All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch Maven / Gradle / Ivy

There is a newer version: 0.32.0-SNAPSHOT2
Show newest version
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: zepben/protobuf/cim/iec61970/base/equivalents/EquivalentBranch.proto

package com.zepben.protobuf.cim.iec61970.base.equivalents;

/**
 * 
 **
 * The class represents equivalent branches. In cases where a transformer phase shift is modelled and the EquivalentBranch is spanning
 * the same nodes, the impedance quantities for the EquivalentBranch shall consider the needed phase shift.
 * 
* * Protobuf type {@code zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch} */ public final class EquivalentBranch extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) EquivalentBranchOrBuilder { private static final long serialVersionUID = 0L; // Use EquivalentBranch.newBuilder() to construct. private EquivalentBranch(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private EquivalentBranch() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new EquivalentBranch(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_fieldAccessorTable .ensureFieldAccessorsInitialized( com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.class, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.Builder.class); } private int bitField0_; public static final int EE_FIELD_NUMBER = 1; private com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee_; /** *
   **
   * EquivalentEquipment fields for this EquivalentBranch.
   * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; * @return Whether the ee field is set. */ @java.lang.Override public boolean hasEe() { return ((bitField0_ & 0x00000001) != 0); } /** *
   **
   * EquivalentEquipment fields for this EquivalentBranch.
   * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; * @return The ee. */ @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment getEe() { return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_; } /** *
   **
   * EquivalentEquipment fields for this EquivalentBranch.
   * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder getEeOrBuilder() { return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_; } public static final int NEGATIVER12_FIELD_NUMBER = 2; private double negativeR12_ = 0D; /** *
   *
   * Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
   * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double negativeR12 = 2; * @return The negativeR12. */ @java.lang.Override public double getNegativeR12() { return negativeR12_; } public static final int NEGATIVER21_FIELD_NUMBER = 3; private double negativeR21_ = 0D; /** *
   *
   * Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
   * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double negativeR21 = 3; * @return The negativeR21. */ @java.lang.Override public double getNegativeR21() { return negativeR21_; } public static final int NEGATIVEX12_FIELD_NUMBER = 4; private double negativeX12_ = 0D; /** *
   *
   * Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
   * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double negativeX12 = 4; * @return The negativeX12. */ @java.lang.Override public double getNegativeX12() { return negativeX12_; } public static final int NEGATIVEX21_FIELD_NUMBER = 5; private double negativeX21_ = 0D; /** *
   *
   * Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
   * to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double negativeX21 = 5; * @return The negativeX21. */ @java.lang.Override public double getNegativeX21() { return negativeX21_; } public static final int POSITIVER12_FIELD_NUMBER = 6; private double positiveR12_ = 0D; /** *
   *
   * Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
   * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double positiveR12 = 6; * @return The positiveR12. */ @java.lang.Override public double getPositiveR12() { return positiveR12_; } public static final int POSITIVER21_FIELD_NUMBER = 7; private double positiveR21_ = 0D; /** *
   *
   * Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
   * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double positiveR21 = 7; * @return The positiveR21. */ @java.lang.Override public double getPositiveR21() { return positiveR21_; } public static final int POSITIVEX12_FIELD_NUMBER = 8; private double positiveX12_ = 0D; /** *
   *
   * Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
   * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double positiveX12 = 8; * @return The positiveX12. */ @java.lang.Override public double getPositiveX12() { return positiveX12_; } public static final int POSITIVEX21_FIELD_NUMBER = 9; private double positiveX21_ = 0D; /** *
   *
   * Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
   * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double positiveX21 = 9; * @return The positiveX21. */ @java.lang.Override public double getPositiveX21() { return positiveX21_; } public static final int R_FIELD_NUMBER = 10; private double r_ = 0D; /** *
   *
   * Positive sequence series resistance of the reduced branch.
   * 
* * double r = 10; * @return The r. */ @java.lang.Override public double getR() { return r_; } public static final int R21_FIELD_NUMBER = 11; private double r21_ = 0D; /** *
   *
   * Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
   * unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
   * to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double r21 = 11; * @return The r21. */ @java.lang.Override public double getR21() { return r21_; } public static final int X_FIELD_NUMBER = 12; private double x_ = 0D; /** *
   *
   * Positive sequence series reactance of the reduced branch.
