com.yahoo.vespa.hosted.provision.autoscale.Autoscaler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of node-repository Show documentation
Show all versions of node-repository Show documentation
Keeps track of node assignment in a multi-application setup.
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.vespa.hosted.provision.autoscale;
import com.yahoo.config.provision.ClusterResources;
import com.yahoo.vespa.hosted.provision.NodeList;
import com.yahoo.vespa.hosted.provision.NodeRepository;
import com.yahoo.vespa.hosted.provision.applications.Application;
import com.yahoo.vespa.hosted.provision.applications.Cluster;
import com.yahoo.vespa.hosted.provision.autoscale.Autoscaling.Status;
import java.time.Duration;
import java.util.List;
import java.util.logging.Logger;
/**
* The autoscaler gives advice about what resources should be allocated to a cluster based on observed behavior.
*
* @author bratseth
*/
public class Autoscaler {
private static final Logger log = Logger.getLogger(Autoscaler.class.getName());
/** What cost difference is worth a reallocation? */
private static final double costDifferenceWorthReallocation = 0.1;
/** What resource difference is worth a reallocation? */
private static final double resourceIncreaseWorthReallocation = 0.03;
/** The load increase headroom (as a fraction) we should have before needing to scale up, to decide to scale down */
static final double headroomRequiredToScaleDown = 0.15;
private final NodeRepository nodeRepository;
private final AllocationOptimizer allocationOptimizer;
public Autoscaler(NodeRepository nodeRepository) {
this.nodeRepository = nodeRepository;
this.allocationOptimizer = new AllocationOptimizer(nodeRepository);
}
/**
* Suggest a scaling of a cluster. This returns a better allocation (if found)
* without taking min and max limits into account.
*
* @param clusterNodes the list of all the active nodes in a cluster
* @return scaling advice for this cluster
*/
public List suggest(Application application, Cluster cluster, NodeList clusterNodes) {
var model = model(application, cluster, clusterNodes);
if (model.isEmpty() || ! model.isStable(nodeRepository)) return List.of();
var targets = allocationOptimizer.findBestAllocations(model.loadAdjustment(), model, Limits.empty(), false);
return targets.stream()
.map(target -> toAutoscaling(target, model))
.toList();
}
/**
* Autoscale a cluster by load. This returns a better allocation (if found) inside the min and max limits.
*
* @param clusterNodes the list of all the active nodes in a cluster
* @param enabled Whether autoscaling is enabled
* @param logDetails Whether to log decision details
* @return scaling advice for this cluster
*/
public Autoscaling autoscale(Application application, Cluster cluster, NodeList clusterNodes, boolean enabled, boolean logDetails) {
var limits = Limits.of(cluster);
var model = model(application, cluster, clusterNodes);
if (model.isEmpty()) return Autoscaling.empty();
boolean disabledByUser = !limits.isEmpty() && cluster.minResources().equals(cluster.maxResources());
boolean disabledByFeatureFlag = !enabled;
if (disabledByUser)
return Autoscaling.dontScale(Autoscaling.Status.unavailable, "Autoscaling is not enabled", model);
if (disabledByFeatureFlag)
return Autoscaling.dontScale(Autoscaling.Status.unavailable, "Autoscaling is disabled by feature flag", model);
if ( ! model.isStable(nodeRepository))
return Autoscaling.dontScale(Status.waiting, "Cluster change in progress", model);
var loadAdjustment = model.loadAdjustment();
if (logDetails) {
log.info("Application: " + application.id().toShortString() + ", loadAdjustment: " +
loadAdjustment.toString() + ", ideal " + model.idealLoad() + ", " + model.cpu(nodeRepository.clock().instant()));
}
var target = allocationOptimizer.findBestAllocation(loadAdjustment, model, limits, logDetails);
if (target.isEmpty())
return Autoscaling.dontScale(Status.insufficient, "No allocations are possible within configured limits", model);
return toAutoscaling(target.get(), model);
}
private ClusterModel model(Application application, Cluster cluster, NodeList clusterNodes) {
return new ClusterModel(nodeRepository,
application,
clusterNodes.not().retired().clusterSpec(),
cluster,
clusterNodes,
new AllocatableResources(clusterNodes.not().retired(), nodeRepository),
nodeRepository.metricsDb(),
nodeRepository.clock());
}
private Autoscaling toAutoscaling(AllocatableResources target, ClusterModel model) {
if (target.nodes() == 1)
return Autoscaling.dontScale(Status.unavailable, "Autoscaling is disabled in single node clusters", model);
if (! worthRescaling(model.current().realResources(), target.realResources())) {
if (target.notFulfiled())
return Autoscaling.dontScale(Status.insufficient, "Cluster cannot be scaled to achieve ideal load", model);
else if ( ! model.safeToScaleDown() && model.idealLoad().any(v -> v < 1.0))
return Autoscaling.dontScale(Status.ideal, "Cooling off before considering to scale down", model);
else
return Autoscaling.dontScale(Status.ideal, "Cluster is ideally scaled (within configured limits)", model);
}
return Autoscaling.scaleTo(target.advertisedResources(), model);
}
/** Returns true if it is worthwhile to make the given resource change, false if it is too insignificant */
public static boolean worthRescaling(ClusterResources from, ClusterResources to) {
// *Increase* if needed with no regard for cost difference to prevent running out of a resource
if (meaningfulIncrease(from.totalResources().vcpu(), to.totalResources().vcpu())) return true;
if (meaningfulIncrease(from.totalResources().memoryGiB(), to.totalResources().memoryGiB())) return true;
if (meaningfulIncrease(from.totalResources().diskGb(), to.totalResources().diskGb())) return true;
// Otherwise, only *decrease* if
// - cost is reduced meaningfully
// - the new resources won't be so much smaller that a small fluctuation in load will cause an increase
return ! similar(from.cost(), to.cost(), costDifferenceWorthReallocation);
}
public static boolean meaningfulIncrease(double from, double to) {
return from < to && ! similar(from, to, resourceIncreaseWorthReallocation);
}
private static boolean similar(double r1, double r2, double threshold) {
return Math.abs(r1 - r2) / (( r1 + r2) / 2) < threshold;
}
static Duration maxScalingWindow() {
return Duration.ofHours(48);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy