neuroflow.playground.Trending.scala Maven / Gradle / Ivy
package neuroflow.playground
import neuroflow.core.Activator._
import neuroflow.core.FFN.WeightProvider._
import neuroflow.core._
import neuroflow.nets.DefaultNetwork._
import shapeless._
import scala.util.Random
/**
* @author bogdanski
* @since 03.01.16
*/
object Trending {
/*
Here the goal is to detect a trend in two-dimensional space (stock market, audio waves, ...)
Feel free to read this article for the full story:
http://znctr.com/blog/natural-trend-detection
*/
def apply = {
def noise = if (Random.nextDouble > 0.5) 0.0625 else -0.0625
// Training
val trend = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, i))
val flat = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, 0.3))
// Testing
val trendTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, (1 + Random.nextDouble) * i)) // Linear trend with noise on slope
val flatTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, 0.3 + noise)) // Flat with additive noise
val declineTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, 1.0 - i)) // Linear decline trend
val squareTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, i * i)) // Square trend
val squareDeclineTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, (-1 * i * i) + 1.0)) // Square decline trend
val jammingTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, 0.5 * Math.sin(3 * i))) // Jamming trend
val heroZeroTest = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, 0.5 * Math.cos(6 * i) + 0.5)) // Hero, to Zero, to Hero
val oscillating = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, (Math.sin(100 * i) / 3) + 0.5)) // Oscillating
val oscillatingUp = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, i + (Math.sin(100 * i) / 3))) // Oscillating Up Trend
val oscillatingDown = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, -i + (Math.sin(100 * i) / 3) + 1)) // Oscillating Down Trend
val realWorld = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, i + (Math.sin(100 * i) / 3) * Random.nextDouble)) // Real world data
val random = Range.Double(0.0, 1.0, 0.01).flatMap(i => Seq(i, Random.nextDouble)) // Random
val fn = Sigmoid
val settings = Settings(learningRate = 20.0, precision = 1E-4, iterations = 10000)
val net = Network(Input(trend.size) :: Hidden(25, fn) :: Output(1, fn) :: HNil, settings)
net.train(Seq(trend, flat), Seq(Seq(1.0), Seq(0.0)))
println(s"Weights: ${net.weights.map(_.size).sum}")
val trendResult = net.evaluate(trendTest)
val flatResult = net.evaluate(flatTest)
val declineResult = net.evaluate(declineTest)
val squareResult = net.evaluate(squareTest)
val squareDeclineResult = net.evaluate(squareDeclineTest)
val jammingResult = net.evaluate(jammingTest)
val heroZeroResult = net.evaluate(heroZeroTest)
val oscillatingResult = net.evaluate(oscillating)
val oscillatingUpResult = net.evaluate(oscillatingUp)
val oscillatingDownResult = net.evaluate(oscillatingDown)
val realWorldResult = net.evaluate(realWorld)
val randomResult = net.evaluate(random)
println(s"Flat Result: $flatResult")
println(s"Linear Trend Result: $trendResult")
println(s"Square Trend Result: $squareResult")
println(s"Linear Decline Trend Result: $declineResult")
println(s"Square Decline Trend Result: $squareDeclineResult")
println(s"Jamming Result: $jammingResult")
println(s"HeroZero Result: $heroZeroResult")
println(s"Oscillating Result: $oscillatingResult")
println(s"Oscillating Up Result: $oscillatingUpResult")
println(s"Oscillating Down Result: $oscillatingDownResult")
println(s"Real World Result: $realWorldResult")
println(s"Random Result: $randomResult")
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy