com.yahoo.vespa.hosted.provision.autoscale.ClusterNodesTimeseries Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of node-repository Show documentation
Show all versions of node-repository Show documentation
Keeps track of node assignment in a multi-application setup.
The newest version!
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.vespa.hosted.provision.autoscale;
import com.yahoo.vespa.hosted.provision.NodeList;
import com.yahoo.vespa.hosted.provision.applications.Cluster;
import java.time.Duration;
import java.util.List;
import java.util.OptionalDouble;
import java.util.function.Predicate;
import static com.yahoo.vespa.hosted.provision.autoscale.ClusterModel.warmupDuration;
/**
* A series of metric snapshots for the nodes of a cluster used to compute load
*
* @author bratseth
*/
public class ClusterNodesTimeseries {
private final NodeList clusterNodes;
/** The measurements for all nodes in this snapshot */
private final List timeseries;
public ClusterNodesTimeseries(Duration period, Cluster cluster, NodeList clusterNodes, MetricsDb db) {
this.clusterNodes = clusterNodes;
// See warmupDuration*4 into the past to see any generation change in it.
// If none can be detected we assume the node is new/was down.
// If either this is the case, or there is a generation change, we ignore
// the first warmupWindow metrics.
var timeseries = db.getNodeTimeseries(period.plus(warmupDuration.multipliedBy(4)), clusterNodes);
if (cluster.lastScalingEvent().isPresent()) {
long currentGeneration = cluster.lastScalingEvent().get().generation();
timeseries = keepGenerationAfterWarmup(timeseries, currentGeneration);
}
timeseries = keep(timeseries, snapshot -> snapshot.inService() && snapshot.stable());
timeseries = keep(timeseries, snapshot -> ! snapshot.at().isBefore(db.clock().instant().minus(period)));
this.timeseries = timeseries;
}
private ClusterNodesTimeseries(NodeList clusterNodes, List timeseries) {
this.clusterNodes = clusterNodes;
this.timeseries = timeseries;
}
public boolean isEmpty() {
return measurementsPerNode() == 0;
}
/** Returns the average number of measurements per node */
public double measurementsPerNode() {
if (clusterNodes.isEmpty()) return 0;
return (double) totalMeasurementsIn(timeseries) / clusterNodes.size();
}
private int totalMeasurementsIn(List timeseries) {
return timeseries.stream().mapToInt(m -> m.size()).sum();
}
/** Returns the number of nodes measured in this */
public int nodesMeasured() { return timeseries.size(); }
/**
* Returns the "peak load" in this: Which is for each load dimension,
* the average of the highest reading for that dimension on each node.
*/
public Load peakLoad() {
return new Load(peakLoad(Load.Dimension.cpu), peakLoad(Load.Dimension.memory), peakLoad(Load.Dimension.disk),
peakLoad(Load.Dimension.gpu), peakLoad(Load.Dimension.gpuMemory));
}
private double peakLoad(Load.Dimension dimension) {
double total = 0;
int count = 0;
for (var nodeTimeseries : timeseries) {
OptionalDouble value = nodeTimeseries.peak(dimension);
if (value.isEmpty()) continue;
total += value.getAsDouble();
count++;
}
if (count == 0) return 0;
return total / count;
}
private static List keep(List timeseries, Predicate filter) {
return timeseries.stream().map(nodeTimeseries -> nodeTimeseries.keep(filter)).toList();
}
private List keepGenerationAfterWarmup(List timeseries, long currentGeneration) {
return timeseries.stream()
.map(nodeTimeseries -> nodeTimeseries.keepGenerationAfterWarmup(currentGeneration,
clusterNodes.node(nodeTimeseries.hostname())))
.toList();
}
public static ClusterNodesTimeseries empty() {
return new ClusterNodesTimeseries(NodeList.of(), List.of());
}
}