   * 
* * double x = 12; * @return The x. */ @java.lang.Override public double getX() { return x_; } public static final int X21_FIELD_NUMBER = 13; private double x21_ = 0D; /** *
   *
   * Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
   * an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
   * equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double x21 = 13; * @return The x21. */ @java.lang.Override public double getX21() { return x21_; } public static final int ZEROR12_FIELD_NUMBER = 14; private double zeroR12_ = 0D; /** *
   *
   * Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
   * IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double zeroR12 = 14; * @return The zeroR12. */ @java.lang.Override public double getZeroR12() { return zeroR12_; } public static final int ZEROR21_FIELD_NUMBER = 15; private double zeroR21_ = 0D; /** *
   *
   * Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
   * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double zeroR21 = 15; * @return The zeroR21. */ @java.lang.Override public double getZeroR21() { return zeroR21_; } public static final int ZEROX12_FIELD_NUMBER = 16; private double zeroX12_ = 0D; /** *
   *
   * Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
   * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double zeroX12 = 16; * @return The zeroX12. */ @java.lang.Override public double getZeroX12() { return zeroX12_; } public static final int ZEROX21_FIELD_NUMBER = 17; private double zeroX21_ = 0D; /** *
   *
   * Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
   * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
   * 
* * double zeroX21 = 17; * @return The zeroX21. */ @java.lang.Override public double getZeroX21() { return zeroX21_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getEe()); } if (java.lang.Double.doubleToRawLongBits(negativeR12_) != 0) { output.writeDouble(2, negativeR12_); } if (java.lang.Double.doubleToRawLongBits(negativeR21_) != 0) { output.writeDouble(3, negativeR21_); } if (java.lang.Double.doubleToRawLongBits(negativeX12_) != 0) { output.writeDouble(4, negativeX12_); } if (java.lang.Double.doubleToRawLongBits(negativeX21_) != 0) { output.writeDouble(5, negativeX21_); } if (java.lang.Double.doubleToRawLongBits(positiveR12_) != 0) { output.writeDouble(6, positiveR12_); } if (java.lang.Double.doubleToRawLongBits(positiveR21_) != 0) { output.writeDouble(7, positiveR21_); } if (java.lang.Double.doubleToRawLongBits(positiveX12_) != 0) { output.writeDouble(8, positiveX12_); } if (java.lang.Double.doubleToRawLongBits(positiveX21_) != 0) { output.writeDouble(9, positiveX21_); } if (java.lang.Double.doubleToRawLongBits(r_) != 0) { output.writeDouble(10, r_); } if (java.lang.Double.doubleToRawLongBits(r21_) != 0) { output.writeDouble(11, r21_); } if (java.lang.Double.doubleToRawLongBits(x_) != 0) { output.writeDouble(12, x_); } if (java.lang.Double.doubleToRawLongBits(x21_) != 0) { output.writeDouble(13, x21_); } if (java.lang.Double.doubleToRawLongBits(zeroR12_) != 0) { output.writeDouble(14, zeroR12_); } if (java.lang.Double.doubleToRawLongBits(zeroR21_) != 0) { output.writeDouble(15, zeroR21_); } if (java.lang.Double.doubleToRawLongBits(zeroX12_) != 0) { output.writeDouble(16, zeroX12_); } if (java.lang.Double.doubleToRawLongBits(zeroX21_) != 0) { output.writeDouble(17, zeroX21_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getEe()); } if (java.lang.Double.doubleToRawLongBits(negativeR12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(2, negativeR12_); } if (java.lang.Double.doubleToRawLongBits(negativeR21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(3, negativeR21_); } if (java.lang.Double.doubleToRawLongBits(negativeX12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(4, negativeX12_); } if (java.lang.Double.doubleToRawLongBits(negativeX21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(5, negativeX21_); } if (java.lang.Double.doubleToRawLongBits(positiveR12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(6, positiveR12_); } if (java.lang.Double.doubleToRawLongBits(positiveR21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(7, positiveR21_); } if (java.lang.Double.doubleToRawLongBits(positiveX12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(8, positiveX12_); } if (java.lang.Double.doubleToRawLongBits(positiveX21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(9, positiveX21_); } if (java.lang.Double.doubleToRawLongBits(r_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(10, r_); } if (java.lang.Double.doubleToRawLongBits(r21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(11, r21_); } if (java.lang.Double.doubleToRawLongBits(x_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(12, x_); } if (java.lang.Double.doubleToRawLongBits(x21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(13, x21_); } if (java.lang.Double.doubleToRawLongBits(zeroR12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(14, zeroR12_); } if (java.lang.Double.doubleToRawLongBits(zeroR21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(15, zeroR21_); } if (java.lang.Double.doubleToRawLongBits(zeroX12_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(16, zeroX12_); } if (java.lang.Double.doubleToRawLongBits(zeroX21_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(17, zeroX21_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)) { return super.equals(obj); } com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch other = (com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) obj; if (hasEe() != other.hasEe()) return false; if (hasEe()) { if (!getEe() .equals(other.getEe())) return false; } if (java.lang.Double.doubleToLongBits(getNegativeR12()) != java.lang.Double.doubleToLongBits( other.getNegativeR12())) return false; if (java.lang.Double.doubleToLongBits(getNegativeR21()) != java.lang.Double.doubleToLongBits( other.getNegativeR21())) return false; if (java.lang.Double.doubleToLongBits(getNegativeX12()) != java.lang.Double.doubleToLongBits( other.getNegativeX12())) return false; if (java.lang.Double.doubleToLongBits(getNegativeX21()) != java.lang.Double.doubleToLongBits( other.getNegativeX21())) return false; if (java.lang.Double.doubleToLongBits(getPositiveR12()) != java.lang.Double.doubleToLongBits( other.getPositiveR12())) return false; if (java.lang.Double.doubleToLongBits(getPositiveR21()) != java.lang.Double.doubleToLongBits( other.getPositiveR21())) return false; if (java.lang.Double.doubleToLongBits(getPositiveX12()) != java.lang.Double.doubleToLongBits( other.getPositiveX12())) return false; if (java.lang.Double.doubleToLongBits(getPositiveX21()) != java.lang.Double.doubleToLongBits( other.getPositiveX21())) return false; if (java.lang.Double.doubleToLongBits(getR()) != java.lang.Double.doubleToLongBits( other.getR())) return false; if (java.lang.Double.doubleToLongBits(getR21()) != java.lang.Double.doubleToLongBits( other.getR21())) return false; if (java.lang.Double.doubleToLongBits(getX()) != java.lang.Double.doubleToLongBits( other.getX())) return false; if (java.lang.Double.doubleToLongBits(getX21()) != java.lang.Double.doubleToLongBits( other.getX21())) return false; if (java.lang.Double.doubleToLongBits(getZeroR12()) != java.lang.Double.doubleToLongBits( other.getZeroR12())) return false; if (java.lang.Double.doubleToLongBits(getZeroR21()) != java.lang.Double.doubleToLongBits( other.getZeroR21())) return false; if (java.lang.Double.doubleToLongBits(getZeroX12()) != java.lang.Double.doubleToLongBits( other.getZeroX12())) return false; if (java.lang.Double.doubleToLongBits(getZeroX21()) != java.lang.Double.doubleToLongBits( other.getZeroX21())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasEe()) { hash = (37 * hash) + EE_FIELD_NUMBER; hash = (53 * hash) + getEe().hashCode(); } hash = (37 * hash) + NEGATIVER12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getNegativeR12())); hash = (37 * hash) + NEGATIVER21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getNegativeR21())); hash = (37 * hash) + NEGATIVEX12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getNegativeX12())); hash = (37 * hash) + NEGATIVEX21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getNegativeX21())); hash = (37 * hash) + POSITIVER12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getPositiveR12())); hash = (37 * hash) + POSITIVER21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getPositiveR21())); hash = (37 * hash) + POSITIVEX12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getPositiveX12())); hash = (37 * hash) + POSITIVEX21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getPositiveX21())); hash = (37 * hash) + R_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getR())); hash = (37 * hash) + R21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getR21())); hash = (37 * hash) + X_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getX())); hash = (37 * hash) + X21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getX21())); hash = (37 * hash) + ZEROR12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getZeroR12())); hash = (37 * hash) + ZEROR21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getZeroR21())); hash = (37 * hash) + ZEROX12_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getZeroX12())); hash = (37 * hash) + ZEROX21_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getZeroX21())); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   **
   * The class represents equivalent branches. In cases where a transformer phase shift is modelled and the EquivalentBranch is spanning
   * the same nodes, the impedance quantities for the EquivalentBranch shall consider the needed phase shift.
   * 
* * Protobuf type {@code zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_fieldAccessorTable .ensureFieldAccessorsInitialized( com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.class, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.Builder.class); } // Construct using com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getEeFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; ee_ = null; if (eeBuilder_ != null) { eeBuilder_.dispose(); eeBuilder_ = null; } negativeR12_ = 0D; negativeR21_ = 0D; negativeX12_ = 0D; negativeX21_ = 0D; positiveR12_ = 0D; positiveR21_ = 0D; positiveX12_ = 0D; positiveX21_ = 0D; r_ = 0D; r21_ = 0D; x_ = 0D; x21_ = 0D; zeroR12_ = 0D; zeroR21_ = 0D; zeroX12_ = 0D; zeroX21_ = 0D; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstanceForType() { return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.getDefaultInstance(); } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch build() { com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch buildPartial() { com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result = new com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.ee_ = eeBuilder_ == null ? ee_ : eeBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.negativeR12_ = negativeR12_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.negativeR21_ = negativeR21_; } if (((from_bitField0_ & 0x00000008) != 0)) { result.negativeX12_ = negativeX12_; } if (((from_bitField0_ & 0x00000010) != 0)) { result.negativeX21_ = negativeX21_; } if (((from_bitField0_ & 0x00000020) != 0)) { result.positiveR12_ = positiveR12_; } if (((from_bitField0_ & 0x00000040) != 0)) { result.positiveR21_ = positiveR21_; } if (((from_bitField0_ & 0x00000080) != 0)) { result.positiveX12_ = positiveX12_; } if (((from_bitField0_ & 0x00000100) != 0)) { result.positiveX21_ = positiveX21_; } if (((from_bitField0_ & 0x00000200) != 0)) { result.r_ = r_; } if (((from_bitField0_ & 0x00000400) != 0)) { result.r21_ = r21_; } if (((from_bitField0_ & 0x00000800) != 0)) { result.x_ = x_; } if (((from_bitField0_ & 0x00001000) != 0)) { result.x21_ = x21_; } if (((from_bitField0_ & 0x00002000) != 0)) { result.zeroR12_ = zeroR12_; } if (((from_bitField0_ & 0x00004000) != 0)) { result.zeroR21_ = zeroR21_; } if (((from_bitField0_ & 0x00008000) != 0)) { result.zeroX12_ = zeroX12_; } if (((from_bitField0_ & 0x00010000) != 0)) { result.zeroX21_ = zeroX21_; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) { return mergeFrom((com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch other) { if (other == com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.getDefaultInstance()) return this; if (other.hasEe()) { mergeEe(other.getEe()); } if (other.getNegativeR12() != 0D) { setNegativeR12(other.getNegativeR12()); } if (other.getNegativeR21() != 0D) { setNegativeR21(other.getNegativeR21()); } if (other.getNegativeX12() != 0D) { setNegativeX12(other.getNegativeX12()); } if (other.getNegativeX21() != 0D) { setNegativeX21(other.getNegativeX21()); } if (other.getPositiveR12() != 0D) { setPositiveR12(other.getPositiveR12()); } if (other.getPositiveR21() != 0D) { setPositiveR21(other.getPositiveR21()); } if (other.getPositiveX12() != 0D) { setPositiveX12(other.getPositiveX12()); } if (other.getPositiveX21() != 0D) { setPositiveX21(other.getPositiveX21()); } if (other.getR() != 0D) { setR(other.getR()); } if (other.getR21() != 0D) { setR21(other.getR21()); } if (other.getX() != 0D) { setX(other.getX()); } if (other.getX21() != 0D) { setX21(other.getX21()); } if (other.getZeroR12() != 0D) { setZeroR12(other.getZeroR12()); } if (other.getZeroR21() != 0D) { setZeroR21(other.getZeroR21()); } if (other.getZeroX12() != 0D) { setZeroX12(other.getZeroX12()); } if (other.getZeroX21() != 0D) { setZeroX21(other.getZeroX21()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getEeFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 case 17: { negativeR12_ = input.readDouble(); bitField0_ |= 0x00000002; break; } // case 17 case 25: { negativeR21_ = input.readDouble(); bitField0_ |= 0x00000004; break; } // case 25 case 33: { negativeX12_ = input.readDouble(); bitField0_ |= 0x00000008; break; } // case 33 case 41: { negativeX21_ = input.readDouble(); bitField0_ |= 0x00000010; break; } // case 41 case 49: { positiveR12_ = input.readDouble(); bitField0_ |= 0x00000020; break; } // case 49 case 57: { positiveR21_ = input.readDouble(); bitField0_ |= 0x00000040; break; } // case 57 case 65: { positiveX12_ = input.readDouble(); bitField0_ |= 0x00000080; break; } // case 65 case 73: { positiveX21_ = input.readDouble(); bitField0_ |= 0x00000100; break; } // case 73 case 81: { r_ = input.readDouble(); bitField0_ |= 0x00000200; break; } // case 81 case 89: { r21_ = input.readDouble(); bitField0_ |= 0x00000400; break; } // case 89 case 97: { x_ = input.readDouble(); bitField0_ |= 0x00000800; break; } // case 97 case 105: { x21_ = input.readDouble(); bitField0_ |= 0x00001000; break; } // case 105 case 113: { zeroR12_ = input.readDouble(); bitField0_ |= 0x00002000; break; } // case 113 case 121: { zeroR21_ = input.readDouble(); bitField0_ |= 0x00004000; break; } // case 121 case 129: { zeroX12_ = input.readDouble(); bitField0_ |= 0x00008000; break; } // case 129 case 137: { zeroX21_ = input.readDouble(); bitField0_ |= 0x00010000; break; } // case 137 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee_; private com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder> eeBuilder_; /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; * @return Whether the ee field is set. */ public boolean hasEe() { return ((bitField0_ & 0x00000001) != 0); } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; * @return The ee. */ public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment getEe() { if (eeBuilder_ == null) { return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_; } else { return eeBuilder_.getMessage(); } } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public Builder setEe(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment value) { if (eeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ee_ = value; } else { eeBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public Builder setEe( com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder builderForValue) { if (eeBuilder_ == null) { ee_ = builderForValue.build(); } else { eeBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public Builder mergeEe(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment value) { if (eeBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && ee_ != null && ee_ != com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance()) { getEeBuilder().mergeFrom(value); } else { ee_ = value; } } else { eeBuilder_.mergeFrom(value); } if (ee_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public Builder clearEe() { bitField0_ = (bitField0_ & ~0x00000001); ee_ = null; if (eeBuilder_ != null) { eeBuilder_.dispose(); eeBuilder_ = null; } onChanged(); return this; } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder getEeBuilder() { bitField0_ |= 0x00000001; onChanged(); return getEeFieldBuilder().getBuilder(); } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder getEeOrBuilder() { if (eeBuilder_ != null) { return eeBuilder_.getMessageOrBuilder(); } else { return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_; } } /** *
     **
     * EquivalentEquipment fields for this EquivalentBranch.
     * 
* * .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder> getEeFieldBuilder() { if (eeBuilder_ == null) { eeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder>( getEe(), getParentForChildren(), isClean()); ee_ = null; } return eeBuilder_; } private double negativeR12_ ; /** *
     *
     * Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR12 = 2; * @return The negativeR12. */ @java.lang.Override public double getNegativeR12() { return negativeR12_; } /** *
     *
     * Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR12 = 2; * @param value The negativeR12 to set. * @return This builder for chaining. */ public Builder setNegativeR12(double value) { negativeR12_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
     *
     * Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR12 = 2; * @return This builder for chaining. */ public Builder clearNegativeR12() { bitField0_ = (bitField0_ & ~0x00000002); negativeR12_ = 0D; onChanged(); return this; } private double negativeR21_ ; /** *
     *
     * Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR21 = 3; * @return The negativeR21. */ @java.lang.Override public double getNegativeR21() { return negativeR21_; } /** *
     *
     * Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR21 = 3; * @param value The negativeR21 to set. * @return This builder for chaining. */ public Builder setNegativeR21(double value) { negativeR21_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
     *
     * Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeR21 = 3; * @return This builder for chaining. */ public Builder clearNegativeR21() { bitField0_ = (bitField0_ & ~0x00000004); negativeR21_ = 0D; onChanged(); return this; } private double negativeX12_ ; /** *
     *
     * Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX12 = 4; * @return The negativeX12. */ @java.lang.Override public double getNegativeX12() { return negativeX12_; } /** *
     *
     * Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX12 = 4; * @param value The negativeX12 to set. * @return This builder for chaining. */ public Builder setNegativeX12(double value) { negativeX12_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** *
     *
     * Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX12 = 4; * @return This builder for chaining. */ public Builder clearNegativeX12() { bitField0_ = (bitField0_ & ~0x00000008); negativeX12_ = 0D; onChanged(); return this; } private double negativeX21_ ; /** *
     *
     * Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX21 = 5; * @return The negativeX21. */ @java.lang.Override public double getNegativeX21() { return negativeX21_; } /** *
     *
     * Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX21 = 5; * @param value The negativeX21 to set. * @return This builder for chaining. */ public Builder setNegativeX21(double value) { negativeX21_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
     *
     * Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double negativeX21 = 5; * @return This builder for chaining. */ public Builder clearNegativeX21() { bitField0_ = (bitField0_ & ~0x00000010); negativeX21_ = 0D; onChanged(); return this; } private double positiveR12_ ; /** *
     *
     * Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR12 = 6; * @return The positiveR12. */ @java.lang.Override public double getPositiveR12() { return positiveR12_; } /** *
     *
     * Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR12 = 6; * @param value The positiveR12 to set. * @return This builder for chaining. */ public Builder setPositiveR12(double value) { positiveR12_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** *
     *
     * Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR12 = 6; * @return This builder for chaining. */ public Builder clearPositiveR12() { bitField0_ = (bitField0_ & ~0x00000020); positiveR12_ = 0D; onChanged(); return this; } private double positiveR21_ ; /** *
     *
     * Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR21 = 7; * @return The positiveR21. */ @java.lang.Override public double getPositiveR21() { return positiveR21_; } /** *
     *
     * Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR21 = 7; * @param value The positiveR21 to set. * @return This builder for chaining. */ public Builder setPositiveR21(double value) { positiveR21_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
     *
     * Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveR21 = 7; * @return This builder for chaining. */ public Builder clearPositiveR21() { bitField0_ = (bitField0_ & ~0x00000040); positiveR21_ = 0D; onChanged(); return this; } private double positiveX12_ ; /** *
     *
     * Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX12 = 8; * @return The positiveX12. */ @java.lang.Override public double getPositiveX12() { return positiveX12_; } /** *
     *
     * Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX12 = 8; * @param value The positiveX12 to set. * @return This builder for chaining. */ public Builder setPositiveX12(double value) { positiveX12_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } /** *
     *
     * Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX12 = 8; * @return This builder for chaining. */ public Builder clearPositiveX12() { bitField0_ = (bitField0_ & ~0x00000080); positiveX12_ = 0D; onChanged(); return this; } private double positiveX21_ ; /** *
     *
     * Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX21 = 9; * @return The positiveX21. */ @java.lang.Override public double getPositiveX21() { return positiveX21_; } /** *
     *
     * Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX21 = 9; * @param value The positiveX21 to set. * @return This builder for chaining. */ public Builder setPositiveX21(double value) { positiveX21_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     *
     * Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
     * to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double positiveX21 = 9; * @return This builder for chaining. */ public Builder clearPositiveX21() { bitField0_ = (bitField0_ & ~0x00000100); positiveX21_ = 0D; onChanged(); return this; } private double r_ ; /** *
     *
     * Positive sequence series resistance of the reduced branch.
     * 
* * double r = 10; * @return The r. */ @java.lang.Override public double getR() { return r_; } /** *
     *
     * Positive sequence series resistance of the reduced branch.
     * 
* * double r = 10; * @param value The r to set. * @return This builder for chaining. */ public Builder setR(double value) { r_ = value; bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     *
     * Positive sequence series resistance of the reduced branch.
     * 
* * double r = 10; * @return This builder for chaining. */ public Builder clearR() { bitField0_ = (bitField0_ & ~0x00000200); r_ = 0D; onChanged(); return this; } private double r21_ ; /** *
     *
     * Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
     * unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
     * to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double r21 = 11; * @return The r21. */ @java.lang.Override public double getR21() { return r21_; } /** *
     *
     * Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
     * unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
     * to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double r21 = 11; * @param value The r21 to set. * @return This builder for chaining. */ public Builder setR21(double value) { r21_ = value; bitField0_ |= 0x00000400; onChanged(); return this; } /** *
     *
     * Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
     * unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
     * to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double r21 = 11; * @return This builder for chaining. */ public Builder clearR21() { bitField0_ = (bitField0_ & ~0x00000400); r21_ = 0D; onChanged(); return this; } private double x_ ; /** *
     *
     * Positive sequence series reactance of the reduced branch.
     * 
* * double x = 12; * @return The x. */ @java.lang.Override public double getX() { return x_; } /** *
     *
     * Positive sequence series reactance of the reduced branch.
     * 
* * double x = 12; * @param value The x to set. * @return This builder for chaining. */ public Builder setX(double value) { x_ = value; bitField0_ |= 0x00000800; onChanged(); return this; } /** *
     *
     * Positive sequence series reactance of the reduced branch.
     * 
* * double x = 12; * @return This builder for chaining. */ public Builder clearX() { bitField0_ = (bitField0_ & ~0x00000800); x_ = 0D; onChanged(); return this; } private double x21_ ; /** *
     *
     * Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
     * an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
     * equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double x21 = 13; * @return The x21. */ @java.lang.Override public double getX21() { return x21_; } /** *
     *
     * Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
     * an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
     * equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double x21 = 13; * @param value The x21 to set. * @return This builder for chaining. */ public Builder setX21(double value) { x21_ = value; bitField0_ |= 0x00001000; onChanged(); return this; } /** *
     *
     * Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
     * an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
     * equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double x21 = 13; * @return This builder for chaining. */ public Builder clearX21() { bitField0_ = (bitField0_ & ~0x00001000); x21_ = 0D; onChanged(); return this; } private double zeroR12_ ; /** *
     *
     * Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR12 = 14; * @return The zeroR12. */ @java.lang.Override public double getZeroR12() { return zeroR12_; } /** *
     *
     * Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR12 = 14; * @param value The zeroR12 to set. * @return This builder for chaining. */ public Builder setZeroR12(double value) { zeroR12_ = value; bitField0_ |= 0x00002000; onChanged(); return this; } /** *
     *
     * Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR12 = 14; * @return This builder for chaining. */ public Builder clearZeroR12() { bitField0_ = (bitField0_ & ~0x00002000); zeroR12_ = 0D; onChanged(); return this; } private double zeroR21_ ; /** *
     *
     * Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR21 = 15; * @return The zeroR21. */ @java.lang.Override public double getZeroR21() { return zeroR21_; } /** *
     *
     * Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR21 = 15; * @param value The zeroR21 to set. * @return This builder for chaining. */ public Builder setZeroR21(double value) { zeroR21_ = value; bitField0_ |= 0x00004000; onChanged(); return this; } /** *
     *
     * Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroR21 = 15; * @return This builder for chaining. */ public Builder clearZeroR21() { bitField0_ = (bitField0_ & ~0x00004000); zeroR21_ = 0D; onChanged(); return this; } private double zeroX12_ ; /** *
     *
     * Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX12 = 16; * @return The zeroX12. */ @java.lang.Override public double getZeroX12() { return zeroX12_; } /** *
     *
     * Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX12 = 16; * @param value The zeroX12 to set. * @return This builder for chaining. */ public Builder setZeroX12(double value) { zeroX12_ = value; bitField0_ |= 0x00008000; onChanged(); return this; } /** *
     *
     * Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX12 = 16; * @return This builder for chaining. */ public Builder clearZeroX12() { bitField0_ = (bitField0_ & ~0x00008000); zeroX12_ = 0D; onChanged(); return this; } private double zeroX21_ ; /** *
     *
     * Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX21 = 17; * @return The zeroX21. */ @java.lang.Override public double getZeroX21() { return zeroX21_; } /** *
     *
     * Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX21 = 17; * @param value The zeroX21 to set. * @return This builder for chaining. */ public Builder setZeroX21(double value) { zeroX21_ = value; bitField0_ |= 0x00010000; onChanged(); return this; } /** *
     *
     * Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
     * IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
     * 
* * double zeroX21 = 17; * @return This builder for chaining. */ public Builder clearZeroX21() { bitField0_ = (bitField0_ & ~0x00010000); zeroX21_ = 0D; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) } // @@protoc_insertion_point(class_scope:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) private static final com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch(); } public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public EquivalentBranch parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy