringList getInputList() { input_.makeImmutable(); return input_; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @return The count of input. */ public int getInputCount() { return input_.size(); } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param index The index of the element to return. * @return The input at the given index. */ public java.lang.String getInput(int index) { return input_.get(index); } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param index The index of the value to return. * @return The bytes of the input at the given index. */ public com.google.protobuf.ByteString getInputBytes(int index) { return input_.getByteString(index); } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param index The index to set the value at. * @param value The input to set. * @return This builder for chaining. */ public Builder setInput( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.set(index, value); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param value The input to add. * @return This builder for chaining. */ public Builder addInput( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param values The input to add. * @return This builder for chaining. */ public Builder addAllInput( java.lang.Iterable values) { ensureInputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, input_); bitField0_ |= 0x00000002; onChanged(); return this; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @return This builder for chaining. */ public Builder clearInput() { input_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000002);; onChanged(); return this; } /** *
       * The inputs and outputs of the function.
       * 
* * repeated string input = 4; * @param value The bytes of the input to add. * @return This builder for chaining. */ public Builder addInputBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureInputIsMutable(); input_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList output_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureOutputIsMutable() { if (!output_.isModifiable()) { output_ = new com.google.protobuf.LazyStringArrayList(output_); } bitField0_ |= 0x00000004; } /** * repeated string output = 5; * @return A list containing the output. */ public com.google.protobuf.ProtocolStringList getOutputList() { output_.makeImmutable(); return output_; } /** * repeated string output = 5; * @return The count of output. */ public int getOutputCount() { return output_.size(); } /** * repeated string output = 5; * @param index The index of the element to return. * @return The output at the given index. */ public java.lang.String getOutput(int index) { return output_.get(index); } /** * repeated string output = 5; * @param index The index of the value to return. * @return The bytes of the output at the given index. */ public com.google.protobuf.ByteString getOutputBytes(int index) { return output_.getByteString(index); } /** * repeated string output = 5; * @param index The index to set the value at. * @param value The output to set. * @return This builder for chaining. */ public Builder setOutput( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.set(index, value); bitField0_ |= 0x00000004; onChanged(); return this; } /** * repeated string output = 5; * @param value The output to add. * @return This builder for chaining. */ public Builder addOutput( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(value); bitField0_ |= 0x00000004; onChanged(); return this; } /** * repeated string output = 5; * @param values The output to add. * @return This builder for chaining. */ public Builder addAllOutput( java.lang.Iterable values) { ensureOutputIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, output_); bitField0_ |= 0x00000004; onChanged(); return this; } /** * repeated string output = 5; * @return This builder for chaining. */ public Builder clearOutput() { output_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000004);; onChanged(); return this; } /** * repeated string output = 5; * @param value The bytes of the output to add. * @return This builder for chaining. */ public Builder addOutputBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureOutputIsMutable(); output_.add(value); bitField0_ |= 0x00000004; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList attribute_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureAttributeIsMutable() { if (!attribute_.isModifiable()) { attribute_ = new com.google.protobuf.LazyStringArrayList(attribute_); } bitField0_ |= 0x00000008; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @return A list containing the attribute. */ public com.google.protobuf.ProtocolStringList getAttributeList() { attribute_.makeImmutable(); return attribute_; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @return The count of attribute. */ public int getAttributeCount() { return attribute_.size(); } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param index The index of the element to return. * @return The attribute at the given index. */ public java.lang.String getAttribute(int index) { return attribute_.get(index); } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param index The index of the value to return. * @return The bytes of the attribute at the given index. */ public com.google.protobuf.ByteString getAttributeBytes(int index) { return attribute_.getByteString(index); } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param index The index to set the value at. * @param value The attribute to set. * @return This builder for chaining. */ public Builder setAttribute( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.set(index, value); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param value The attribute to add. * @return This builder for chaining. */ public Builder addAttribute( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.add(value); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param values The attribute to add. * @return This builder for chaining. */ public Builder addAllAttribute( java.lang.Iterable values) { ensureAttributeIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, attribute_); bitField0_ |= 0x00000008; onChanged(); return this; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @return This builder for chaining. */ public Builder clearAttribute() { attribute_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000008);; onChanged(); return this; } /** *
       * The attribute parameters of the function.
       * It is for function parameters without default values.
       * 
* * repeated string attribute = 6; * @param value The bytes of the attribute to add. * @return This builder for chaining. */ public Builder addAttributeBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureAttributeIsMutable(); attribute_.add(value); bitField0_ |= 0x00000008; onChanged(); return this; } private java.util.List attributeProto_ = java.util.Collections.emptyList(); private void ensureAttributeProtoIsMutable() { if (!((bitField0_ & 0x00000010) != 0)) { attributeProto_ = new java.util.ArrayList(attributeProto_); bitField0_ |= 0x00000010; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder> attributeProtoBuilder_; /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public java.util.List getAttributeProtoList() { if (attributeProtoBuilder_ == null) { return java.util.Collections.unmodifiableList(attributeProto_); } else { return attributeProtoBuilder_.getMessageList(); } } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public int getAttributeProtoCount() { if (attributeProtoBuilder_ == null) { return attributeProto_.size(); } else { return attributeProtoBuilder_.getCount(); } } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public onnx.Onnx.AttributeProto getAttributeProto(int index) { if (attributeProtoBuilder_ == null) { return attributeProto_.get(index); } else { return attributeProtoBuilder_.getMessage(index); } } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder setAttributeProto( int index, onnx.Onnx.AttributeProto value) { if (attributeProtoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeProtoIsMutable(); attributeProto_.set(index, value); onChanged(); } else { attributeProtoBuilder_.setMessage(index, value); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder setAttributeProto( int index, onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); attributeProto_.set(index, builderForValue.build()); onChanged(); } else { attributeProtoBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder addAttributeProto(onnx.Onnx.AttributeProto value) { if (attributeProtoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeProtoIsMutable(); attributeProto_.add(value); onChanged(); } else { attributeProtoBuilder_.addMessage(value); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder addAttributeProto( int index, onnx.Onnx.AttributeProto value) { if (attributeProtoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAttributeProtoIsMutable(); attributeProto_.add(index, value); onChanged(); } else { attributeProtoBuilder_.addMessage(index, value); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder addAttributeProto( onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); attributeProto_.add(builderForValue.build()); onChanged(); } else { attributeProtoBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder addAttributeProto( int index, onnx.Onnx.AttributeProto.Builder builderForValue) { if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); attributeProto_.add(index, builderForValue.build()); onChanged(); } else { attributeProtoBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder addAllAttributeProto( java.lang.Iterable values) { if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, attributeProto_); onChanged(); } else { attributeProtoBuilder_.addAllMessages(values); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder clearAttributeProto() { if (attributeProtoBuilder_ == null) { attributeProto_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); } else { attributeProtoBuilder_.clear(); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public Builder removeAttributeProto(int index) { if (attributeProtoBuilder_ == null) { ensureAttributeProtoIsMutable(); attributeProto_.remove(index); onChanged(); } else { attributeProtoBuilder_.remove(index); } return this; } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public onnx.Onnx.AttributeProto.Builder getAttributeProtoBuilder( int index) { return getAttributeProtoFieldBuilder().getBuilder(index); } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public onnx.Onnx.AttributeProtoOrBuilder getAttributeProtoOrBuilder( int index) { if (attributeProtoBuilder_ == null) { return attributeProto_.get(index); } else { return attributeProtoBuilder_.getMessageOrBuilder(index); } } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public java.util.List getAttributeProtoOrBuilderList() { if (attributeProtoBuilder_ != null) { return attributeProtoBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(attributeProto_); } } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public onnx.Onnx.AttributeProto.Builder addAttributeProtoBuilder() { return getAttributeProtoFieldBuilder().addBuilder( onnx.Onnx.AttributeProto.getDefaultInstance()); } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public onnx.Onnx.AttributeProto.Builder addAttributeProtoBuilder( int index) { return getAttributeProtoFieldBuilder().addBuilder( index, onnx.Onnx.AttributeProto.getDefaultInstance()); } /** *
       * The attribute protos of the function.
       * It is for function attributes with default values.
       * A function attribute shall be represented either as
       * a string attribute or an AttributeProto, not both.
       * 
* * repeated .onnx.AttributeProto attribute_proto = 11; */ public java.util.List getAttributeProtoBuilderList() { return getAttributeProtoFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder> getAttributeProtoFieldBuilder() { if (attributeProtoBuilder_ == null) { attributeProtoBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.AttributeProto, onnx.Onnx.AttributeProto.Builder, onnx.Onnx.AttributeProtoOrBuilder>( attributeProto_, ((bitField0_ & 0x00000010) != 0), getParentForChildren(), isClean()); attributeProto_ = null; } return attributeProtoBuilder_; } private java.util.List node_ = java.util.Collections.emptyList(); private void ensureNodeIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { node_ = new java.util.ArrayList(node_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder> nodeBuilder_; /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public java.util.List getNodeList() { if (nodeBuilder_ == null) { return java.util.Collections.unmodifiableList(node_); } else { return nodeBuilder_.getMessageList(); } } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public int getNodeCount() { if (nodeBuilder_ == null) { return node_.size(); } else { return nodeBuilder_.getCount(); } } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public onnx.Onnx.NodeProto getNode(int index) { if (nodeBuilder_ == null) { return node_.get(index); } else { return nodeBuilder_.getMessage(index); } } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder setNode( int index, onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.set(index, value); onChanged(); } else { nodeBuilder_.setMessage(index, value); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder setNode( int index, onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.set(index, builderForValue.build()); onChanged(); } else { nodeBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder addNode(onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.add(value); onChanged(); } else { nodeBuilder_.addMessage(value); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder addNode( int index, onnx.Onnx.NodeProto value) { if (nodeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureNodeIsMutable(); node_.add(index, value); onChanged(); } else { nodeBuilder_.addMessage(index, value); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder addNode( onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(builderForValue.build()); onChanged(); } else { nodeBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder addNode( int index, onnx.Onnx.NodeProto.Builder builderForValue) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.add(index, builderForValue.build()); onChanged(); } else { nodeBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder addAllNode( java.lang.Iterable values) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, node_); onChanged(); } else { nodeBuilder_.addAllMessages(values); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder clearNode() { if (nodeBuilder_ == null) { node_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { nodeBuilder_.clear(); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public Builder removeNode(int index) { if (nodeBuilder_ == null) { ensureNodeIsMutable(); node_.remove(index); onChanged(); } else { nodeBuilder_.remove(index); } return this; } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public onnx.Onnx.NodeProto.Builder getNodeBuilder( int index) { return getNodeFieldBuilder().getBuilder(index); } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public onnx.Onnx.NodeProtoOrBuilder getNodeOrBuilder( int index) { if (nodeBuilder_ == null) { return node_.get(index); } else { return nodeBuilder_.getMessageOrBuilder(index); } } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public java.util.List getNodeOrBuilderList() { if (nodeBuilder_ != null) { return nodeBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(node_); } } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public onnx.Onnx.NodeProto.Builder addNodeBuilder() { return getNodeFieldBuilder().addBuilder( onnx.Onnx.NodeProto.getDefaultInstance()); } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public onnx.Onnx.NodeProto.Builder addNodeBuilder( int index) { return getNodeFieldBuilder().addBuilder( index, onnx.Onnx.NodeProto.getDefaultInstance()); } /** *
       * The nodes in the function.
       * 
* * repeated .onnx.NodeProto node = 7; */ public java.util.List getNodeBuilderList() { return getNodeFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder> getNodeFieldBuilder() { if (nodeBuilder_ == null) { nodeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.NodeProto, onnx.Onnx.NodeProto.Builder, onnx.Onnx.NodeProtoOrBuilder>( node_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); node_ = null; } return nodeBuilder_; } private java.lang.Object docString_ = ""; /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @return Whether the docString field is set. */ public boolean hasDocString() { return ((bitField0_ & 0x00000040) != 0); } /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @return The docString. */ public java.lang.String getDocString() { java.lang.Object ref = docString_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { docString_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @return The bytes for docString. */ public com.google.protobuf.ByteString getDocStringBytes() { java.lang.Object ref = docString_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); docString_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @param value The docString to set. * @return This builder for chaining. */ public Builder setDocString( java.lang.String value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @return This builder for chaining. */ public Builder clearDocString() { docString_ = getDefaultInstance().getDocString(); bitField0_ = (bitField0_ & ~0x00000040); onChanged(); return this; } /** *
       * A human-readable documentation for this function. Markdown is allowed.
       * 
* * optional string doc_string = 8; * @param value The bytes for docString to set. * @return This builder for chaining. */ public Builder setDocStringBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } docString_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } private java.util.List opsetImport_ = java.util.Collections.emptyList(); private void ensureOpsetImportIsMutable() { if (!((bitField0_ & 0x00000080) != 0)) { opsetImport_ = new java.util.ArrayList(opsetImport_); bitField0_ |= 0x00000080; } } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder> opsetImportBuilder_; /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public java.util.List getOpsetImportList() { if (opsetImportBuilder_ == null) { return java.util.Collections.unmodifiableList(opsetImport_); } else { return opsetImportBuilder_.getMessageList(); } } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public int getOpsetImportCount() { if (opsetImportBuilder_ == null) { return opsetImport_.size(); } else { return opsetImportBuilder_.getCount(); } } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public onnx.Onnx.OperatorSetIdProto getOpsetImport(int index) { if (opsetImportBuilder_ == null) { return opsetImport_.get(index); } else { return opsetImportBuilder_.getMessage(index); } } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder setOpsetImport( int index, onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.set(index, value); onChanged(); } else { opsetImportBuilder_.setMessage(index, value); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder setOpsetImport( int index, onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.set(index, builderForValue.build()); onChanged(); } else { opsetImportBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder addOpsetImport(onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.add(value); onChanged(); } else { opsetImportBuilder_.addMessage(value); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder addOpsetImport( int index, onnx.Onnx.OperatorSetIdProto value) { if (opsetImportBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureOpsetImportIsMutable(); opsetImport_.add(index, value); onChanged(); } else { opsetImportBuilder_.addMessage(index, value); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder addOpsetImport( onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(builderForValue.build()); onChanged(); } else { opsetImportBuilder_.addMessage(builderForValue.build()); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder addOpsetImport( int index, onnx.Onnx.OperatorSetIdProto.Builder builderForValue) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.add(index, builderForValue.build()); onChanged(); } else { opsetImportBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder addAllOpsetImport( java.lang.Iterable values) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, opsetImport_); onChanged(); } else { opsetImportBuilder_.addAllMessages(values); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder clearOpsetImport() { if (opsetImportBuilder_ == null) { opsetImport_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000080); onChanged(); } else { opsetImportBuilder_.clear(); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public Builder removeOpsetImport(int index) { if (opsetImportBuilder_ == null) { ensureOpsetImportIsMutable(); opsetImport_.remove(index); onChanged(); } else { opsetImportBuilder_.remove(index); } return this; } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public onnx.Onnx.OperatorSetIdProto.Builder getOpsetImportBuilder( int index) { return getOpsetImportFieldBuilder().getBuilder(index); } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public onnx.Onnx.OperatorSetIdProtoOrBuilder getOpsetImportOrBuilder( int index) { if (opsetImportBuilder_ == null) { return opsetImport_.get(index); } else { return opsetImportBuilder_.getMessageOrBuilder(index); } } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public java.util.List getOpsetImportOrBuilderList() { if (opsetImportBuilder_ != null) { return opsetImportBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(opsetImport_); } } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public onnx.Onnx.OperatorSetIdProto.Builder addOpsetImportBuilder() { return getOpsetImportFieldBuilder().addBuilder( onnx.Onnx.OperatorSetIdProto.getDefaultInstance()); } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public onnx.Onnx.OperatorSetIdProto.Builder addOpsetImportBuilder( int index) { return getOpsetImportFieldBuilder().addBuilder( index, onnx.Onnx.OperatorSetIdProto.getDefaultInstance()); } /** * repeated .onnx.OperatorSetIdProto opset_import = 9; */ public java.util.List getOpsetImportBuilderList() { return getOpsetImportFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder> getOpsetImportFieldBuilder() { if (opsetImportBuilder_ == null) { opsetImportBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< onnx.Onnx.OperatorSetIdProto, onnx.Onnx.OperatorSetIdProto.Builder, onnx.Onnx.OperatorSetIdProtoOrBuilder>( opsetImport_, ((bitField0_ & 0x00000080) != 0), getParentForChildren(), isClean()); opsetImport_ = null; } return opsetImportBuilder_; } private java.lang.Object domain_ = ""; /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @return Whether the domain field is set. */ public boolean hasDomain() { return ((bitField0_ & 0x00000100) != 0); } /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @return The domain. */ public java.lang.String getDomain() { java.lang.Object ref = domain_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { domain_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @return The bytes for domain. */ public com.google.protobuf.ByteString getDomainBytes() { java.lang.Object ref = domain_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); domain_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @param value The domain to set. * @return This builder for chaining. */ public Builder setDomain( java.lang.String value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @return This builder for chaining. */ public Builder clearDomain() { domain_ = getDefaultInstance().getDomain(); bitField0_ = (bitField0_ & ~0x00000100); onChanged(); return this; } /** *
       * The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of
       * the FunctionProto.
       * 
* * optional string domain = 10; * @param value The bytes for domain to set. * @return This builder for chaining. */ public Builder setDomainBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } domain_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:onnx.FunctionProto) } // @@protoc_insertion_point(class_scope:onnx.FunctionProto) private static final onnx.Onnx.FunctionProto DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new onnx.Onnx.FunctionProto(); } public static onnx.Onnx.FunctionProto getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public FunctionProto parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public onnx.Onnx.FunctionProto getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_AttributeProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_AttributeProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_ValueInfoProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_ValueInfoProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_NodeProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_NodeProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TrainingInfoProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TrainingInfoProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_ModelProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_ModelProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_StringStringEntryProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_StringStringEntryProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TensorAnnotation_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TensorAnnotation_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_GraphProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_GraphProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TensorProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TensorProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TensorProto_Segment_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TensorProto_Segment_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_SparseTensorProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_SparseTensorProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TensorShapeProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TensorShapeProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TensorShapeProto_Dimension_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TensorShapeProto_Dimension_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_Tensor_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_Tensor_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_Sequence_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_Sequence_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_Map_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_Map_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_Optional_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_Optional_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_TypeProto_SparseTensor_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_TypeProto_SparseTensor_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_OperatorSetIdProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_OperatorSetIdProto_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_onnx_FunctionProto_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_onnx_FunctionProto_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n\nonnx.proto\022\004onnx\"\314\005\n\016AttributeProto\022\014\n" + "\004name\030\001 \001(\t\022\025\n\rref_attr_name\030\025 \001(\t\022\022\n\ndo" + "c_string\030\r \001(\t\0220\n\004type\030\024 \001(\0162\".onnx.Attr" + "ibuteProto.AttributeType\022\t\n\001f\030\002 \001(\002\022\t\n\001i" + "\030\003 \001(\003\022\t\n\001s\030\004 \001(\014\022\034\n\001t\030\005 \001(\0132\021.onnx.Tens" + "orProto\022\033\n\001g\030\006 \001(\0132\020.onnx.GraphProto\022.\n\r" + "sparse_tensor\030\026 \001(\0132\027.onnx.SparseTensorP" + "roto\022\033\n\002tp\030\016 \001(\0132\017.onnx.TypeProto\022\016\n\006flo" + "ats\030\007 \003(\002\022\014\n\004ints\030\010 \003(\003\022\017\n\007strings\030\t \003(\014" + "\022\"\n\007tensors\030\n \003(\0132\021.onnx.TensorProto\022 \n\006" + "graphs\030\013 \003(\0132\020.onnx.GraphProto\022/\n\016sparse" + "_tensors\030\027 \003(\0132\027.onnx.SparseTensorProto\022" + "$\n\013type_protos\030\017 \003(\0132\017.onnx.TypeProto\"\331\001" + "\n\rAttributeType\022\r\n\tUNDEFINED\020\000\022\t\n\005FLOAT\020" + "\001\022\007\n\003INT\020\002\022\n\n\006STRING\020\003\022\n\n\006TENSOR\020\004\022\t\n\005GR" + "APH\020\005\022\021\n\rSPARSE_TENSOR\020\013\022\016\n\nTYPE_PROTO\020\r" + "\022\n\n\006FLOATS\020\006\022\010\n\004INTS\020\007\022\013\n\007STRINGS\020\010\022\013\n\007T" + "ENSORS\020\t\022\n\n\006GRAPHS\020\n\022\022\n\016SPARSE_TENSORS\020\014" + "\022\017\n\013TYPE_PROTOS\020\016\"Q\n\016ValueInfoProto\022\014\n\004n" + "ame\030\001 \001(\t\022\035\n\004type\030\002 \001(\0132\017.onnx.TypeProto" + "\022\022\n\ndoc_string\030\003 \001(\t\"\226\001\n\tNodeProto\022\r\n\005in" + "put\030\001 \003(\t\022\016\n\006output\030\002 \003(\t\022\014\n\004name\030\003 \001(\t\022" + "\017\n\007op_type\030\004 \001(\t\022\016\n\006domain\030\007 \001(\t\022\'\n\tattr" + "ibute\030\005 \003(\0132\024.onnx.AttributeProto\022\022\n\ndoc" + "_string\030\006 \001(\t\"\326\001\n\021TrainingInfoProto\022(\n\016i" + "nitialization\030\001 \001(\0132\020.onnx.GraphProto\022#\n" + "\talgorithm\030\002 \001(\0132\020.onnx.GraphProto\022<\n\026in" + "itialization_binding\030\003 \003(\0132\034.onnx.String" + "StringEntryProto\0224\n\016update_binding\030\004 \003(\013" + "2\034.onnx.StringStringEntryProto\"\353\002\n\nModel" + "Proto\022\022\n\nir_version\030\001 \001(\003\022.\n\014opset_impor" + "t\030\010 \003(\0132\030.onnx.OperatorSetIdProto\022\025\n\rpro" + "ducer_name\030\002 \001(\t\022\030\n\020producer_version\030\003 \001" + "(\t\022\016\n\006domain\030\004 \001(\t\022\025\n\rmodel_version\030\005 \001(" + "\003\022\022\n\ndoc_string\030\006 \001(\t\022\037\n\005graph\030\007 \001(\0132\020.o" + "nnx.GraphProto\0224\n\016metadata_props\030\016 \003(\0132\034" + ".onnx.StringStringEntryProto\022.\n\rtraining" + "_info\030\024 \003(\0132\027.onnx.TrainingInfoProto\022&\n\t" + "functions\030\031 \003(\0132\023.onnx.FunctionProto\"4\n\026" + "StringStringEntryProto\022\013\n\003key\030\001 \001(\t\022\r\n\005v" + "alue\030\002 \001(\t\"k\n\020TensorAnnotation\022\023\n\013tensor" + "_name\030\001 \001(\t\022B\n\034quant_parameter_tensor_na" + "mes\030\002 \003(\0132\034.onnx.StringStringEntryProto\"" + "\236\003\n\nGraphProto\022\035\n\004node\030\001 \003(\0132\017.onnx.Node" + "Proto\022\014\n\004name\030\002 \001(\t\022&\n\013initializer\030\005 \003(\013" + "2\021.onnx.TensorProto\0223\n\022sparse_initialize" + "r\030\017 \003(\0132\027.onnx.SparseTensorProto\022\022\n\ndoc_" + "string\030\n \001(\t\022#\n\005input\030\013 \003(\0132\024.onnx.Value" + "InfoProto\022$\n\006output\030\014 \003(\0132\024.onnx.ValueIn" + "foProto\022(\n\nvalue_info\030\r \003(\0132\024.onnx.Value" + "InfoProto\0227\n\027quantization_annotation\030\016 \003" + "(\0132\026.onnx.TensorAnnotationJ\004\010\003\020\004J\004\010\004\020\005J\004" + "\010\006\020\nR\nir_versionR\020producer_versionR\014prod" + "ucer_tagR\006domain\"\202\006\n\013TensorProto\022\014\n\004dims" + "\030\001 \003(\003\022\021\n\tdata_type\030\002 \001(\005\022*\n\007segment\030\003 \001" + "(\0132\031.onnx.TensorProto.Segment\022\026\n\nfloat_d" + "ata\030\004 \003(\002B\002\020\001\022\026\n\nint32_data\030\005 \003(\005B\002\020\001\022\023\n" + "\013string_data\030\006 \003(\014\022\026\n\nint64_data\030\007 \003(\003B\002" + "\020\001\022\014\n\004name\030\010 \001(\t\022\022\n\ndoc_string\030\014 \001(\t\022\020\n\010" + "raw_data\030\t \001(\014\0223\n\rexternal_data\030\r \003(\0132\034." + "onnx.StringStringEntryProto\0225\n\rdata_loca" + "tion\030\016 \001(\0162\036.onnx.TensorProto.DataLocati" + "on\022\027\n\013double_data\030\n \003(\001B\002\020\001\022\027\n\013uint64_da" + "ta\030\013 \003(\004B\002\020\001\032%\n\007Segment\022\r\n\005begin\030\001 \001(\003\022\013" + "\n\003end\030\002 \001(\003\"\244\002\n\010DataType\022\r\n\tUNDEFINED\020\000\022" + "\t\n\005FLOAT\020\001\022\t\n\005UINT8\020\002\022\010\n\004INT8\020\003\022\n\n\006UINT1" + "6\020\004\022\t\n\005INT16\020\005\022\t\n\005INT32\020\006\022\t\n\005INT64\020\007\022\n\n\006" + "STRING\020\010\022\010\n\004BOOL\020\t\022\013\n\007FLOAT16\020\n\022\n\n\006DOUBL" + "E\020\013\022\n\n\006UINT32\020\014\022\n\n\006UINT64\020\r\022\r\n\tCOMPLEX64" + "\020\016\022\016\n\nCOMPLEX128\020\017\022\014\n\010BFLOAT16\020\020\022\020\n\014FLOA" + "T8E4M3FN\020\021\022\022\n\016FLOAT8E4M3FNUZ\020\022\022\016\n\nFLOAT8" + "E5M2\020\023\022\022\n\016FLOAT8E5M2FNUZ\020\024\")\n\014DataLocati" + "on\022\013\n\007DEFAULT\020\000\022\014\n\010EXTERNAL\020\001\"h\n\021SparseT" + "ensorProto\022!\n\006values\030\001 \001(\0132\021.onnx.Tensor" + "Proto\022\"\n\007indices\030\002 \001(\0132\021.onnx.TensorProt" + "o\022\014\n\004dims\030\003 \003(\003\"\225\001\n\020TensorShapeProto\022-\n\003" + "dim\030\001 \003(\0132 .onnx.TensorShapeProto.Dimens" + "ion\032R\n\tDimension\022\023\n\tdim_value\030\001 \001(\003H\000\022\023\n" + "\tdim_param\030\002 \001(\tH\000\022\022\n\ndenotation\030\003 \001(\tB\007" + "\n\005value\"\316\004\n\tTypeProto\022-\n\013tensor_type\030\001 \001" + "(\0132\026.onnx.TypeProto.TensorH\000\0221\n\rsequence" + "_type\030\004 \001(\0132\030.onnx.TypeProto.SequenceH\000\022" + "\'\n\010map_type\030\005 \001(\0132\023.onnx.TypeProto.MapH\000" + "\0221\n\roptional_type\030\t \001(\0132\030.onnx.TypeProto" + ".OptionalH\000\022:\n\022sparse_tensor_type\030\010 \001(\0132" + "\034.onnx.TypeProto.SparseTensorH\000\022\022\n\ndenot" + "ation\030\006 \001(\t\032B\n\006Tensor\022\021\n\telem_type\030\001 \001(\005" + "\022%\n\005shape\030\002 \001(\0132\026.onnx.TensorShapeProto\032" + ".\n\010Sequence\022\"\n\telem_type\030\001 \001(\0132\017.onnx.Ty" + "peProto\032<\n\003Map\022\020\n\010key_type\030\001 \001(\005\022#\n\nvalu" + "e_type\030\002 \001(\0132\017.onnx.TypeProto\032.\n\010Optiona" + "l\022\"\n\telem_type\030\001 \001(\0132\017.onnx.TypeProto\032H\n" + "\014SparseTensor\022\021\n\telem_type\030\001 \001(\005\022%\n\005shap" + "e\030\002 \001(\0132\026.onnx.TensorShapeProtoB\007\n\005value" + "\"5\n\022OperatorSetIdProto\022\016\n\006domain\030\001 \001(\t\022\017" + "\n\007version\030\002 \001(\003\"\224\002\n\rFunctionProto\022\014\n\004nam" + "e\030\001 \001(\t\022\r\n\005input\030\004 \003(\t\022\016\n\006output\030\005 \003(\t\022\021" + "\n\tattribute\030\006 \003(\t\022-\n\017attribute_proto\030\013 \003" + "(\0132\024.onnx.AttributeProto\022\035\n\004node\030\007 \003(\0132\017" + ".onnx.NodeProto\022\022\n\ndoc_string\030\010 \001(\t\022.\n\014o" + "pset_import\030\t \003(\0132\030.onnx.OperatorSetIdPr" + "oto\022\016\n\006domain\030\n \001(\tJ\004\010\002\020\003J\004\010\003\020\004R\rsince_v" + "ersionR\006status*\376\001\n\007Version\022\022\n\016_START_VER" + "SION\020\000\022\031\n\025IR_VERSION_2017_10_10\020\001\022\031\n\025IR_" + "VERSION_2017_10_30\020\002\022\030\n\024IR_VERSION_2017_" + "11_3\020\003\022\030\n\024IR_VERSION_2019_1_22\020\004\022\030\n\024IR_V" + "ERSION_2019_3_18\020\005\022\030\n\024IR_VERSION_2019_9_" + "19\020\006\022\027\n\023IR_VERSION_2020_5_8\020\007\022\030\n\024IR_VERS" + "ION_2021_7_30\020\010\022\016\n\nIR_VERSION\020\t*.\n\016Opera" + "torStatus\022\020\n\014EXPERIMENTAL\020\000\022\n\n\006STABLE\020\001B" + "\002H\003" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { }); internal_static_onnx_AttributeProto_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_onnx_AttributeProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_AttributeProto_descriptor, new java.lang.String[] { "Name", "RefAttrName", "DocString", "Type", "F", "I", "S", "T", "G", "SparseTensor", "Tp", "Floats", "Ints", "Strings", "Tensors", "Graphs", "SparseTensors", "TypeProtos", }); internal_static_onnx_ValueInfoProto_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_onnx_ValueInfoProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_ValueInfoProto_descriptor, new java.lang.String[] { "Name", "Type", "DocString", }); internal_static_onnx_NodeProto_descriptor = getDescriptor().getMessageTypes().get(2); internal_static_onnx_NodeProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_NodeProto_descriptor, new java.lang.String[] { "Input", "Output", "Name", "OpType", "Domain", "Attribute", "DocString", }); internal_static_onnx_TrainingInfoProto_descriptor = getDescriptor().getMessageTypes().get(3); internal_static_onnx_TrainingInfoProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TrainingInfoProto_descriptor, new java.lang.String[] { "Initialization", "Algorithm", "InitializationBinding", "UpdateBinding", }); internal_static_onnx_ModelProto_descriptor = getDescriptor().getMessageTypes().get(4); internal_static_onnx_ModelProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_ModelProto_descriptor, new java.lang.String[] { "IrVersion", "OpsetImport", "ProducerName", "ProducerVersion", "Domain", "ModelVersion", "DocString", "Graph", "MetadataProps", "TrainingInfo", "Functions", }); internal_static_onnx_StringStringEntryProto_descriptor = getDescriptor().getMessageTypes().get(5); internal_static_onnx_StringStringEntryProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_StringStringEntryProto_descriptor, new java.lang.String[] { "Key", "Value", }); internal_static_onnx_TensorAnnotation_descriptor = getDescriptor().getMessageTypes().get(6); internal_static_onnx_TensorAnnotation_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TensorAnnotation_descriptor, new java.lang.String[] { "TensorName", "QuantParameterTensorNames", }); internal_static_onnx_GraphProto_descriptor = getDescriptor().getMessageTypes().get(7); internal_static_onnx_GraphProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_GraphProto_descriptor, new java.lang.String[] { "Node", "Name", "Initializer", "SparseInitializer", "DocString", "Input", "Output", "ValueInfo", "QuantizationAnnotation", }); internal_static_onnx_TensorProto_descriptor = getDescriptor().getMessageTypes().get(8); internal_static_onnx_TensorProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TensorProto_descriptor, new java.lang.String[] { "Dims", "DataType", "Segment", "FloatData", "Int32Data", "StringData", "Int64Data", "Name", "DocString", "RawData", "ExternalData", "DataLocation", "DoubleData", "Uint64Data", }); internal_static_onnx_TensorProto_Segment_descriptor = internal_static_onnx_TensorProto_descriptor.getNestedTypes().get(0); internal_static_onnx_TensorProto_Segment_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TensorProto_Segment_descriptor, new java.lang.String[] { "Begin", "End", }); internal_static_onnx_SparseTensorProto_descriptor = getDescriptor().getMessageTypes().get(9); internal_static_onnx_SparseTensorProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_SparseTensorProto_descriptor, new java.lang.String[] { "Values", "Indices", "Dims", }); internal_static_onnx_TensorShapeProto_descriptor = getDescriptor().getMessageTypes().get(10); internal_static_onnx_TensorShapeProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TensorShapeProto_descriptor, new java.lang.String[] { "Dim", }); internal_static_onnx_TensorShapeProto_Dimension_descriptor = internal_static_onnx_TensorShapeProto_descriptor.getNestedTypes().get(0); internal_static_onnx_TensorShapeProto_Dimension_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TensorShapeProto_Dimension_descriptor, new java.lang.String[] { "DimValue", "DimParam", "Denotation", "Value", }); internal_static_onnx_TypeProto_descriptor = getDescriptor().getMessageTypes().get(11); internal_static_onnx_TypeProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_descriptor, new java.lang.String[] { "TensorType", "SequenceType", "MapType", "OptionalType", "SparseTensorType", "Denotation", "Value", }); internal_static_onnx_TypeProto_Tensor_descriptor = internal_static_onnx_TypeProto_descriptor.getNestedTypes().get(0); internal_static_onnx_TypeProto_Tensor_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_Tensor_descriptor, new java.lang.String[] { "ElemType", "Shape", }); internal_static_onnx_TypeProto_Sequence_descriptor = internal_static_onnx_TypeProto_descriptor.getNestedTypes().get(1); internal_static_onnx_TypeProto_Sequence_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_Sequence_descriptor, new java.lang.String[] { "ElemType", }); internal_static_onnx_TypeProto_Map_descriptor = internal_static_onnx_TypeProto_descriptor.getNestedTypes().get(2); internal_static_onnx_TypeProto_Map_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_Map_descriptor, new java.lang.String[] { "KeyType", "ValueType", }); internal_static_onnx_TypeProto_Optional_descriptor = internal_static_onnx_TypeProto_descriptor.getNestedTypes().get(3); internal_static_onnx_TypeProto_Optional_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_Optional_descriptor, new java.lang.String[] { "ElemType", }); internal_static_onnx_TypeProto_SparseTensor_descriptor = internal_static_onnx_TypeProto_descriptor.getNestedTypes().get(4); internal_static_onnx_TypeProto_SparseTensor_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_TypeProto_SparseTensor_descriptor, new java.lang.String[] { "ElemType", "Shape", }); internal_static_onnx_OperatorSetIdProto_descriptor = getDescriptor().getMessageTypes().get(12); internal_static_onnx_OperatorSetIdProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_OperatorSetIdProto_descriptor, new java.lang.String[] { "Domain", "Version", }); internal_static_onnx_FunctionProto_descriptor = getDescriptor().getMessageTypes().get(13); internal_static_onnx_FunctionProto_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_onnx_FunctionProto_descriptor, new java.lang.String[] { "Name", "Input", "Output", "Attribute", "AttributeProto", "Node", "DocString", "OpsetImport", "Domain", }); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy