All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.yungnickyoung.minecraft.yungsapi.noise.OpenSimplex2S Maven / Gradle / Ivy

The newest version!
package com.yungnickyoung.minecraft.yungsapi.noise;

/**
 * K.jpg's OpenSimplex 2, smooth variant ("SuperSimplex")
 *
 * - 2D is standard simplex, modified to support larger kernels.
 *   Implemented using a lookup table.
 * - 3D is "Re-oriented 8-point BCC noise" which constructs an
 *   isomorphic BCC lattice in a much different way than usual.
 *
 * Multiple versions of each function are provided. See the
 * documentation above each, for more info.
 */
public class OpenSimplex2S implements INoiseLibrary {

    private static final int PSIZE = 2048;
    private static final int PMASK = 2047;

    private short[] perm;
    private Grad2[] permGrad2;
    private Grad3[] permGrad3;
    private long seed;
    private int octaves;
    private double gain, frequency, lacunarity;

    public OpenSimplex2S(long seed) {
        this.seed = seed;
        perm = new short[PSIZE];
        permGrad2 = new Grad2[PSIZE];
        permGrad3 = new Grad3[PSIZE];
        short[] source = new short[PSIZE];
        for (short i = 0; i < PSIZE; i++)
            source[i] = i;
        for (int i = PSIZE - 1; i >= 0; i--) {
            seed = seed * 6364136223846793005L + 1442695040888963407L;
            int r = (int)((seed + 31) % (i + 1));
            if (r < 0)
                r += (i + 1);
            perm[i] = source[r];
            permGrad2[i] = GRADIENTS_2D[perm[i]];
            permGrad3[i] = GRADIENTS_3D[perm[i]];
            source[r] = source[i];
        }
    }

    /*
     * Noise Evaluators
     */

    /**
     * 2D SuperSimplex noise, standard lattice orientation.
     */
    public double noise2(double x, double y) {

        // Get points for A2* lattice
        double s = 0.366025403784439 * (x + y);
        double xs = x + s, ys = y + s;

        return noise2_Base(xs, ys);
    }

    /**
     * 2D SuperSimplex noise, with Y pointing down the main diagonal.
     * Might be better for a 2D sandbox style game, where Y is vertical.
     * Probably slightly less optimal for heightmaps or continent maps.
     */
    public double noise2_XBeforeY(double x, double y) {

        // Skew transform and rotation baked into one.
        double xx = x * 0.7071067811865476;
        double yy = y * 1.224744871380249;

        return noise2_Base(yy + xx, yy - xx);
    }

    /**
     * 2D SuperSimplex noise base.
     * Lookup table implementation inspired by DigitalShadow.
     */
    private double noise2_Base(double xs, double ys) {
        double value = 0;

        // Get base points and offsets
        int xsb = fastFloor(xs), ysb = fastFloor(ys);
        double xsi = xs - xsb, ysi = ys - ysb;

        // Index to point list
        int a = (int)(xsi + ysi);
        int index =
            (a << 2) |
                (int)(xsi - ysi / 2 + 1 - a / 2.0) << 3 |
                (int)(ysi - xsi / 2 + 1 - a / 2.0) << 4;

        double ssi = (xsi + ysi) * -0.211324865405187;
        double xi = xsi + ssi, yi = ysi + ssi;

        // Point contributions
        for (int i = 0; i < 4; i++) {
            LatticePoint2D c = LOOKUP_2D[index + i];

            double dx = xi + c.dx, dy = yi + c.dy;
            double attn = 2.0 / 3.0 - dx * dx - dy * dy;
            if (attn <= 0) continue;

            int pxm = (xsb + c.xsv) & PMASK, pym = (ysb + c.ysv) & PMASK;
            Grad2 grad = permGrad2[perm[pxm] ^ pym];
            double extrapolation = grad.dx * dx + grad.dy * dy;

            attn *= attn;
            value += attn * attn * extrapolation;
        }

        return value;
    }

    /**
     * 3D Re-oriented 8-point BCC noise, classic orientation
     * Proper substitute for what 3D SuperSimplex would be,
     * in light of Forbidden Formulae.
     * Use noise3_XYBeforeZ or noise3_XZBeforeY instead, wherever appropriate.
     */
    public double noise3_Classic(double x, double y, double z) {

        // Re-orient the cubic lattices via rotation, to produce the expected look on cardinal planar slices.
        // If texturing objects that don't tend to have cardinal plane faces, you could even remove this.
        // Orthonormal rotation. Not a skew transform.
        double r = (2.0 / 3.0) * (x + y + z);
        double xr = r - x, yr = r - y, zr = r - z;

        // Evaluate both lattices to form a BCC lattice.
        return noise3_BCC(xr, yr, zr);
    }

    /**
     * 3D Re-oriented 8-point BCC noise, with better visual isotropy in (X, Y).
     * Recommended for 3D terrain and time-varied animations.
     * The Z coordinate should always be the "different" coordinate in your use case.
     * If Y is vertical in world coordinates, call noise3_XYBeforeZ(x, z, Y) or use noise3_XZBeforeY.
     * If Z is vertical in world coordinates, call noise3_XYBeforeZ(x, y, Z).
     * For a time varied animation, call noise3_XYBeforeZ(x, y, T).
     */
    public double noise3_XYBeforeZ(double x, double y, double z) {

        // Re-orient the cubic lattices without skewing, to make X and Y triangular like 2D.
        // Orthonormal rotation. Not a skew transform.
        double xy = x + y;
        double s2 = xy * -0.211324865405187;
        double zz = z * 0.577350269189626;
        double xr = x + s2 - zz, yr = y + s2 - zz;
        double zr = xy * 0.577350269189626 + zz;

        // Evaluate both lattices to form a BCC lattice.
        return noise3_BCC(xr, yr, zr);
    }

    /**
     * 3D Re-oriented 8-point BCC noise, with better visual isotropy in (X, Z).
     * Recommended for 3D terrain and time-varied animations.
     * The Y coordinate should always be the "different" coordinate in your use case.
     * If Y is vertical in world coordinates, call noise3_XZBeforeY(x, Y, z).
     * If Z is vertical in world coordinates, call noise3_XZBeforeY(x, Z, y) or use noise3_XYBeforeZ.
     * For a time varied animation, call noise3_XZBeforeY(x, T, y) or use noise3_XYBeforeZ.
     */
    public double noise3_XZBeforeY(double x, double y, double z) {

        // Re-orient the cubic lattices without skewing, to make X and Z triangular like 2D.
        // Orthonormal rotation. Not a skew transform.
        double xz = x + z;
        double s2 = xz * -0.211324865405187;
        double yy = y * 0.577350269189626;
        double xr = x + s2 - yy; double zr = z + s2 - yy;
        double yr = xz * 0.577350269189626 + yy;

        // Evaluate both lattices to form a BCC lattice.
        return noise3_BCC(xr, yr, zr);
    }

    public float GetNoise(float x, float y, float z) {
        x *= frequency;
        y *= frequency;
        z *= frequency;

        float sum = 1 - (float)Math.abs(noise3_XZBeforeY(x, y, z));
        float amp = 1;

        for (int i = 1; i < octaves; i++) {
            x *= lacunarity;
            y *= lacunarity;
            z *= lacunarity;

            amp *= gain;
            sum -= (1 -  (float)Math.abs(noise3_XZBeforeY(x, y, z))) * amp;
        }

        return sum;
    }

    public void setOctaves(int octaves) {
        this.octaves = octaves;
    }

    public void setGain(double gain) {
        this.gain = gain;
    }

    public void setLacunarity(double lacunarity) {
        this.lacunarity = lacunarity;
    }

    public void setFrequency(double frequency) {
        this.frequency = frequency;
    }

    /**
     * Generate overlapping cubic lattices for 3D Re-oriented BCC noise.
     * Lookup table implementation inspired by DigitalShadow.
     * It was actually faster to narrow down the points in the loop itself,
     * than to build up the index with enough info to isolate 8 points.
     */
    private double noise3_BCC(double xr, double yr, double zr) {

        // Get base and offsets inside cube of first lattice.
        int xrb = fastFloor(xr), yrb = fastFloor(yr), zrb = fastFloor(zr);
        double xri = xr - xrb, yri = yr - yrb, zri = zr - zrb;

        // Identify which octant of the cube we're in. This determines which cell
        // in the other cubic lattice we're in, and also narrows down one point on each.
        int xht = (int)(xri + 0.5), yht = (int)(yri + 0.5), zht = (int)(zri + 0.5);
        int index = (xht << 0) | (yht << 1) | (zht << 2);

        // Point contributions
        double value = 0;
        LatticePoint3D c = LOOKUP_3D[index];
        while (c != null) {
            double dxr = xri + c.dxr, dyr = yri + c.dyr, dzr = zri + c.dzr;
            double attn = 0.75 - dxr * dxr - dyr * dyr - dzr * dzr;
            if (attn < 0) {
                c = c.nextOnFailure;
            } else {
                int pxm = (xrb + c.xrv) & PMASK, pym = (yrb + c.yrv) & PMASK, pzm = (zrb + c.zrv) & PMASK;
                Grad3 grad = permGrad3[perm[perm[pxm] ^ pym] ^ pzm];
                double extrapolation = grad.dx * dxr + grad.dy * dyr + grad.dz * dzr;

                attn *= attn;
                value += attn * attn * extrapolation;
                c = c.nextOnSuccess;
            }
        }
        return value;
    }

    /*
     * Utility
     */

    private static int fastFloor(double x) {
        int xi = (int)x;
        return x < xi ? xi - 1 : xi;
    }

    /*
     * Definitions
     */

    private static final LatticePoint2D[] LOOKUP_2D;
    private static final LatticePoint3D[] LOOKUP_3D;
    static {
        LOOKUP_2D = new LatticePoint2D[8 * 4];
        LOOKUP_3D = new LatticePoint3D[8];

        for (int i = 0; i < 8; i++) {
            int i1, j1, i2, j2;
            if ((i & 1) == 0) {
                if ((i & 2) == 0) { i1 = -1; j1 = 0; } else { i1 = 1; j1 = 0; }
                if ((i & 4) == 0) { i2 = 0; j2 = -1; } else { i2 = 0; j2 = 1; }
            } else {
                if ((i & 2) != 0) { i1 = 2; j1 = 1; } else { i1 = 0; j1 = 1; }
                if ((i & 4) != 0) { i2 = 1; j2 = 2; } else { i2 = 1; j2 = 0; }
            }
            LOOKUP_2D[i * 4] = new LatticePoint2D(0, 0);
            LOOKUP_2D[i * 4 + 1] = new LatticePoint2D(1, 1);
            LOOKUP_2D[i * 4 + 2] = new LatticePoint2D(i1, j1);
            LOOKUP_2D[i * 4 + 3] = new LatticePoint2D(i2, j2);
        }

        for (int i = 0; i < 8; i++) {
            int i1, j1, k1, i2, j2, k2;
            i1 = (i) & 1; j1 = (i >> 1) & 1; k1 = (i >> 2) & 1;
            i2 = i1 ^ 1; j2 = j1 ^ 1; k2 = k1 ^ 1;

            // The two points within this octant, one from each of the two cubic half-lattices.
            LatticePoint3D c0 = new LatticePoint3D(i1, j1, k1, 0);
            LatticePoint3D c1 = new LatticePoint3D(i1 + i2, j1 + j2, k1 + k2, 1);

            // (1, 0, 0) vs (0, 1, 1) away from octant.
            LatticePoint3D c2 = new LatticePoint3D(i1 ^ 1, j1, k1, 0);
            LatticePoint3D c3 = new LatticePoint3D(i1, j1 ^ 1, k1 ^ 1, 0);

            // (1, 0, 0) vs (0, 1, 1) away from octant, on second half-lattice.
            LatticePoint3D c4 = new LatticePoint3D(i1 + (i2 ^ 1), j1 + j2, k1 + k2, 1);
            LatticePoint3D c5 = new LatticePoint3D(i1 + i2, j1 + (j2 ^ 1), k1 + (k2 ^ 1), 1);

            // (0, 1, 0) vs (1, 0, 1) away from octant.
            LatticePoint3D c6 = new LatticePoint3D(i1, j1 ^ 1, k1, 0);
            LatticePoint3D c7 = new LatticePoint3D(i1 ^ 1, j1, k1 ^ 1, 0);

            // (0, 1, 0) vs (1, 0, 1) away from octant, on second half-lattice.
            LatticePoint3D c8 = new LatticePoint3D(i1 + i2, j1 + (j2 ^ 1), k1 + k2, 1);
            LatticePoint3D c9 = new LatticePoint3D(i1 + (i2 ^ 1), j1 + j2, k1 + (k2 ^ 1), 1);

            // (0, 0, 1) vs (1, 1, 0) away from octant.
            LatticePoint3D cA = new LatticePoint3D(i1, j1, k1 ^ 1, 0);
            LatticePoint3D cB = new LatticePoint3D(i1 ^ 1, j1 ^ 1, k1, 0);

            // (0, 0, 1) vs (1, 1, 0) away from octant, on second half-lattice.
            LatticePoint3D cC = new LatticePoint3D(i1 + i2, j1 + j2, k1 + (k2 ^ 1), 1);
            LatticePoint3D cD = new LatticePoint3D(i1 + (i2 ^ 1), j1 + (j2 ^ 1), k1 + k2, 1);

            // First two points are guaranteed.
            c0.nextOnFailure = c0.nextOnSuccess = c1;
            c1.nextOnFailure = c1.nextOnSuccess = c2;

            // If c2 is in range, then we know c3 and c4 are not.
            c2.nextOnFailure = c3; c2.nextOnSuccess = c5;
            c3.nextOnFailure = c4; c3.nextOnSuccess = c4;

            // If c4 is in range, then we know c5 is not.
            c4.nextOnFailure = c5; c4.nextOnSuccess = c6;
            c5.nextOnFailure = c5.nextOnSuccess = c6;

            // If c6 is in range, then we know c7 and c8 are not.
            c6.nextOnFailure = c7; c6.nextOnSuccess = c9;
            c7.nextOnFailure = c8; c7.nextOnSuccess = c8;

            // If c8 is in range, then we know c9 is not.
            c8.nextOnFailure = c9; c8.nextOnSuccess = cA;
            c9.nextOnFailure = c9.nextOnSuccess = cA;

            // If cA is in range, then we know cB and cC are not.
            cA.nextOnFailure = cB; cA.nextOnSuccess = cD;
            cB.nextOnFailure = cC; cB.nextOnSuccess = cC;

            // If cC is in range, then we know cD is not.
            cC.nextOnFailure = cD; cC.nextOnSuccess = null;
            cD.nextOnFailure = cD.nextOnSuccess = null;

            LOOKUP_3D[i] = c0;

        }
    }

    private static class LatticePoint2D {
        int xsv, ysv;
        double dx, dy;
        public LatticePoint2D(int xsv, int ysv) {
            this.xsv = xsv; this.ysv = ysv;
            double ssv = (xsv + ysv) * -0.211324865405187;
            this.dx = -xsv - ssv;
            this.dy = -ysv - ssv;
        }
    }

    private static class LatticePoint3D {
        public double dxr, dyr, dzr;
        public int xrv, yrv, zrv;
        LatticePoint3D nextOnFailure, nextOnSuccess;
        public LatticePoint3D(int xrv, int yrv, int zrv, int lattice) {
            this.dxr = -xrv + lattice * 0.5; this.dyr = -yrv + lattice * 0.5; this.dzr = -zrv + lattice * 0.5;
            this.xrv = xrv + lattice * 1024; this.yrv = yrv + lattice * 1024; this.zrv = zrv + lattice * 1024;
        }
    }

    /*
     * Gradients
     */

    public static class Grad2 {
        double dx, dy;
        public Grad2(double dx, double dy) {
            this.dx = dx; this.dy = dy;
        }
    }

    public static class Grad3 {
        double dx, dy, dz;
        public Grad3(double dx, double dy, double dz) {
            this.dx = dx; this.dy = dy; this.dz = dz;
        }
    }

    public static final double N2 = 0.05481866495625118;
    public static final double N3 = 0.2781926117527186;
    private static final Grad2[] GRADIENTS_2D;
    private static final Grad3[] GRADIENTS_3D;
    static {

        GRADIENTS_2D = new Grad2[PSIZE];
        Grad2[] grad2 = {
            new Grad2( 0.130526192220052,  0.99144486137381),
            new Grad2( 0.38268343236509,   0.923879532511287),
            new Grad2( 0.608761429008721,  0.793353340291235),
            new Grad2( 0.793353340291235,  0.608761429008721),
            new Grad2( 0.923879532511287,  0.38268343236509),
            new Grad2( 0.99144486137381,   0.130526192220051),
            new Grad2( 0.99144486137381,  -0.130526192220051),
            new Grad2( 0.923879532511287, -0.38268343236509),
            new Grad2( 0.793353340291235, -0.60876142900872),
            new Grad2( 0.608761429008721, -0.793353340291235),
            new Grad2( 0.38268343236509,  -0.923879532511287),
            new Grad2( 0.130526192220052, -0.99144486137381),
            new Grad2(-0.130526192220052, -0.99144486137381),
            new Grad2(-0.38268343236509,  -0.923879532511287),
            new Grad2(-0.608761429008721, -0.793353340291235),
            new Grad2(-0.793353340291235, -0.608761429008721),
            new Grad2(-0.923879532511287, -0.38268343236509),
            new Grad2(-0.99144486137381,  -0.130526192220052),
            new Grad2(-0.99144486137381,   0.130526192220051),
            new Grad2(-0.923879532511287,  0.38268343236509),
            new Grad2(-0.793353340291235,  0.608761429008721),
            new Grad2(-0.608761429008721,  0.793353340291235),
            new Grad2(-0.38268343236509,   0.923879532511287),
            new Grad2(-0.130526192220052,  0.99144486137381)
        };
        Grad2[] grad2XBeforeY = new Grad2[grad2.length];
        for (Grad2 value : grad2) {
            value.dx /= N2;
            value.dy /= N2;
        }
        for (int i = 0; i < PSIZE; i++) {
            GRADIENTS_2D[i] = grad2[i % grad2.length];
        }

        GRADIENTS_3D = new Grad3[PSIZE];
        Grad3[] grad3 = {
            new Grad3(-2.22474487139,      -2.22474487139,      -1.0),
            new Grad3(-2.22474487139,      -2.22474487139,       1.0),
            new Grad3(-3.0862664687972017, -1.1721513422464978,  0.0),
            new Grad3(-1.1721513422464978, -3.0862664687972017,  0.0),
            new Grad3(-2.22474487139,      -1.0,                -2.22474487139),
            new Grad3(-2.22474487139,       1.0,                -2.22474487139),
            new Grad3(-1.1721513422464978,  0.0,                -3.0862664687972017),
            new Grad3(-3.0862664687972017,  0.0,                -1.1721513422464978),
            new Grad3(-2.22474487139,      -1.0,                 2.22474487139),
            new Grad3(-2.22474487139,       1.0,                 2.22474487139),
            new Grad3(-3.0862664687972017,  0.0,                 1.1721513422464978),
            new Grad3(-1.1721513422464978,  0.0,                 3.0862664687972017),
            new Grad3(-2.22474487139,       2.22474487139,      -1.0),
            new Grad3(-2.22474487139,       2.22474487139,       1.0),
            new Grad3(-1.1721513422464978,  3.0862664687972017,  0.0),
            new Grad3(-3.0862664687972017,  1.1721513422464978,  0.0),
            new Grad3(-1.0,                -2.22474487139,      -2.22474487139),
            new Grad3( 1.0,                -2.22474487139,      -2.22474487139),
            new Grad3( 0.0,                -3.0862664687972017, -1.1721513422464978),
            new Grad3( 0.0,                -1.1721513422464978, -3.0862664687972017),
            new Grad3(-1.0,                -2.22474487139,       2.22474487139),
            new Grad3( 1.0,                -2.22474487139,       2.22474487139),
            new Grad3( 0.0,                -1.1721513422464978,  3.0862664687972017),
            new Grad3( 0.0,                -3.0862664687972017,  1.1721513422464978),
            new Grad3(-1.0,                 2.22474487139,      -2.22474487139),
            new Grad3( 1.0,                 2.22474487139,      -2.22474487139),
            new Grad3( 0.0,                 1.1721513422464978, -3.0862664687972017),
            new Grad3( 0.0,                 3.0862664687972017, -1.1721513422464978),
            new Grad3(-1.0,                 2.22474487139,       2.22474487139),
            new Grad3( 1.0,                 2.22474487139,       2.22474487139),
            new Grad3( 0.0,                 3.0862664687972017,  1.1721513422464978),
            new Grad3( 0.0,                 1.1721513422464978,  3.0862664687972017),
            new Grad3( 2.22474487139,      -2.22474487139,      -1.0),
            new Grad3( 2.22474487139,      -2.22474487139,       1.0),
            new Grad3( 1.1721513422464978, -3.0862664687972017,  0.0),
            new Grad3( 3.0862664687972017, -1.1721513422464978,  0.0),
            new Grad3( 2.22474487139,      -1.0,                -2.22474487139),
            new Grad3( 2.22474487139,       1.0,                -2.22474487139),
            new Grad3( 3.0862664687972017,  0.0,                -1.1721513422464978),
            new Grad3( 1.1721513422464978,  0.0,                -3.0862664687972017),
            new Grad3( 2.22474487139,      -1.0,                 2.22474487139),
            new Grad3( 2.22474487139,       1.0,                 2.22474487139),
            new Grad3( 1.1721513422464978,  0.0,                 3.0862664687972017),
            new Grad3( 3.0862664687972017,  0.0,                 1.1721513422464978),
            new Grad3( 2.22474487139,       2.22474487139,      -1.0),
            new Grad3( 2.22474487139,       2.22474487139,       1.0),
            new Grad3( 3.0862664687972017,  1.1721513422464978,  0.0),
            new Grad3( 1.1721513422464978,  3.0862664687972017,  0.0)
        };
        for (Grad3 value : grad3) {
            value.dx /= N3;
            value.dy /= N3;
            value.dz /= N3;
        }
        for (int i = 0; i < PSIZE; i++) {
            GRADIENTS_3D[i] = grad3[i % grad3.length];
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy