All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.yahoo.tensor.IndexedTensor Maven / Gradle / Ivy

Go to download

Library for use in Java components of Vespa. Shared code which do not fit anywhere else.

There is a newer version: 8.441.21
Show newest version
// Copyright Vespa.ai. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root.
package com.yahoo.tensor;

import com.google.common.collect.ImmutableMap;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Optional;
import java.util.Set;

/**
 * An indexed (dense) tensor.
 * 

* Some methods on indexed tensors make use of a standard value order: Cells are ordered by increasing * index where dimensions to the right are incremented before indexes to the left, where the order of dimensions are * alphabetical by name. In consequence, tensor value ordering is independent of the order in which dimensions are * specified, and the values of the right-most dimension are adjacent. * * @author bratseth */ public abstract class IndexedTensor implements Tensor { /** The prescribed and possibly abstract type this is an instance of */ private final TensorType type; /** The sizes of the dimensions of this in the order of the dimensions of the type */ private final DimensionSizes dimensionSizes; IndexedTensor(TensorType type, DimensionSizes dimensionSizes) { this.type = type; this.dimensionSizes = dimensionSizes; } /** * Returns an iterator over the cells of this in the standard value order. */ @Override public Iterator cellIterator() { return new CellIterator(); } /** Returns an iterator over all the cells in this tensor which matches the given partial address */ // TODO: Move up to Tensor and create a mixed tensor which can implement it (and subspace iterators) efficiently public SubspaceIterator cellIterator(PartialAddress partialAddress, DimensionSizes iterationSizes) { long[] startAddress = new long[type().dimensions().size()]; List iterateDimensions = new ArrayList<>(); for (int i = 0; i < type().dimensions().size(); i++) { long partialAddressLabel = partialAddress.numericLabel(type.dimensions().get(i).name()); if (partialAddressLabel >= 0) // iterate at this label startAddress[i] = partialAddressLabel; else // iterate over this dimension iterateDimensions.add(i); } return new SubspaceIterator(iterateDimensions, startAddress, iterationSizes); } /** Returns an iterator over the values of this returned in the standard value order */ @Override public Iterator valueIterator() { return new ValueIterator(); } /** * Returns an iterator over value iterators where the outer iterator is over each unique value of the dimensions * given and the inner iterator is over each unique value of the rest of the dimensions, in the * standard value order * * @param dimensions the names of the dimensions of the superspace * @param sizes the size of each dimension in the space we are returning values for, containing * one value per dimension of this tensor (in order). Each size may be the same or smaller * than the corresponding size of this tensor */ public Iterator subspaceIterator(Set dimensions, DimensionSizes sizes) { return new SuperspaceIterator(dimensions, sizes); } /** Returns a subspace iterator having the sizes of the dimensions of this tensor */ public Iterator subspaceIterator(Set dimensions) { return subspaceIterator(dimensions, dimensionSizes); } /** * Returns the value at the given indexes as a double * * @param indexes the indexes into the dimensions of this. Must be one number per dimension of this * @throws IllegalArgumentException if any of the indexes are out of bound or a wrong number of indexes are given */ public double get(long ... indexes) { return get(toValueIndex(indexes, dimensionSizes)); } public double get(DirectIndexedAddress address) { return get(address.getDirectIndex()); } public DirectIndexedAddress directAddress() { return DirectIndexedAddress.of(dimensionSizes); } /** * Returns the value at the given indexes as a float * * @param indexes the indexes into the dimensions of this. Must be one number per dimension of this * @throws IllegalArgumentException if any of the indexes are out of bound or a wrong number of indexes are given */ public float getFloat(long ... indexes) { return getFloat((int)toValueIndex(indexes, dimensionSizes)); } /** Returns the value at this address, or 0.0 if there is no value at this address */ @Override public double get(TensorAddress address) { // optimize for fast lookup within bounds: try { return get(toValueIndex(address, dimensionSizes, type)); } catch (IllegalArgumentException e) { return 0.0; } } @Override public Double getAsDouble(TensorAddress address) { try { long index = toValueIndex(address, dimensionSizes, type); if (index < 0 || size() <= index) return null; return get(index); } catch (IllegalArgumentException e) { return null; } } @Override public boolean has(TensorAddress address) { try { long index = toValueIndex(address, dimensionSizes, type); if (index < 0) return false; return (index < size()); } catch (IllegalArgumentException e) { return false; } } /** * Returns the value at the given standard value order index as a double. * * @param valueIndex the direct index into the underlying data. * @throws IllegalArgumentException if index is out of bounds */ public abstract double get(long valueIndex); /** * Returns the value at the given standard value order index as a float. * * @param valueIndex the direct index into the underlying data. * @throws IllegalArgumentException if index is out of bounds */ public abstract float getFloat(long valueIndex); static long toValueIndex(long[] indexes, DimensionSizes sizes) { if (indexes.length == 1) return indexes[0]; // for speed if (indexes.length == 0) return 0; // for speed long valueIndex = 0; for (int i = 0; i < indexes.length; i++) { if (indexes[i] >= sizes.size(i)) throw new IllegalArgumentException(Arrays.toString(indexes) + " are not within bounds"); valueIndex += sizes.productOfDimensionsAfter(i) * indexes[i]; } return valueIndex; } static long toValueIndex(TensorAddress address, DimensionSizes sizes, TensorType type) { long valueIndex = 0; for (int i = 0, size = address.size(); i < size; i++) { long label = address.numericLabel(i); if (label >= sizes.size(i)) throw new IllegalArgumentException(address + " is not within the bounds of " + type); valueIndex += sizes.productOfDimensionsAfter(i) * label; } return valueIndex; } void throwOnIncompatibleType(TensorType type) { if ( ! this.type().isRenamableTo(type)) throw new IllegalArgumentException("Can not change type from " + this.type() + " to " + type + ": Types are not compatible"); } @Override public TensorType type() { return type; } @Override public abstract IndexedTensor withType(TensorType type); public DimensionSizes dimensionSizes() { return dimensionSizes; } public long[] shape() { long[] result = new long[dimensionSizes.dimensions()]; for (int i = 0; i < result.length; ++i) { result[i] = dimensionSizes.size(i); } return result; } @Override public Map cells() { if (dimensionSizes.dimensions() == 0) return Map.of(TensorAddress.of(), get(0)); ImmutableMap.Builder builder = new ImmutableMap.Builder<>(); Indexes indexes = Indexes.of(dimensionSizes, dimensionSizes, size()); for (long i = 0; i < size(); i++) { indexes.next(); builder.put(indexes.toAddress(), get(i)); } return builder.build(); } @Override public Tensor remove(Set addresses) { throw new IllegalArgumentException("Remove is not supported for indexed tensors"); } @Override public String toString() { return toString(true, true); } @Override public String toString(boolean withType, boolean shortForms) { return toString(withType, shortForms, Long.MAX_VALUE); } @Override public String toAbbreviatedString(boolean withType, boolean shortForms) { return toString(withType, shortForms, Math.max(2, 10 / (type().dimensions().stream().filter(TensorType.Dimension::isMapped).count() + 1))); } private String toString(boolean withType, boolean shortForms, long maxCells) { if (! shortForms || type.rank() == 0 || type.dimensions().stream().anyMatch(d -> d.size().isEmpty())) return Tensor.toStandardString(this, withType, shortForms, maxCells); Indexes indexes = Indexes.of(dimensionSizes); StringBuilder b = new StringBuilder(); if (withType) b.append(type).append(":"); indexedBlockToString(this, indexes, maxCells, b); return b.toString(); } static void indexedBlockToString(IndexedTensor tensor, Indexes indexes, long maxCells, StringBuilder b) { int index = 0; for (; index < tensor.size() && index < maxCells; index++) { indexes.next(); if (index > 0) b.append(", "); // start brackets b.append("[".repeat(Math.max(0, indexes.nextDimensionsAtStart()))); // value switch (tensor.type().valueType()) { case DOUBLE: b.append(tensor.get(index)); break; case FLOAT: b.append(tensor.getFloat(index)); break; case BFLOAT16: b.append(tensor.getFloat(index)); break; case INT8: b.append((byte)tensor.getFloat(index)); break; default: throw new IllegalStateException("Unexpected value type " + tensor.type().valueType()); } // end bracket and comma b.append("]".repeat(Math.max(0, indexes.nextDimensionsAtEnd()))); } if (index == maxCells && index < tensor.size()) b.append(", ...]"); } @Override public boolean equals(Object other) { if ( ! ( other instanceof Tensor)) return false; return Tensor.equals(this, ((Tensor)other)); } public abstract static class Builder implements Tensor.Builder { final TensorType type; private Builder(TensorType type) { this.type = type; } public static Builder of(TensorType