com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of evolve-grpc Show documentation
Show all versions of evolve-grpc Show documentation
Protobuf and gRPC definitions for the evolve platform
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: zepben/protobuf/cim/iec61970/base/equivalents/EquivalentBranch.proto
package com.zepben.protobuf.cim.iec61970.base.equivalents;
/**
*
**
* The class represents equivalent branches. In cases where a transformer phase shift is modelled and the EquivalentBranch is spanning
* the same nodes, the impedance quantities for the EquivalentBranch shall consider the needed phase shift.
*
*
* Protobuf type {@code zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch}
*/
public final class EquivalentBranch extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)
EquivalentBranchOrBuilder {
private static final long serialVersionUID = 0L;
// Use EquivalentBranch.newBuilder() to construct.
private EquivalentBranch(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private EquivalentBranch() {
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new EquivalentBranch();
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.class, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.Builder.class);
}
private int bitField0_;
public static final int EE_FIELD_NUMBER = 1;
private com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee_;
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
* @return Whether the ee field is set.
*/
@java.lang.Override
public boolean hasEe() {
return ((bitField0_ & 0x00000001) != 0);
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
* @return The ee.
*/
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment getEe() {
return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_;
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder getEeOrBuilder() {
return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_;
}
public static final int NEGATIVER12_FIELD_NUMBER = 2;
private double negativeR12_ = 0D;
/**
*
*
* Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR12 = 2;
* @return The negativeR12.
*/
@java.lang.Override
public double getNegativeR12() {
return negativeR12_;
}
public static final int NEGATIVER21_FIELD_NUMBER = 3;
private double negativeR21_ = 0D;
/**
*
*
* Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR21 = 3;
* @return The negativeR21.
*/
@java.lang.Override
public double getNegativeR21() {
return negativeR21_;
}
public static final int NEGATIVEX12_FIELD_NUMBER = 4;
private double negativeX12_ = 0D;
/**
*
*
* Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX12 = 4;
* @return The negativeX12.
*/
@java.lang.Override
public double getNegativeX12() {
return negativeX12_;
}
public static final int NEGATIVEX21_FIELD_NUMBER = 5;
private double negativeX21_ = 0D;
/**
*
*
* Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX21 = 5;
* @return The negativeX21.
*/
@java.lang.Override
public double getNegativeX21() {
return negativeX21_;
}
public static final int POSITIVER12_FIELD_NUMBER = 6;
private double positiveR12_ = 0D;
/**
*
*
* Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR12 = 6;
* @return The positiveR12.
*/
@java.lang.Override
public double getPositiveR12() {
return positiveR12_;
}
public static final int POSITIVER21_FIELD_NUMBER = 7;
private double positiveR21_ = 0D;
/**
*
*
* Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR21 = 7;
* @return The positiveR21.
*/
@java.lang.Override
public double getPositiveR21() {
return positiveR21_;
}
public static final int POSITIVEX12_FIELD_NUMBER = 8;
private double positiveX12_ = 0D;
/**
*
*
* Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX12 = 8;
* @return The positiveX12.
*/
@java.lang.Override
public double getPositiveX12() {
return positiveX12_;
}
public static final int POSITIVEX21_FIELD_NUMBER = 9;
private double positiveX21_ = 0D;
/**
*
*
* Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX21 = 9;
* @return The positiveX21.
*/
@java.lang.Override
public double getPositiveX21() {
return positiveX21_;
}
public static final int R_FIELD_NUMBER = 10;
private double r_ = 0D;
/**
*
*
* Positive sequence series resistance of the reduced branch.
*
*
* double r = 10;
* @return The r.
*/
@java.lang.Override
public double getR() {
return r_;
}
public static final int R21_FIELD_NUMBER = 11;
private double r21_ = 0D;
/**
*
*
* Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
* unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
* to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double r21 = 11;
* @return The r21.
*/
@java.lang.Override
public double getR21() {
return r21_;
}
public static final int X_FIELD_NUMBER = 12;
private double x_ = 0D;
/**
*
*
* Positive sequence series reactance of the reduced branch.
*
*
* double x = 12;
* @return The x.
*/
@java.lang.Override
public double getX() {
return x_;
}
public static final int X21_FIELD_NUMBER = 13;
private double x21_ = 0D;
/**
*
*
* Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
* an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
* equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double x21 = 13;
* @return The x21.
*/
@java.lang.Override
public double getX21() {
return x21_;
}
public static final int ZEROR12_FIELD_NUMBER = 14;
private double zeroR12_ = 0D;
/**
*
*
* Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR12 = 14;
* @return The zeroR12.
*/
@java.lang.Override
public double getZeroR12() {
return zeroR12_;
}
public static final int ZEROR21_FIELD_NUMBER = 15;
private double zeroR21_ = 0D;
/**
*
*
* Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR21 = 15;
* @return The zeroR21.
*/
@java.lang.Override
public double getZeroR21() {
return zeroR21_;
}
public static final int ZEROX12_FIELD_NUMBER = 16;
private double zeroX12_ = 0D;
/**
*
*
* Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX12 = 16;
* @return The zeroX12.
*/
@java.lang.Override
public double getZeroX12() {
return zeroX12_;
}
public static final int ZEROX21_FIELD_NUMBER = 17;
private double zeroX21_ = 0D;
/**
*
*
* Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX21 = 17;
* @return The zeroX21.
*/
@java.lang.Override
public double getZeroX21() {
return zeroX21_;
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (((bitField0_ & 0x00000001) != 0)) {
output.writeMessage(1, getEe());
}
if (java.lang.Double.doubleToRawLongBits(negativeR12_) != 0) {
output.writeDouble(2, negativeR12_);
}
if (java.lang.Double.doubleToRawLongBits(negativeR21_) != 0) {
output.writeDouble(3, negativeR21_);
}
if (java.lang.Double.doubleToRawLongBits(negativeX12_) != 0) {
output.writeDouble(4, negativeX12_);
}
if (java.lang.Double.doubleToRawLongBits(negativeX21_) != 0) {
output.writeDouble(5, negativeX21_);
}
if (java.lang.Double.doubleToRawLongBits(positiveR12_) != 0) {
output.writeDouble(6, positiveR12_);
}
if (java.lang.Double.doubleToRawLongBits(positiveR21_) != 0) {
output.writeDouble(7, positiveR21_);
}
if (java.lang.Double.doubleToRawLongBits(positiveX12_) != 0) {
output.writeDouble(8, positiveX12_);
}
if (java.lang.Double.doubleToRawLongBits(positiveX21_) != 0) {
output.writeDouble(9, positiveX21_);
}
if (java.lang.Double.doubleToRawLongBits(r_) != 0) {
output.writeDouble(10, r_);
}
if (java.lang.Double.doubleToRawLongBits(r21_) != 0) {
output.writeDouble(11, r21_);
}
if (java.lang.Double.doubleToRawLongBits(x_) != 0) {
output.writeDouble(12, x_);
}
if (java.lang.Double.doubleToRawLongBits(x21_) != 0) {
output.writeDouble(13, x21_);
}
if (java.lang.Double.doubleToRawLongBits(zeroR12_) != 0) {
output.writeDouble(14, zeroR12_);
}
if (java.lang.Double.doubleToRawLongBits(zeroR21_) != 0) {
output.writeDouble(15, zeroR21_);
}
if (java.lang.Double.doubleToRawLongBits(zeroX12_) != 0) {
output.writeDouble(16, zeroX12_);
}
if (java.lang.Double.doubleToRawLongBits(zeroX21_) != 0) {
output.writeDouble(17, zeroX21_);
}
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (((bitField0_ & 0x00000001) != 0)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(1, getEe());
}
if (java.lang.Double.doubleToRawLongBits(negativeR12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(2, negativeR12_);
}
if (java.lang.Double.doubleToRawLongBits(negativeR21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(3, negativeR21_);
}
if (java.lang.Double.doubleToRawLongBits(negativeX12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(4, negativeX12_);
}
if (java.lang.Double.doubleToRawLongBits(negativeX21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(5, negativeX21_);
}
if (java.lang.Double.doubleToRawLongBits(positiveR12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(6, positiveR12_);
}
if (java.lang.Double.doubleToRawLongBits(positiveR21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(7, positiveR21_);
}
if (java.lang.Double.doubleToRawLongBits(positiveX12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(8, positiveX12_);
}
if (java.lang.Double.doubleToRawLongBits(positiveX21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(9, positiveX21_);
}
if (java.lang.Double.doubleToRawLongBits(r_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(10, r_);
}
if (java.lang.Double.doubleToRawLongBits(r21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(11, r21_);
}
if (java.lang.Double.doubleToRawLongBits(x_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(12, x_);
}
if (java.lang.Double.doubleToRawLongBits(x21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(13, x21_);
}
if (java.lang.Double.doubleToRawLongBits(zeroR12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(14, zeroR12_);
}
if (java.lang.Double.doubleToRawLongBits(zeroR21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(15, zeroR21_);
}
if (java.lang.Double.doubleToRawLongBits(zeroX12_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(16, zeroX12_);
}
if (java.lang.Double.doubleToRawLongBits(zeroX21_) != 0) {
size += com.google.protobuf.CodedOutputStream
.computeDoubleSize(17, zeroX21_);
}
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)) {
return super.equals(obj);
}
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch other = (com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) obj;
if (hasEe() != other.hasEe()) return false;
if (hasEe()) {
if (!getEe()
.equals(other.getEe())) return false;
}
if (java.lang.Double.doubleToLongBits(getNegativeR12())
!= java.lang.Double.doubleToLongBits(
other.getNegativeR12())) return false;
if (java.lang.Double.doubleToLongBits(getNegativeR21())
!= java.lang.Double.doubleToLongBits(
other.getNegativeR21())) return false;
if (java.lang.Double.doubleToLongBits(getNegativeX12())
!= java.lang.Double.doubleToLongBits(
other.getNegativeX12())) return false;
if (java.lang.Double.doubleToLongBits(getNegativeX21())
!= java.lang.Double.doubleToLongBits(
other.getNegativeX21())) return false;
if (java.lang.Double.doubleToLongBits(getPositiveR12())
!= java.lang.Double.doubleToLongBits(
other.getPositiveR12())) return false;
if (java.lang.Double.doubleToLongBits(getPositiveR21())
!= java.lang.Double.doubleToLongBits(
other.getPositiveR21())) return false;
if (java.lang.Double.doubleToLongBits(getPositiveX12())
!= java.lang.Double.doubleToLongBits(
other.getPositiveX12())) return false;
if (java.lang.Double.doubleToLongBits(getPositiveX21())
!= java.lang.Double.doubleToLongBits(
other.getPositiveX21())) return false;
if (java.lang.Double.doubleToLongBits(getR())
!= java.lang.Double.doubleToLongBits(
other.getR())) return false;
if (java.lang.Double.doubleToLongBits(getR21())
!= java.lang.Double.doubleToLongBits(
other.getR21())) return false;
if (java.lang.Double.doubleToLongBits(getX())
!= java.lang.Double.doubleToLongBits(
other.getX())) return false;
if (java.lang.Double.doubleToLongBits(getX21())
!= java.lang.Double.doubleToLongBits(
other.getX21())) return false;
if (java.lang.Double.doubleToLongBits(getZeroR12())
!= java.lang.Double.doubleToLongBits(
other.getZeroR12())) return false;
if (java.lang.Double.doubleToLongBits(getZeroR21())
!= java.lang.Double.doubleToLongBits(
other.getZeroR21())) return false;
if (java.lang.Double.doubleToLongBits(getZeroX12())
!= java.lang.Double.doubleToLongBits(
other.getZeroX12())) return false;
if (java.lang.Double.doubleToLongBits(getZeroX21())
!= java.lang.Double.doubleToLongBits(
other.getZeroX21())) return false;
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
if (hasEe()) {
hash = (37 * hash) + EE_FIELD_NUMBER;
hash = (53 * hash) + getEe().hashCode();
}
hash = (37 * hash) + NEGATIVER12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getNegativeR12()));
hash = (37 * hash) + NEGATIVER21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getNegativeR21()));
hash = (37 * hash) + NEGATIVEX12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getNegativeX12()));
hash = (37 * hash) + NEGATIVEX21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getNegativeX21()));
hash = (37 * hash) + POSITIVER12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getPositiveR12()));
hash = (37 * hash) + POSITIVER21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getPositiveR21()));
hash = (37 * hash) + POSITIVEX12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getPositiveX12()));
hash = (37 * hash) + POSITIVEX21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getPositiveX21()));
hash = (37 * hash) + R_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getR()));
hash = (37 * hash) + R21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getR21()));
hash = (37 * hash) + X_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getX()));
hash = (37 * hash) + X21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getX21()));
hash = (37 * hash) + ZEROR12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getZeroR12()));
hash = (37 * hash) + ZEROR21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getZeroR21()));
hash = (37 * hash) + ZEROX12_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getZeroX12()));
hash = (37 * hash) + ZEROX21_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashLong(
java.lang.Double.doubleToLongBits(getZeroX21()));
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
**
* The class represents equivalent branches. In cases where a transformer phase shift is modelled and the EquivalentBranch is spanning
* the same nodes, the impedance quantities for the EquivalentBranch shall consider the needed phase shift.
*
*
* Protobuf type {@code zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.class, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.Builder.class);
}
// Construct using com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (com.google.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
getEeFieldBuilder();
}
}
@java.lang.Override
public Builder clear() {
super.clear();
bitField0_ = 0;
ee_ = null;
if (eeBuilder_ != null) {
eeBuilder_.dispose();
eeBuilder_ = null;
}
negativeR12_ = 0D;
negativeR21_ = 0D;
negativeX12_ = 0D;
negativeX21_ = 0D;
positiveR12_ = 0D;
positiveR21_ = 0D;
positiveX12_ = 0D;
positiveX21_ = 0D;
r_ = 0D;
r21_ = 0D;
x_ = 0D;
x21_ = 0D;
zeroR12_ = 0D;
zeroR21_ = 0D;
zeroX12_ = 0D;
zeroX21_ = 0D;
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranchOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_equivalents_EquivalentBranch_descriptor;
}
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstanceForType() {
return com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.getDefaultInstance();
}
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch build() {
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch buildPartial() {
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result = new com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch(this);
if (bitField0_ != 0) { buildPartial0(result); }
onBuilt();
return result;
}
private void buildPartial0(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch result) {
int from_bitField0_ = bitField0_;
int to_bitField0_ = 0;
if (((from_bitField0_ & 0x00000001) != 0)) {
result.ee_ = eeBuilder_ == null
? ee_
: eeBuilder_.build();
to_bitField0_ |= 0x00000001;
}
if (((from_bitField0_ & 0x00000002) != 0)) {
result.negativeR12_ = negativeR12_;
}
if (((from_bitField0_ & 0x00000004) != 0)) {
result.negativeR21_ = negativeR21_;
}
if (((from_bitField0_ & 0x00000008) != 0)) {
result.negativeX12_ = negativeX12_;
}
if (((from_bitField0_ & 0x00000010) != 0)) {
result.negativeX21_ = negativeX21_;
}
if (((from_bitField0_ & 0x00000020) != 0)) {
result.positiveR12_ = positiveR12_;
}
if (((from_bitField0_ & 0x00000040) != 0)) {
result.positiveR21_ = positiveR21_;
}
if (((from_bitField0_ & 0x00000080) != 0)) {
result.positiveX12_ = positiveX12_;
}
if (((from_bitField0_ & 0x00000100) != 0)) {
result.positiveX21_ = positiveX21_;
}
if (((from_bitField0_ & 0x00000200) != 0)) {
result.r_ = r_;
}
if (((from_bitField0_ & 0x00000400) != 0)) {
result.r21_ = r21_;
}
if (((from_bitField0_ & 0x00000800) != 0)) {
result.x_ = x_;
}
if (((from_bitField0_ & 0x00001000) != 0)) {
result.x21_ = x21_;
}
if (((from_bitField0_ & 0x00002000) != 0)) {
result.zeroR12_ = zeroR12_;
}
if (((from_bitField0_ & 0x00004000) != 0)) {
result.zeroR21_ = zeroR21_;
}
if (((from_bitField0_ & 0x00008000) != 0)) {
result.zeroX12_ = zeroX12_;
}
if (((from_bitField0_ & 0x00010000) != 0)) {
result.zeroX21_ = zeroX21_;
}
result.bitField0_ |= to_bitField0_;
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch) {
return mergeFrom((com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch other) {
if (other == com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch.getDefaultInstance()) return this;
if (other.hasEe()) {
mergeEe(other.getEe());
}
if (other.getNegativeR12() != 0D) {
setNegativeR12(other.getNegativeR12());
}
if (other.getNegativeR21() != 0D) {
setNegativeR21(other.getNegativeR21());
}
if (other.getNegativeX12() != 0D) {
setNegativeX12(other.getNegativeX12());
}
if (other.getNegativeX21() != 0D) {
setNegativeX21(other.getNegativeX21());
}
if (other.getPositiveR12() != 0D) {
setPositiveR12(other.getPositiveR12());
}
if (other.getPositiveR21() != 0D) {
setPositiveR21(other.getPositiveR21());
}
if (other.getPositiveX12() != 0D) {
setPositiveX12(other.getPositiveX12());
}
if (other.getPositiveX21() != 0D) {
setPositiveX21(other.getPositiveX21());
}
if (other.getR() != 0D) {
setR(other.getR());
}
if (other.getR21() != 0D) {
setR21(other.getR21());
}
if (other.getX() != 0D) {
setX(other.getX());
}
if (other.getX21() != 0D) {
setX21(other.getX21());
}
if (other.getZeroR12() != 0D) {
setZeroR12(other.getZeroR12());
}
if (other.getZeroR21() != 0D) {
setZeroR21(other.getZeroR21());
}
if (other.getZeroX12() != 0D) {
setZeroX12(other.getZeroX12());
}
if (other.getZeroX21() != 0D) {
setZeroX21(other.getZeroX21());
}
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 10: {
input.readMessage(
getEeFieldBuilder().getBuilder(),
extensionRegistry);
bitField0_ |= 0x00000001;
break;
} // case 10
case 17: {
negativeR12_ = input.readDouble();
bitField0_ |= 0x00000002;
break;
} // case 17
case 25: {
negativeR21_ = input.readDouble();
bitField0_ |= 0x00000004;
break;
} // case 25
case 33: {
negativeX12_ = input.readDouble();
bitField0_ |= 0x00000008;
break;
} // case 33
case 41: {
negativeX21_ = input.readDouble();
bitField0_ |= 0x00000010;
break;
} // case 41
case 49: {
positiveR12_ = input.readDouble();
bitField0_ |= 0x00000020;
break;
} // case 49
case 57: {
positiveR21_ = input.readDouble();
bitField0_ |= 0x00000040;
break;
} // case 57
case 65: {
positiveX12_ = input.readDouble();
bitField0_ |= 0x00000080;
break;
} // case 65
case 73: {
positiveX21_ = input.readDouble();
bitField0_ |= 0x00000100;
break;
} // case 73
case 81: {
r_ = input.readDouble();
bitField0_ |= 0x00000200;
break;
} // case 81
case 89: {
r21_ = input.readDouble();
bitField0_ |= 0x00000400;
break;
} // case 89
case 97: {
x_ = input.readDouble();
bitField0_ |= 0x00000800;
break;
} // case 97
case 105: {
x21_ = input.readDouble();
bitField0_ |= 0x00001000;
break;
} // case 105
case 113: {
zeroR12_ = input.readDouble();
bitField0_ |= 0x00002000;
break;
} // case 113
case 121: {
zeroR21_ = input.readDouble();
bitField0_ |= 0x00004000;
break;
} // case 121
case 129: {
zeroX12_ = input.readDouble();
bitField0_ |= 0x00008000;
break;
} // case 129
case 137: {
zeroX21_ = input.readDouble();
bitField0_ |= 0x00010000;
break;
} // case 137
default: {
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
private int bitField0_;
private com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee_;
private com.google.protobuf.SingleFieldBuilderV3<
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder> eeBuilder_;
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
* @return Whether the ee field is set.
*/
public boolean hasEe() {
return ((bitField0_ & 0x00000001) != 0);
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
* @return The ee.
*/
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment getEe() {
if (eeBuilder_ == null) {
return ee_ == null ? com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_;
} else {
return eeBuilder_.getMessage();
}
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public Builder setEe(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment value) {
if (eeBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ee_ = value;
} else {
eeBuilder_.setMessage(value);
}
bitField0_ |= 0x00000001;
onChanged();
return this;
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public Builder setEe(
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder builderForValue) {
if (eeBuilder_ == null) {
ee_ = builderForValue.build();
} else {
eeBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000001;
onChanged();
return this;
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public Builder mergeEe(com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment value) {
if (eeBuilder_ == null) {
if (((bitField0_ & 0x00000001) != 0) &&
ee_ != null &&
ee_ != com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance()) {
getEeBuilder().mergeFrom(value);
} else {
ee_ = value;
}
} else {
eeBuilder_.mergeFrom(value);
}
if (ee_ != null) {
bitField0_ |= 0x00000001;
onChanged();
}
return this;
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public Builder clearEe() {
bitField0_ = (bitField0_ & ~0x00000001);
ee_ = null;
if (eeBuilder_ != null) {
eeBuilder_.dispose();
eeBuilder_ = null;
}
onChanged();
return this;
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder getEeBuilder() {
bitField0_ |= 0x00000001;
onChanged();
return getEeFieldBuilder().getBuilder();
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder getEeOrBuilder() {
if (eeBuilder_ != null) {
return eeBuilder_.getMessageOrBuilder();
} else {
return ee_ == null ?
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.getDefaultInstance() : ee_;
}
}
/**
*
**
* EquivalentEquipment fields for this EquivalentBranch.
*
*
* .zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment ee = 1;
*/
private com.google.protobuf.SingleFieldBuilderV3<
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder>
getEeFieldBuilder() {
if (eeBuilder_ == null) {
eeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipment.Builder, com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentEquipmentOrBuilder>(
getEe(),
getParentForChildren(),
isClean());
ee_ = null;
}
return eeBuilder_;
}
private double negativeR12_ ;
/**
*
*
* Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR12 = 2;
* @return The negativeR12.
*/
@java.lang.Override
public double getNegativeR12() {
return negativeR12_;
}
/**
*
*
* Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR12 = 2;
* @param value The negativeR12 to set.
* @return This builder for chaining.
*/
public Builder setNegativeR12(double value) {
negativeR12_ = value;
bitField0_ |= 0x00000002;
onChanged();
return this;
}
/**
*
*
* Negative sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR12 = 2;
* @return This builder for chaining.
*/
public Builder clearNegativeR12() {
bitField0_ = (bitField0_ & ~0x00000002);
negativeR12_ = 0D;
onChanged();
return this;
}
private double negativeR21_ ;
/**
*
*
* Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR21 = 3;
* @return The negativeR21.
*/
@java.lang.Override
public double getNegativeR21() {
return negativeR21_;
}
/**
*
*
* Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR21 = 3;
* @param value The negativeR21 to set.
* @return This builder for chaining.
*/
public Builder setNegativeR21(double value) {
negativeR21_ = value;
bitField0_ |= 0x00000004;
onChanged();
return this;
}
/**
*
*
* Negative sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeR21 = 3;
* @return This builder for chaining.
*/
public Builder clearNegativeR21() {
bitField0_ = (bitField0_ & ~0x00000004);
negativeR21_ = 0D;
onChanged();
return this;
}
private double negativeX12_ ;
/**
*
*
* Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX12 = 4;
* @return The negativeX12.
*/
@java.lang.Override
public double getNegativeX12() {
return negativeX12_;
}
/**
*
*
* Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX12 = 4;
* @param value The negativeX12 to set.
* @return This builder for chaining.
*/
public Builder setNegativeX12(double value) {
negativeX12_ = value;
bitField0_ |= 0x00000008;
onChanged();
return this;
}
/**
*
*
* Negative sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX12 = 4;
* @return This builder for chaining.
*/
public Builder clearNegativeX12() {
bitField0_ = (bitField0_ & ~0x00000008);
negativeX12_ = 0D;
onChanged();
return this;
}
private double negativeX21_ ;
/**
*
*
* Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX21 = 5;
* @return The negativeX21.
*/
@java.lang.Override
public double getNegativeX21() {
return negativeX21_;
}
/**
*
*
* Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX21 = 5;
* @param value The negativeX21 to set.
* @return This builder for chaining.
*/
public Builder setNegativeX21(double value) {
negativeX21_ = value;
bitField0_ |= 0x00000010;
onChanged();
return this;
}
/**
*
*
* Negative sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double negativeX21 = 5;
* @return This builder for chaining.
*/
public Builder clearNegativeX21() {
bitField0_ = (bitField0_ & ~0x00000010);
negativeX21_ = 0D;
onChanged();
return this;
}
private double positiveR12_ ;
/**
*
*
* Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR12 = 6;
* @return The positiveR12.
*/
@java.lang.Override
public double getPositiveR12() {
return positiveR12_;
}
/**
*
*
* Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR12 = 6;
* @param value The positiveR12 to set.
* @return This builder for chaining.
*/
public Builder setPositiveR12(double value) {
positiveR12_ = value;
bitField0_ |= 0x00000020;
onChanged();
return this;
}
/**
*
*
* Positive sequence series resistance from terminal sequence 1 to terminal sequence 2 . Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR12 = 6;
* @return This builder for chaining.
