Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.zookeeper.server;
import java.io.Flushable;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.Objects;
import java.util.Queue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.Semaphore;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import org.apache.zookeeper.common.Time;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* This RequestProcessor logs requests to disk. It batches the requests to do
* the io efficiently. The request is not passed to the next RequestProcessor
* until its log has been synced to disk.
*
* SyncRequestProcessor is used in 3 different cases
* 1. Leader - Sync request to disk and forward it to AckRequestProcessor which
* send ack back to itself.
* 2. Follower - Sync request to disk and forward request to
* SendAckRequestProcessor which send the packets to leader.
* SendAckRequestProcessor is flushable which allow us to force
* push packets to leader.
* 3. Observer - Sync committed request to disk (received as INFORM packet).
* It never send ack back to the leader, so the nextProcessor will
* be null. This change the semantic of txnlog on the observer
* since it only contains committed txns.
*/
public class SyncRequestProcessor extends ZooKeeperCriticalThread implements RequestProcessor {
private static final Logger LOG = LoggerFactory.getLogger(SyncRequestProcessor.class);
private static final Request REQUEST_OF_DEATH = Request.requestOfDeath;
private static class FlushRequest extends Request {
private final CountDownLatch latch = new CountDownLatch(1);
public FlushRequest() {
super(null, 0, 0, 0, null, null);
}
}
private static final Request TURN_FORWARDING_DELAY_ON_REQUEST = new Request(null, 0, 0, 0, null, null);
private static final Request TURN_FORWARDING_DELAY_OFF_REQUEST = new Request(null, 0, 0, 0, null, null);
private static class DelayingProcessor implements RequestProcessor, Flushable {
private final RequestProcessor next;
private Queue delayed = null;
private DelayingProcessor(RequestProcessor next) {
this.next = next;
}
@Override
public void flush() throws IOException {
if (delayed == null && next instanceof Flushable) {
((Flushable) next).flush();
}
}
@Override
public void processRequest(Request request) throws RequestProcessorException {
if (delayed == null) {
next.processRequest(request);
} else {
delayed.add(request);
}
}
@Override
public void shutdown() {
next.shutdown();
}
private void startDelaying() {
if (delayed == null) {
delayed = new ArrayDeque<>();
}
}
private void flushAndStopDelaying() throws RequestProcessorException {
if (delayed != null) {
for (Request request : delayed) {
next.processRequest(request);
}
delayed = null;
}
}
}
/** The number of log entries to log before starting a snapshot */
private static int snapCount = ZooKeeperServer.getSnapCount();
/**
* The total size of log entries before starting a snapshot
*/
private static long snapSizeInBytes = ZooKeeperServer.getSnapSizeInBytes();
/**
* Random numbers used to vary snapshot timing
*/
private int randRoll;
private long randSize;
private final BlockingQueue queuedRequests = new LinkedBlockingQueue<>();
private final Semaphore snapThreadMutex = new Semaphore(1);
private final ZooKeeperServer zks;
private final DelayingProcessor nextProcessor;
/**
* Transactions that have been written and are waiting to be flushed to
* disk. Basically this is the list of SyncItems whose callbacks will be
* invoked after flush returns successfully.
*/
private final Queue toFlush;
private long lastFlushTime;
public SyncRequestProcessor(ZooKeeperServer zks, RequestProcessor nextProcessor) {
super("SyncThread:" + zks.getServerId(), zks.getZooKeeperServerListener());
this.zks = zks;
this.nextProcessor = nextProcessor == null ? null : new DelayingProcessor(nextProcessor);
this.toFlush = new ArrayDeque<>(zks.getMaxBatchSize());
}
/**
* used by tests to check for changing
* snapcounts
* @param count
*/
public static void setSnapCount(int count) {
snapCount = count;
}
/**
* used by tests to get the snapcount
* @return the snapcount
*/
public static int getSnapCount() {
return snapCount;
}
private long getRemainingDelay() {
long flushDelay = zks.getFlushDelay();
long duration = Time.currentElapsedTime() - lastFlushTime;
if (duration < flushDelay) {
return flushDelay - duration;
}
return 0;
}
/** If both flushDelay and maxMaxBatchSize are set (bigger than 0), flush
* whenever either condition is hit. If only one or the other is
* set, flush only when the relevant condition is hit.
*/
private boolean shouldFlush() {
long flushDelay = zks.getFlushDelay();
long maxBatchSize = zks.getMaxBatchSize();
if ((flushDelay > 0) && (getRemainingDelay() == 0)) {
return true;
}
return (maxBatchSize > 0) && (toFlush.size() >= maxBatchSize);
}
/**
* used by tests to check for changing
* snapcounts
* @param size
*/
public static void setSnapSizeInBytes(long size) {
snapSizeInBytes = size;
}
private boolean shouldSnapshot() {
int logCount = zks.getZKDatabase().getTxnCount();
long logSize = zks.getZKDatabase().getTxnSize();
return (logCount > (snapCount / 2 + randRoll))
|| (snapSizeInBytes > 0 && logSize > (snapSizeInBytes / 2 + randSize));
}
private void resetSnapshotStats() {
randRoll = ThreadLocalRandom.current().nextInt(snapCount / 2);
randSize = Math.abs(ThreadLocalRandom.current().nextLong() % (snapSizeInBytes / 2));
}
@Override
public void run() {
try {
// we do this in an attempt to ensure that not all of the servers
// in the ensemble take a snapshot at the same time
resetSnapshotStats();
lastFlushTime = Time.currentElapsedTime();
while (true) {
ServerMetrics.getMetrics().SYNC_PROCESSOR_QUEUE_SIZE.add(queuedRequests.size());
long pollTime = Math.min(zks.getMaxWriteQueuePollTime(), getRemainingDelay());
Request si = queuedRequests.poll(pollTime, TimeUnit.MILLISECONDS);
if (si == null) {
/* We timed out looking for more writes to batch, go ahead and flush immediately */
flush();
si = queuedRequests.take();
}
if (si == REQUEST_OF_DEATH) {
break;
}
if (si == TURN_FORWARDING_DELAY_ON_REQUEST) {
nextProcessor.startDelaying();
continue;
}
if (si == TURN_FORWARDING_DELAY_OFF_REQUEST) {
nextProcessor.flushAndStopDelaying();
continue;
}
if (si instanceof FlushRequest) {
flush();
((FlushRequest) si).latch.countDown();
continue;
}
long startProcessTime = Time.currentElapsedTime();
ServerMetrics.getMetrics().SYNC_PROCESSOR_QUEUE_TIME.add(startProcessTime - si.syncQueueStartTime);
// track the number of records written to the log
if (!si.isThrottled() && zks.getZKDatabase().append(si)) {
if (shouldSnapshot()) {
resetSnapshotStats();
// roll the log
zks.getZKDatabase().rollLog();
// take a snapshot
if (!snapThreadMutex.tryAcquire()) {
LOG.warn("Too busy to snap, skipping");
} else {
new ZooKeeperThread("Snapshot Thread") {
public void run() {
try {
zks.takeSnapshot();
} catch (Exception e) {
LOG.warn("Unexpected exception", e);
} finally {
snapThreadMutex.release();
}
}
}.start();
}
}
} else if (toFlush.isEmpty()) {
// optimization for read heavy workloads
// iff this is a read or a throttled request(which doesn't need to be written to the disk),
// and there are no pending flushes (writes), then just pass this to the next processor
if (nextProcessor != null) {
nextProcessor.processRequest(si);
nextProcessor.flush();
}
continue;
}
toFlush.add(si);
if (shouldFlush()) {
flush();
}
ServerMetrics.getMetrics().SYNC_PROCESS_TIME.add(Time.currentElapsedTime() - startProcessTime);
}
} catch (Throwable t) {
handleException(this.getName(), t);
}
LOG.info("SyncRequestProcessor exited!");
}
/** Flushes all pending writes, and waits for this to complete. */
public void syncFlush() throws InterruptedException {
FlushRequest marker = new FlushRequest();
queuedRequests.add(marker);
marker.latch.await();
}
public void setDelayForwarding(boolean delayForwarding) {
queuedRequests.add(delayForwarding ? TURN_FORWARDING_DELAY_ON_REQUEST : TURN_FORWARDING_DELAY_OFF_REQUEST);
}
private void flush() throws IOException, RequestProcessorException {
if (this.toFlush.isEmpty()) {
return;
}
ServerMetrics.getMetrics().BATCH_SIZE.add(toFlush.size());
long flushStartTime = Time.currentElapsedTime();
zks.getZKDatabase().commit();
ServerMetrics.getMetrics().SYNC_PROCESSOR_FLUSH_TIME.add(Time.currentElapsedTime() - flushStartTime);
if (this.nextProcessor == null) {
this.toFlush.clear();
} else {
while (!this.toFlush.isEmpty()) {
final Request i = this.toFlush.remove();
long latency = Time.currentElapsedTime() - i.syncQueueStartTime;
ServerMetrics.getMetrics().SYNC_PROCESSOR_QUEUE_AND_FLUSH_TIME.add(latency);
this.nextProcessor.processRequest(i);
}
nextProcessor.flush();
}
lastFlushTime = Time.currentElapsedTime();
}
public void shutdown() {
LOG.info("Shutting down");
queuedRequests.add(REQUEST_OF_DEATH);
try {
this.join();
this.flush();
} catch (InterruptedException e) {
LOG.warn("Interrupted while wating for {} to finish", this);
Thread.currentThread().interrupt();
} catch (IOException e) {
LOG.warn("Got IO exception during shutdown");
} catch (RequestProcessorException e) {
LOG.warn("Got request processor exception during shutdown");
}
if (nextProcessor != null) {
nextProcessor.shutdown();
}
}
public void processRequest(final Request request) {
Objects.requireNonNull(request, "Request cannot be null");
request.syncQueueStartTime = Time.currentElapsedTime();
queuedRequests.add(request);
ServerMetrics.getMetrics().SYNC_PROCESSOR_QUEUED.add(1);
}
}