type) { if (type.hasOnlyIndexedBoundDimensions()) return of(type, BoundBuilder.dimensionSizesOf(type)); else return new UnboundBuilder(type); } /** * Creates a builder initialized with the given values * * @param type the type of the tensor to build * @param values the initial values of the tensor. This transfers ownership of the value array - it * must not be further mutated by the caller */ public static Builder of(TensorType type, float[] values) { if (type.hasOnlyIndexedBoundDimensions()) return of(type, BoundBuilder.dimensionSizesOf(type), values); else return new UnboundBuilder(type); } /** * Creates a builder initialized with the given values * * @param type the type of the tensor to build * @param values the initial values of the tensor. This transfers ownership of the value array - it * must not be further mutated by the caller */ public static Builder of(TensorType type, double[] values) { if (type.hasOnlyIndexedBoundDimensions()) return of(type, BoundBuilder.dimensionSizesOf(type), values); else return new UnboundBuilder(type); } /** * Create a builder with dimension size information for this instance. Must be one size entry per dimension, * and, agree with the type size information when specified in the type. * If sizes are completely specified in the type this size information is redundant. */ public static Builder of(TensorType type, DimensionSizes sizes) { validate(type, sizes); return switch (type.valueType()) { case DOUBLE -> new IndexedDoubleTensor.BoundDoubleBuilder(type, sizes); case FLOAT -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes); case BFLOAT16 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes); case INT8 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes); default -> throw new IllegalStateException("Unexpected value type " + type.valueType()); }; } /** * Creates a builder initialized with the given values * * @param type the type of the tensor to build * @param values the initial values of the tensor in the standard value order. * This transfers ownership of the value array - it * must not be further mutated by the caller */ public static Builder of(TensorType type, DimensionSizes sizes, float[] values) { validate(type, sizes); validateSizes(sizes, values.length); return switch (type.valueType()) { case DOUBLE -> new IndexedDoubleTensor.BoundDoubleBuilder(type, sizes).fill(values); case FLOAT -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes, values); case BFLOAT16 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes, values); case INT8 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes, values); default -> throw new IllegalStateException("Unexpected value type " + type.valueType()); }; } /** * Creates a builder initialized with the given values * * @param type the type of the tensor to build * @param values the initial values of the tensor in the standard value order. * This transfers ownership of the value array - it * must not be further mutated by the caller */ public static Builder of(TensorType type, DimensionSizes sizes, double[] values) { validate(type, sizes); validateSizes(sizes, values.length); return switch (type.valueType()) { case DOUBLE -> new IndexedDoubleTensor.BoundDoubleBuilder(type, sizes, values); case FLOAT -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes).fill(values); case BFLOAT16 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes).fill(values); case INT8 -> new IndexedFloatTensor.BoundFloatBuilder(type, sizes).fill(values); default -> throw new IllegalStateException("Unexpected value type " + type.valueType()); }; } private static void validateSizes(DimensionSizes sizes, int length) { if (sizes.totalSize() != length) { throw new IllegalArgumentException("Invalid size(" + length + ") of supplied value vector." + " Type specifies that size should be " + sizes.totalSize()); } } private static void validate(TensorType type, DimensionSizes sizes) { // validate if (sizes.dimensions() != type.dimensions().size()) throw new IllegalArgumentException(sizes.dimensions() + " is the wrong number of dimensions for " + type); for (int i = 0; i < sizes.dimensions(); i++ ) { Optional size = type.dimensions().get(i).size(); if (size.isPresent() && size.get() < sizes.size(i)) throw new IllegalArgumentException("Size of dimension " + type.dimensions().get(i).name() + " is " + sizes.size(i) + " but cannot be larger than " + size.get() + " in " + type); } } public abstract Builder cell(double value, long ... indexes); public abstract Builder cell(float value, long ... indexes); @Override public TensorType type() { return type; } @Override public abstract IndexedTensor build(); } public interface DirectIndexBuilder { TensorType type(); /** Sets a value by its standard value order index */ void cellByDirectIndex(long index, double value); /** Sets a value by its standard value order index */ void cellByDirectIndex(long index, float value); } /** A bound builder can create the double array directly */ public static abstract class BoundBuilder extends Builder implements DirectIndexBuilder { private final DimensionSizes sizes; private static DimensionSizes dimensionSizesOf(TensorType type) { DimensionSizes.Builder b = new DimensionSizes.Builder(type.dimensions().size()); for (int i = 0; i < type.dimensions().size(); i++) b.set(i, type.dimensions().get(i).size().get()); return b.build(); } BoundBuilder(TensorType type, DimensionSizes sizes) { super(type); if ( sizes.dimensions() != type.dimensions().size()) throw new IllegalArgumentException("Must have a dimension size entry for each dimension in " + type); this.sizes = sizes; } public BoundBuilder fill(float[] values) { long index = 0; for (float value : values) { cellByDirectIndex(index++, value); } return this; } public BoundBuilder fill(double[] values) { long index = 0; for (double value : values) { cellByDirectIndex(index++, value); } return this; } DimensionSizes sizes() { return sizes; } } /** * A builder used when we don't know the size of the dimensions up front. * All values is all dimensions must be specified. */ private static class UnboundBuilder extends Builder { /** List of List or Double */ private List firstDimension = null; private UnboundBuilder(TensorType type) { super(type); } @Override public IndexedTensor build() { if (firstDimension == null) throw new IllegalArgumentException("Tensor of type " + type() + " has no values"); if (type.dimensions().isEmpty()) // single number return new IndexedDoubleTensor(type, new DimensionSizes.Builder(type.dimensions().size()).build(), new double[] {(Double) firstDimension.get(0) }); DimensionSizes dimensionSizes = findDimensionSizes(firstDimension); double[] values = new double[(int)dimensionSizes.totalSize()]; fillValues(0, 0, firstDimension, dimensionSizes, values); return new IndexedDoubleTensor(type, dimensionSizes, values); } private DimensionSizes findDimensionSizes(List firstDimension) { List dimensionSizeList = new ArrayList<>(type.dimensions().size()); findDimensionSizes(0, dimensionSizeList, firstDimension); DimensionSizes.Builder b = new DimensionSizes.Builder(type.dimensions().size()); // may be longer than the list but that's correct for (int i = 0; i < b.dimensions(); i++) { if (i < dimensionSizeList.size()) b.set(i, dimensionSizeList.get(i)); } return b.build(); } @SuppressWarnings("unchecked") private void findDimensionSizes(int currentDimensionIndex, List dimensionSizes, List currentDimension) { if (currentDimensionIndex == dimensionSizes.size()) dimensionSizes.add((long)currentDimension.size()); else if (dimensionSizes.get(currentDimensionIndex) != currentDimension.size()) throw new IllegalArgumentException("Missing values in dimension " + type.dimensions().get(currentDimensionIndex) + " in " + type); for (Object value : currentDimension) if (value instanceof List) findDimensionSizes(currentDimensionIndex + 1, dimensionSizes, (List)value); } @SuppressWarnings("unchecked") private void fillValues(int currentDimensionIndex, long offset, List currentDimension, DimensionSizes sizes, double[] values) { if (currentDimensionIndex < sizes.dimensions() - 1) { // recurse to next dimension for (long i = 0; i < currentDimension.size(); i++) fillValues(currentDimensionIndex + 1, offset + sizes.productOfDimensionsAfter(currentDimensionIndex) * i, (List) currentDimension.get((int)i), sizes, values); } else { // last dimension - fill values for (long i = 0; i < currentDimension.size(); i++) { values[(int)(offset + i)] = nullAsZero((Double)currentDimension.get((int)i)); // fill missing values as zero } } } private double nullAsZero(Double value) { if (value == null) return 0; return value; } @Override public CellBuilder cell() { return new CellBuilder(type, this); } @Override public Builder cell(TensorAddress address, float value) { return cell(address, (double)value); } @Override public Builder cell(TensorAddress address, double value) { long[] indexes = new long[address.size()]; for (int i = 0; i < address.size(); i++) { indexes[i] = address.numericLabel(i); } cell(value, indexes); return this; } @Override public Builder cell(float value, long... indexes) { return cell((double)value, indexes); } /** * Set a value using an index API. The number of indexes must be the same as the dimensions in the type of this. * Values can be written in any order but all values needed to make this dense must be provided * before building this. * * @return this for chaining */ @SuppressWarnings("unchecked") @Override public Builder cell(double value, long... indexes) { if (indexes.length != type.dimensions().size()) throw new IllegalArgumentException("Wrong number of indexes (" + indexes.length + ") for " + type); if (indexes.length == 0) { firstDimension = List.of(value); return this; } if (firstDimension == null) firstDimension = new ArrayList<>(); List currentValues = firstDimension; for (int dimensionIndex = 0; dimensionIndex < indexes.length; dimensionIndex++) { ensureCapacity(indexes[dimensionIndex], currentValues); if (dimensionIndex == indexes.length - 1) { // last dimension currentValues.set((int)indexes[dimensionIndex], value); } else { if (currentValues.get((int)indexes[dimensionIndex]) == null) currentValues.set((int)indexes[dimensionIndex], new ArrayList<>()); currentValues = (List) currentValues.get((int)indexes[dimensionIndex]); } } return this; } /** Fill the given list with nulls if necessary to make sure it has a (possibly null) value at the given index */ private void ensureCapacity(long index, List list) { while (list.size() <= index) list.add(list.size(), null); } } private final class CellIterator implements Iterator { private long count = 0; private final Indexes indexes = Indexes.of(dimensionSizes, dimensionSizes, size()); private final LazyCell reusedCell = new LazyCell(indexes, Double.NaN); @Override public boolean hasNext() { return count < indexes.size(); } @Override public Cell next() { if ( ! hasNext()) throw new NoSuchElementException("No cell at " + indexes); count++; indexes.next(); reusedCell.value = get(indexes.toSourceValueIndex()); return reusedCell; } } private final class ValueIterator implements Iterator { private int count = 0; @Override public boolean hasNext() { return count < sizeAsInt(); } @Override public Double next() { try { return get(count++); } catch (IllegalArgumentException e) { throw new NoSuchElementException("No element at position " + count); } } } private final class SuperspaceIterator implements Iterator { private final Indexes superindexes; /** The indexes this should iterate over */ private final List subdimensionIndexes; /** * The sizes of the space we'll return values of, one value for each dimension of this tensor, * which may be equal to or smaller than the sizes of this tensor */ private final DimensionSizes iterateSizes; private long count = 0; private SuperspaceIterator(Set superdimensionNames, DimensionSizes iterateSizes) { this.iterateSizes = iterateSizes; List superdimensionIndexes = new ArrayList<>(superdimensionNames.size()); // for outer iterator subdimensionIndexes = new ArrayList<>(superdimensionNames.size()); // for inner iterator (max length) for (int i = type.dimensions().size() - 1; i >= 0; i-- ) { // iterate inner dimensions first if (superdimensionNames.contains(type.dimensions().get(i).name())) superdimensionIndexes.add(i); else subdimensionIndexes.add(i); } superindexes = Indexes.of(IndexedTensor.this.dimensionSizes, iterateSizes, superdimensionIndexes); } @Override public boolean hasNext() { return count < superindexes.size(); } @Override public SubspaceIterator next() { if ( ! hasNext()) throw new NoSuchElementException("No cell at " + superindexes); count++; superindexes.next(); return new SubspaceIterator(subdimensionIndexes, superindexes.indexesCopy(), iterateSizes); } } /** * An iterator over a subspace of this tensor. This is exposed to allow clients to query the size. * NOTE THAT the Cell returned by next is only valid until the next() call is made. * This is a concession to performance due to this typically being used in inner loops. */ public final class SubspaceIterator implements Iterator { /** * This iterator will iterate over the given dimensions, in the order given * (the first dimension index given is incremented to exhaustion first (i.e is etc.). * This may be any subset of the dimensions given by address and dimensionSizes. */ private final List iterateDimensions; private final long[] address; private final DimensionSizes iterateSizes; private Indexes indexes; private long count = 0; /** A lazy cell for reuse */ private final LazyCell reusedCell; /** * Creates a new subspace iterator * * @param iterateDimensions the dimensions to iterate over, given as indexes in the dimension order of the * type of the tensor this iterates over. This iterator will iterate over these * dimensions to exhaustion in the order given (the first dimension index given is * incremented to exhaustion first etc., while other dimensions will be held * at a constant position. * This may be any subset of the dimensions given by address and dimensionSizes. * This is treated as immutable. * @param address the address of the first cell of this subspace. */ private SubspaceIterator(List iterateDimensions, long[] address, DimensionSizes iterateSizes) { this.iterateDimensions = iterateDimensions; this.address = address; this.iterateSizes = iterateSizes; this.indexes = Indexes.of(IndexedTensor.this.dimensionSizes, iterateSizes, iterateDimensions, address); reusedCell = new LazyCell(indexes, Double.NaN); } /** Returns the total number of cells in this subspace */ public long size() { return indexes.size(); } /** Returns the address of the cell this currently points to (which may be an invalid position) */ public TensorAddress address() { return indexes.toAddress(); } /** Rewind this iterator to the first element */ public void reset() { this.count = 0; this.indexes = Indexes.of(IndexedTensor.this.dimensionSizes, iterateSizes, iterateDimensions, address); } @Override public boolean hasNext() { return count < indexes.size(); } /** Returns the next cell, which is valid until next() is called again */ @Override public Cell next() { if ( ! hasNext()) throw new NoSuchElementException("No cell at " + indexes); count++; indexes.next(); reusedCell.value = get(indexes.toSourceValueIndex()); return reusedCell; } } /** A Cell which does not compute its TensorAddress unless it really has to */ private final static class LazyCell extends Tensor.Cell { private double value; private final Indexes indexes; private LazyCell(Indexes indexes, Double value) { super(null, value); this.indexes = indexes; } @Override long getDirectIndex() { return indexes.toIterationValueIndex(); } @Override public TensorAddress getKey() { return indexes.toAddress(); } @Override public Double getValue() { return value; } @Override public Cell detach() { return new Cell(getKey(), value); } } /** * An array of indexes into this tensor which are able to find the next index in the value order. * next() can be called once per element in the dimensions we iterate over. It must be called once * before accessing the first position. */ public abstract static class Indexes { private final DimensionSizes sourceSizes; private final DimensionSizes iterationSizes; protected final long[] indexes; /** * Create indexes from a type containing bound indexed dimensions only. * * @throws IllegalStateException if the type contains dimensions which are not bound and indexed */ public static Indexes of(TensorType type) { return of(DimensionSizes.of(type)); } public static Indexes of(TensorType type, List iterateDimensionOrder) { return of(DimensionSizes.of(type), toIterationOrder(iterateDimensionOrder, type)); } public static Indexes of(DimensionSizes sizes) { return of(sizes, sizes); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes) { return of(sourceSizes, iterateSizes, completeIterationOrder(iterateSizes.dimensions())); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes, long size) { return of(sourceSizes, iterateSizes, completeIterationOrder(iterateSizes.dimensions()), size); } private static Indexes of(DimensionSizes sizes, List iterateDimensions) { return of(sizes, sizes, iterateDimensions); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes, List iterateDimensions) { return of(sourceSizes, iterateSizes, iterateDimensions, computeSize(iterateSizes, iterateDimensions)); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes, List iterateDimensions, long size) { return of(sourceSizes, iterateSizes, iterateDimensions, new long[iterateSizes.dimensions()], size); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes, List iterateDimensions, long[] initialIndexes) { return of(sourceSizes, iterateSizes, iterateDimensions, initialIndexes, computeSize(iterateSizes, iterateDimensions)); } private static Indexes of(DimensionSizes sourceSizes, DimensionSizes iterateSizes, List iterateDimensions, long[] initialIndexes, long size) { if (size == 0) { return new EmptyIndexes(sourceSizes, iterateSizes, initialIndexes); // we're told explicitly there are truly no values available } else if (size == 1) { return new SingleValueIndexes(sourceSizes, iterateSizes, initialIndexes); // with no (iterating) dimensions, we still return one value, not zero } else if (iterateDimensions.size() == 1) { if (sourceSizes.equals(iterateSizes)) return new EqualSizeSingleDimensionIndexes(sourceSizes, iterateDimensions.get(0), initialIndexes, size); else return new SingleDimensionIndexes(sourceSizes, iterateSizes, iterateDimensions.get(0), initialIndexes, size); // optimization } else { if (sourceSizes.equals(iterateSizes)) return new EqualSizeMultiDimensionIndexes(sourceSizes, iterateDimensions, initialIndexes, size); else return new MultiDimensionIndexes(sourceSizes, iterateSizes, iterateDimensions, initialIndexes, size); } } private static List toIterationOrder(List dimensionNames, TensorType type) { if (dimensionNames == null) return completeIterationOrder(type.rank()); List iterationDimensions = new ArrayList<>(type.rank()); for (int i = 0; i < type.rank(); i++) iterationDimensions.add(type.rank() - 1 - type.indexOfDimension(dimensionNames.get(i)).get()); return iterationDimensions; } /** Since the right dimensions binds closest, iteration order is the opposite of the tensor order */ private static List completeIterationOrder(int length) { List iterationDimensions = new ArrayList<>(length); for (int i = 0; i < length; i++) iterationDimensions.add(length - 1 - i); return iterationDimensions; } private Indexes(DimensionSizes sourceSizes, DimensionSizes iterationSizes, long[] indexes) { this.sourceSizes = sourceSizes; this.iterationSizes = iterationSizes; this.indexes = indexes; } private static long computeSize(DimensionSizes sizes, List iterateDimensions) { long size = 1; for (int i = 0; i < iterateDimensions.size(); i++) size *= sizes.size(iterateDimensions.get(i)); return size; } /** Returns the address of the current position of these indexes */ public TensorAddress toAddress() { return TensorAddress.of(indexes); } public long[] indexesCopy() { return Arrays.copyOf(indexes, indexes.length); } /** Returns a copy of the indexes of this which must not be modified */ public long[] indexesForReading() { return indexes; } public long toSourceValueIndex() { return IndexedTensor.toValueIndex(indexes, sourceSizes); } long toIterationValueIndex() { return IndexedTensor.toValueIndex(indexes, iterationSizes); } DimensionSizes dimensionSizes() { return iterationSizes; } /** Returns an immutable list containing a copy of the indexes in this */ public List toList() { ArrayList list = new ArrayList<>(indexes.length); for(long index : indexes) { list.add(index); } return List.copyOf(list); } @Override public String toString() { return "indexes " + Arrays.toString(indexes); } public abstract long size(); public abstract void next(); /** Returns whether further values are available by calling next() */ public abstract boolean hasNext(); /** Returns the number of dimensions in iteration order which are currently at the start position (0) */ abstract int nextDimensionsAtStart(); /** Returns the number of dimensions in iteration order which are currently at their end position */ abstract int nextDimensionsAtEnd(); } private final static class EmptyIndexes extends Indexes { private EmptyIndexes(DimensionSizes sourceSizes, DimensionSizes iterateSizes, long[] indexes) { super(sourceSizes, iterateSizes, indexes); } @Override public long size() { return 0; } @Override public void next() {} @Override public boolean hasNext() { return false; } @Override int nextDimensionsAtStart() { return 0; } @Override int nextDimensionsAtEnd() { return 0; } } private final static class SingleValueIndexes extends Indexes { private boolean exhausted = false; private SingleValueIndexes(DimensionSizes sourceSizes, DimensionSizes iterateSizes, long[] indexes) { super(sourceSizes, iterateSizes, indexes); } @Override public long size() { return 1; } @Override public void next() { exhausted = true; } @Override public boolean hasNext() { return ! exhausted; } @Override int nextDimensionsAtStart() { return 1; } @Override int nextDimensionsAtEnd() { return 1; } } private static class MultiDimensionIndexes extends Indexes { private final long size; private final List iterateDimensions; private MultiDimensionIndexes(DimensionSizes sourceSizes, DimensionSizes iterateSizes, List iterateDimensions, long[] initialIndexes, long size) { super(sourceSizes, iterateSizes, initialIndexes); this.iterateDimensions = iterateDimensions; this.size = size; // Initialize to the (virtual) position before the first cell indexes[iterateDimensions.get(0)]--; } /** Returns the number of values this will iterate over - i.e the product if the iterating dimension sizes */ @Override public long size() { return size; } /** * Advances this to the next cell in the standard indexed tensor cell order. * The first call to this will put it at the first position. * * @throws RuntimeException if this is called when hasNext returns false */ @Override public void next() { int iterateDimensionsIndex = 0; while ( indexes[iterateDimensions.get(iterateDimensionsIndex)] + 1 == dimensionSizes().size(iterateDimensions.get(iterateDimensionsIndex))) { indexes[iterateDimensions.get(iterateDimensionsIndex)] = 0; // carry over iterateDimensionsIndex++; } indexes[iterateDimensions.get(iterateDimensionsIndex)]++; } @Override public boolean hasNext() { for (int iterateDimension : iterateDimensions) { if (indexes[iterateDimension] + 1 < dimensionSizes().size(iterateDimension)) return true; // some dimension is not at the end } return false; } @Override int nextDimensionsAtStart() { int dimension = 0; while (dimension < iterateDimensions.size() && indexes[iterateDimensions.get(dimension)] == 0) dimension++; return dimension; } @Override int nextDimensionsAtEnd() { int dimension = 0; while (dimension < iterateDimensions.size() && indexes[iterateDimensions.get(dimension)] == dimensionSizes().size(iterateDimensions.get(dimension)) - 1) dimension++; return dimension; } } /** In this case we can reuse the source index computation for the iteration index */ private final static class EqualSizeMultiDimensionIndexes extends MultiDimensionIndexes { private long lastComputedSourceValueIndex = Tensor.invalidIndex; private EqualSizeMultiDimensionIndexes(DimensionSizes sizes, List iterateDimensions, long[] initialIndexes, long size) { super(sizes, sizes, iterateDimensions, initialIndexes, size); } @Override public long toSourceValueIndex() { return lastComputedSourceValueIndex = super.toSourceValueIndex(); } // NOTE: We assume the source index always gets computed first. Otherwise using this will produce a runtime exception @Override long toIterationValueIndex() { return lastComputedSourceValueIndex; } } /** In this case we can keep track of indexes using a step instead of using the more elaborate computation */ private final static class SingleDimensionIndexes extends Indexes { private final long size; private final int iterateDimension; /** Maintain this directly as an optimization for 1-d iteration */ private long currentSourceValueIndex, currentIterationValueIndex; /** The iteration step in the value index space */ private final long sourceStep, iterationStep; private SingleDimensionIndexes(DimensionSizes sourceSizes, DimensionSizes iterateSizes, int iterateDimension, long[] initialIndexes, long size) { super(sourceSizes, iterateSizes, initialIndexes); this.iterateDimension = iterateDimension; this.size = size; this.sourceStep = sourceSizes.productOfDimensionsAfter(iterateDimension); this.iterationStep = iterateSizes.productOfDimensionsAfter(iterateDimension); // Initialize to the (virtual) position before the first cell indexes[iterateDimension]--; currentSourceValueIndex = IndexedTensor.toValueIndex(indexes, sourceSizes); currentIterationValueIndex = IndexedTensor.toValueIndex(indexes, iterateSizes); } /** Returns the number of values this will iterate over - i.e the product if the iterating dimension sizes */ @Override public long size() { return size; } /** * Advances this to the next cell in the standard indexed tensor cell order. * The first call to this will put it at the first position. * * @throws RuntimeException if this is called when hasNext returns false */ @Override public void next() { indexes[iterateDimension]++; currentSourceValueIndex += sourceStep; currentIterationValueIndex += iterationStep; } @Override public long toSourceValueIndex() { return currentSourceValueIndex; } @Override long toIterationValueIndex() { return currentIterationValueIndex; } @Override public boolean hasNext() { return indexes[iterateDimension] + 1 < size; } @Override int nextDimensionsAtStart() { return currentSourceValueIndex == 0 ? 1 : 0; } @Override int nextDimensionsAtEnd() { return currentSourceValueIndex == size - 1 ? 1 : 0; } } /** In this case we only need to keep track of one index */ private final static class EqualSizeSingleDimensionIndexes extends Indexes { private final long size; private final int iterateDimension; /** Maintain this directly as an optimization for 1-d iteration */ private long currentValueIndex; /** The iteration step in the value index space */ private final long step; private EqualSizeSingleDimensionIndexes(DimensionSizes sizes, int iterateDimension, long[] initialIndexes, long size) { super(sizes, sizes, initialIndexes); this.iterateDimension = iterateDimension; this.size = size; this.step = sizes.productOfDimensionsAfter(iterateDimension); // Initialize to the (virtual) position before the first cell indexes[iterateDimension]--; currentValueIndex = IndexedTensor.toValueIndex(indexes, sizes); } /** Returns the number of values this will iterate over - i.e the product if the iterating dimension sizes */ @Override public long size() { return size; } /** * Advances this to the next cell in the standard indexed tensor cell order. * The first call to this will put it at the first position. * * @throws RuntimeException if this is called when hasNext returns false */ @Override public void next() { indexes[iterateDimension]++; currentValueIndex += step; } @Override public boolean hasNext() { return indexes[iterateDimension] + 1 < size; } @Override public long toSourceValueIndex() { return currentValueIndex; } @Override long toIterationValueIndex() { return currentValueIndex; } @Override int nextDimensionsAtStart() { return currentValueIndex == 0 ? 1 : 0; } @Override int nextDimensionsAtEnd() { return currentValueIndex == size - 1 ? 1 : 0; } } }