com.google.code.or.common.util.MySQLUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of open-replicator Show documentation
Show all versions of open-replicator Show documentation
Open Replicator is a high performance MySQL binlog parser written in Java.
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.code.or.common.util;
import java.math.BigDecimal;
import java.sql.Timestamp;
import java.util.Calendar;
/**
*
* @author Jingqi Xu
* @see "tungsten replicator"
*/
public final class MySQLUtils {
//
private static final int DIGITS_PER_4BYTES = 9;
private static final BigDecimal POSITIVE_ONE = BigDecimal.ONE;
private static final BigDecimal NEGATIVE_ONE = new BigDecimal("-1");
private static final int DECIMAL_BINARY_SIZE[] = {0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
/**
*
*/
public static byte[] password41OrLater(byte password[], byte scramble[]) {
final byte[] stage1 = CodecUtils.sha(password);
final byte[] stage2 = CodecUtils.sha(CodecUtils.concat(scramble, CodecUtils.sha(stage1)));
return CodecUtils.xor(stage1, stage2);
}
/**
*
*/
public static int toYear(int value) {
return 1900 + value;
}
public static java.sql.Date toDate(int value) {
final int d = value % 32; value >>>= 5;
final int m = value % 16;
final int y = value >> 4;
final Calendar cal = Calendar.getInstance();
cal.clear();
cal.set(y, m - 1, d);
return new java.sql.Date(cal.getTimeInMillis());
}
public static java.sql.Time toTime(int value) {
final int s = (int)(value % 100); value /= 100;
final int m = (int)(value % 100);
final int h = (int)(value / 100);
final Calendar c = Calendar.getInstance();
c.set(1970, 0, 1, h, m, s);
c.set(Calendar.MILLISECOND, 0);
return new java.sql.Time(c.getTimeInMillis());
}
public static java.sql.Time toTime2(int value, int fraction, int width) {
final long millis = getMillisFromTime2(value);
return new java.sql.Time(millis + (nanosForFractionalValue(fraction, width) / 1000000));
}
public static long getMillisFromTime2(int value) {
final int h = (value >> 12) & 0x3FF;
final int m = (value >> 6) & 0x3F;
final int s = (value >> 0) & 0x3F;
final Calendar c = Calendar.getInstance();
c.set(1970, 0, 1, h, m, s);
c.set(Calendar.MILLISECOND, 0);
return c.getTimeInMillis();
}
public static java.sql.Timestamp time2toTimestamp(int value, int fraction, int width) {
final long millis = getMillisFromTime2(value);
final java.sql.Timestamp t = new java.sql.Timestamp(millis);
t.setNanos(nanosForFractionalValue(fraction, width));
return t;
}
// fractional values are 0 - 3 bytes wide.
// 1 byte, we get 0-99 resolution
// 2 bytes, we get 0-9,999
// 3 bytes, we get 0-999,999 resolution
// 1 byte: the value "99" means 990,000,000 nanos == fraction * 10^7
// 2 bytes: the value "9,999" means 999,900,000 nanos == fraction * 10^5
// 3 bytes: the value "999,999" means "999,999,000" nanos == fraction * 10^3
public static int nanosForFractionalValue(int value, int width) {
switch (width) {
case 0:
return 0;
case 1:
return value * 10000000;
case 2:
return value * 100000;
case 3:
return value * 1000;
default:
throw new RuntimeException("unexpected number of fractional bytes");
}
}
public static java.util.Date toDatetime(long value) {
final int second = (int)(value % 100); value /= 100;
final int minute = (int)(value % 100); value /= 100;
final int hour = (int)(value % 100); value /= 100;
final int day = (int)(value % 100); value /= 100;
final int month = (int)(value % 100);
final int year = (int)(value / 100);
final Calendar c = Calendar.getInstance();
c.set(year, month - 1, day, hour, minute, second);
c.set(Calendar.MILLISECOND, 0);
return c.getTime();
}
public static java.util.Date toDatetime2(long value, int fraction, int width) {
final long millis = getMillisFromDatetime2(value);
return new java.util.Date(millis + (nanosForFractionalValue(fraction, width) / 1000000));
}
public static long getMillisFromDatetime2(long value) {
final long x = (value >> 22) & 0x1FFFFL;
final int year = (int)(x / 13);
final int month = (int)(x % 13);
final int day = ((int)(value >> 17)) & 0x1F;
final int hour = ((int)(value >> 12)) & 0x1F;
final int minute = ((int)(value >> 6)) & 0x3F;
final int second = ((int)(value >> 0)) & 0x3F;
final Calendar c = Calendar.getInstance();
c.set(year, month - 1, day, hour, minute, second);
c.set(Calendar.MILLISECOND, 0);
return c.getTimeInMillis();
}
public static java.sql.Timestamp toTimestamp(long seconds) {
return new java.sql.Timestamp(seconds * 1000L);
}
public static java.sql.Timestamp toTimestamp2(long seconds, int fraction, int width) {
return timestamp2ToTimestamp(seconds, fraction, width);
}
public static java.sql.Timestamp timestamp2ToTimestamp(long seconds, int fraction, int width) {
final java.sql.Timestamp r = new java.sql.Timestamp(seconds * 1000L);
r.setNanos(nanosForFractionalValue(fraction, width));
return r;
}
public static java.sql.Timestamp datetime2ToTimestamp(long value, int fraction, int width) {
final long millis = getMillisFromDatetime2(value);
final java.sql.Timestamp r = new java.sql.Timestamp(millis);
r.setNanos(nanosForFractionalValue(fraction, width));
return r;
}
public static BigDecimal toDecimal(int precision, int scale, byte[] value) {
//
final boolean positive = (value[0] & 0x80) == 0x80;
value[0] ^= 0x80;
if (!positive) {
for (int i = 0; i < value.length; i++) {
value[i] ^= 0xFF;
}
}
//
final int x = precision - scale;
final int ipDigits = x / DIGITS_PER_4BYTES;
final int ipDigitsX = x - ipDigits * DIGITS_PER_4BYTES;
final int ipSize = (ipDigits << 2) + DECIMAL_BINARY_SIZE[ipDigitsX];
int offset = DECIMAL_BINARY_SIZE[ipDigitsX];
BigDecimal ip = offset > 0 ? BigDecimal.valueOf(CodecUtils.toInt(value, 0, offset)) : BigDecimal.ZERO;
for(; offset < ipSize; offset += 4) {
final int i = CodecUtils.toInt(value, offset, 4);
ip = ip.movePointRight(DIGITS_PER_4BYTES).add(BigDecimal.valueOf(i));
}
//
int shift = 0;
BigDecimal fp = BigDecimal.ZERO;
for (; shift + DIGITS_PER_4BYTES <= scale; shift += DIGITS_PER_4BYTES, offset += 4) {
final int i = CodecUtils.toInt(value, offset, 4);
fp = fp.add(BigDecimal.valueOf(i).movePointLeft(shift + DIGITS_PER_4BYTES));
}
if(shift < scale) {
final int i = CodecUtils.toInt(value, offset, DECIMAL_BINARY_SIZE[scale - shift]);
fp = fp.add(BigDecimal.valueOf(i).movePointLeft(scale));
}
//
return positive ? POSITIVE_ONE.multiply(ip.add(fp)) : NEGATIVE_ONE.multiply(ip.add(fp));
}
/**
*
*/
public static int getDecimalBinarySize(int precision, int scale) {
final int x = precision - scale;
final int ipDigits = x / DIGITS_PER_4BYTES;
final int fpDigits = scale / DIGITS_PER_4BYTES;
final int ipDigitsX = x - ipDigits * DIGITS_PER_4BYTES;
final int fpDigitsX = scale - fpDigits * DIGITS_PER_4BYTES;
return (ipDigits << 2) + DECIMAL_BINARY_SIZE[ipDigitsX] + (fpDigits << 2) + DECIMAL_BINARY_SIZE[fpDigitsX];
}
}