com.yahoo.tensor.functions.MapSubspaces Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of vespajlib Show documentation
Show all versions of vespajlib Show documentation
Library for use in Java components of Vespa. Shared code which do
not fit anywhere else.
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.tensor.functions;
import com.yahoo.tensor.Tensor;
import com.yahoo.tensor.TensorAddress;
import com.yahoo.tensor.TensorType;
import com.yahoo.tensor.TypeResolver;
import com.yahoo.tensor.evaluation.EvaluationContext;
import com.yahoo.tensor.evaluation.Name;
import com.yahoo.tensor.evaluation.TypeContext;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.List;
import java.util.Map;
import java.util.Objects;
/**
* The map_subspaces tensor function transforms each dense subspace in a (mixed) tensor
*
* @author arnej
*/
public class MapSubspaces extends PrimitiveTensorFunction {
private final TensorFunction argument;
private final DenseSubspaceFunction function;
private MapSubspaces(TensorFunction argument, DenseSubspaceFunction function) {
this.argument = argument;
this.function = function;
}
public MapSubspaces(TensorFunction argument, String functionArg, TensorFunction function) {
this(argument, new DenseSubspaceFunction<>(functionArg, function));
Objects.requireNonNull(argument, "The argument cannot be null");
Objects.requireNonNull(functionArg, "The functionArg cannot be null");
Objects.requireNonNull(function, "The function cannot be null");
}
private TensorType outputType(TensorType inputType) {
var m = inputType.mappedSubtype();
var d = function.outputType(inputType.indexedSubtype());
if (m.rank() == 0) {
return d;
}
if (d.rank() == 0) {
return TypeResolver.map(m); // decay cell type
}
TensorType.Value cellType = d.valueType();
Map dims = new HashMap<>();
for (var dim : m.dimensions()) {
dims.put(dim.name(), dim);
}
for (var dim : d.dimensions()) {
var old = dims.put(dim.name(), dim);
if (old != null) {
throw new IllegalArgumentException("dimension name collision in map_subspaces: " + m + " vs " + d);
}
}
return new TensorType(cellType, dims.values());
}
public TensorFunction argument() { return argument; }
@Override
public List> arguments() { return List.of(argument); }
@Override
public TensorFunction withArguments(List> arguments) {
if ( arguments.size() != 1)
throw new IllegalArgumentException("MapSubspaces must have 1 argument, got " + arguments.size());
return new MapSubspaces(arguments.get(0), function);
}
@Override
public PrimitiveTensorFunction toPrimitive() {
return new MapSubspaces<>(argument.toPrimitive(), function);
}
@Override
public TensorType type(TypeContext context) {
return outputType(argument.type(context));
}
@Override
public Tensor evaluate(EvaluationContext context) {
Tensor input = argument().evaluate(context);
TensorType inputType = input.type();
TensorType inputTypeMapped = inputType.mappedSubtype();
TensorType inputTypeDense = inputType.indexedSubtype();
Map builders = new HashMap<>();
for (Iterator iter = input.cellIterator(); iter.hasNext(); ) {
var cell = iter.next();
var fullAddr = cell.getKey();
var mapAddrBuilder = new TensorAddress.Builder(inputTypeMapped);
var idxAddrBuilder = new TensorAddress.Builder(inputTypeDense);
for (int i = 0; i < inputType.dimensions().size(); i++) {
var dim = inputType.dimensions().get(i);
if (dim.isMapped()) {
mapAddrBuilder.add(dim.name(), fullAddr.numericLabel(i));
} else {
idxAddrBuilder.add(dim.name(), fullAddr.numericLabel(i));
}
}
var mapAddr = mapAddrBuilder.build();
var builder = builders.computeIfAbsent(mapAddr, k -> Tensor.Builder.of(inputTypeDense));
var idxAddr = idxAddrBuilder.build();
builder.cell(idxAddr, cell.getValue());
}
TensorType outputType = outputType(input.type());
TensorType denseOutputType = outputType.indexedSubtype();
var denseOutputDims = denseOutputType.dimensions();
Tensor.Builder builder = Tensor.Builder.of(outputType);
for (var entry : builders.entrySet()) {
TensorAddress mappedAddr = entry.getKey();
Tensor denseInput = entry.getValue().build();
Tensor denseOutput = function.map(denseInput);
// XXX check denseOutput.type().dimensions()
for (Iterator iter = denseOutput.cellIterator(); iter.hasNext(); ) {
var cell = iter.next();
var denseAddr = cell.getKey();
var addrBuilder = new TensorAddress.Builder(outputType);
for (int i = 0; i < inputTypeMapped.dimensions().size(); i++) {
var dim = inputTypeMapped.dimensions().get(i);
addrBuilder.add(dim.name(), mappedAddr.numericLabel(i));
}
for (int i = 0; i < denseOutputDims.size(); i++) {
var dim = denseOutputDims.get(i);
addrBuilder.add(dim.name(), denseAddr.numericLabel(i));
}
builder.cell(addrBuilder.build(), cell.getValue());
}
}
return builder.build();
}
@Override
public String toString(ToStringContext context) {
return "map_subspaces(" + argument.toString(context) + ", " + function + ")";
}
@Override
public int hashCode() { return Objects.hash("map_subspaces", argument, function); }
}