com.yahoo.tensor.functions.EuclideanDistance Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of vespajlib Show documentation
Show all versions of vespajlib Show documentation
Library for use in Java components of Vespa. Shared code which do
not fit anywhere else.
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.tensor.functions;
import com.yahoo.tensor.evaluation.EvaluationContext;
import com.yahoo.tensor.evaluation.Name;
import com.yahoo.tensor.evaluation.TypeContext;
import com.yahoo.tensor.Tensor;
import com.yahoo.tensor.TensorType;
import com.yahoo.tensor.TensorType.Dimension;
import java.util.List;
import java.util.Objects;
/**
* Convenience for euclidean distance between vectors.
* euclidean_distance(a, b, mydim) == sqrt(sum(pow(a-b, 2), mydim))
* @author arnej
*/
public class EuclideanDistance extends TensorFunction {
private final TensorFunction arg1;
private final TensorFunction arg2;
private final String dimension;
public EuclideanDistance(TensorFunction argument1,
TensorFunction argument2,
String dimension)
{
this.arg1 = argument1;
this.arg2 = argument2;
this.dimension = dimension;
}
@Override
public List> arguments() { return List.of(arg1, arg2); }
@Override
public TensorFunction withArguments(List> arguments) {
if ( arguments.size() != 2)
throw new IllegalArgumentException("EuclideanDistance must have 2 arguments, got " + arguments.size());
return new EuclideanDistance<>(arguments.get(0), arguments.get(1), dimension);
}
@Override
public TensorType type(TypeContext context) {
TensorType t1 = arg1.toPrimitive().type(context);
TensorType t2 = arg2.toPrimitive().type(context);
String resolvedDimension = context.resolveBinding(dimension);
var d1 = t1.dimension(resolvedDimension);
var d2 = t2.dimension(resolvedDimension);
if (d1.isEmpty() || d2.isEmpty()
|| d1.get().type() != Dimension.Type.indexedBound
|| d2.get().type() != Dimension.Type.indexedBound
|| ! d1.get().size().equals(d2.get().size()))
{
throw new IllegalArgumentException("euclidean_distance expects both arguments to have the '"
+ resolvedDimension + "' dimension with same size, but input types were "
+ t1 + " and " + t2);
}
// Finds the type this produces by first converting it to a primitive function
return toPrimitive().type(context);
}
/** Evaluates this by first converting it to a primitive function */
@Override
public Tensor evaluate(EvaluationContext context) {
return toPrimitive().evaluate(context);
}
@Override
public PrimitiveTensorFunction toPrimitive() {
TensorFunction primitive1 = arg1.toPrimitive();
TensorFunction primitive2 = arg2.toPrimitive();
// this should match the C++ optimized "l2_distance"
var diffs = new Join<>(primitive1, primitive2, ScalarFunctions.subtract());
var squaredDiffs = new Map<>(diffs, ScalarFunctions.square());
var sumOfSquares = new Reduce<>(squaredDiffs, Reduce.Aggregator.sum, dimension);
return new Map<>(sumOfSquares, ScalarFunctions.sqrt());
}
@Override
public String toString(ToStringContext context) {
return "euclidean_distance(" + arg1.toString(context) + ", " + arg2.toString(context) + ", " + context.resolveBinding(dimension) + ")";
}
@Override
public int hashCode() { return Objects.hash("euclidean_distance", arg1, arg2, dimension); }
}