*/
public Builder clearPositiveR12() {
bitField0_ = (bitField0_ & ~0x00000020);
positiveR12_ = 0D;
onChanged();
return this;
}
private double positiveR21_ ;
/**
*
*
* Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR21 = 7;
* @return The positiveR21.
*/
@java.lang.Override
public double getPositiveR21() {
return positiveR21_;
}
/**
*
*
* Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR21 = 7;
* @param value The positiveR21 to set.
* @return This builder for chaining.
*/
public Builder setPositiveR21(double value) {
positiveR21_ = value;
bitField0_ |= 0x00000040;
onChanged();
return this;
}
/**
*
*
* Positive sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveR21 = 7;
* @return This builder for chaining.
*/
public Builder clearPositiveR21() {
bitField0_ = (bitField0_ & ~0x00000040);
positiveR21_ = 0D;
onChanged();
return this;
}
private double positiveX12_ ;
/**
*
*
* Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX12 = 8;
* @return The positiveX12.
*/
@java.lang.Override
public double getPositiveX12() {
return positiveX12_;
}
/**
*
*
* Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX12 = 8;
* @param value The positiveX12 to set.
* @return This builder for chaining.
*/
public Builder setPositiveX12(double value) {
positiveX12_ = value;
bitField0_ |= 0x00000080;
onChanged();
return this;
}
/**
*
*
* Positive sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX12 = 8;
* @return This builder for chaining.
*/
public Builder clearPositiveX12() {
bitField0_ = (bitField0_ & ~0x00000080);
positiveX12_ = 0D;
onChanged();
return this;
}
private double positiveX21_ ;
/**
*
*
* Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX21 = 9;
* @return The positiveX21.
*/
@java.lang.Override
public double getPositiveX21() {
return positiveX21_;
}
/**
*
*
* Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX21 = 9;
* @param value The positiveX21 to set.
* @return This builder for chaining.
*/
public Builder setPositiveX21(double value) {
positiveX21_ = value;
bitField0_ |= 0x00000100;
onChanged();
return this;
}
/**
*
*
* Positive sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according
* to IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double positiveX21 = 9;
* @return This builder for chaining.
*/
public Builder clearPositiveX21() {
bitField0_ = (bitField0_ & ~0x00000100);
positiveX21_ = 0D;
onChanged();
return this;
}
private double r_ ;
/**
*
*
* Positive sequence series resistance of the reduced branch.
*
*
* double r = 10;
* @return The r.
*/
@java.lang.Override
public double getR() {
return r_;
}
/**
*
*
* Positive sequence series resistance of the reduced branch.
*
*
* double r = 10;
* @param value The r to set.
* @return This builder for chaining.
*/
public Builder setR(double value) {
r_ = value;
bitField0_ |= 0x00000200;
onChanged();
return this;
}
/**
*
*
* Positive sequence series resistance of the reduced branch.
*
*
* double r = 10;
* @return This builder for chaining.
*/
public Builder clearR() {
bitField0_ = (bitField0_ & ~0x00000200);
r_ = 0D;
onChanged();
return this;
}
private double r21_ ;
/**
*
*
* Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
* unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
* to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double r21 = 11;
* @return The r21.
*/
@java.lang.Override
public double getR21() {
return r21_;
}
/**
*
*
* Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
* unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
* to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double r21 = 11;
* @param value The r21 to set.
* @return This builder for chaining.
*/
public Builder setR21(double value) {
r21_ = value;
bitField0_ |= 0x00000400;
onChanged();
return this;
}
/**
*
*
* Resistance from terminal sequence 2 to terminal sequence 1 .Used for steady state power flow. This attribute is optional and represent
* unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.r is given, then EquivalentBranch.r21 is assumed equal
* to EquivalentBranch.r. Usage rule : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double r21 = 11;
* @return This builder for chaining.
*/
public Builder clearR21() {
bitField0_ = (bitField0_ & ~0x00000400);
r21_ = 0D;
onChanged();
return this;
}
private double x_ ;
/**
*
*
* Positive sequence series reactance of the reduced branch.
*
*
* double x = 12;
* @return The x.
*/
@java.lang.Override
public double getX() {
return x_;
}
/**
*
*
* Positive sequence series reactance of the reduced branch.
*
*
* double x = 12;
* @param value The x to set.
* @return This builder for chaining.
*/
public Builder setX(double value) {
x_ = value;
bitField0_ |= 0x00000800;
onChanged();
return this;
}
/**
*
*
* Positive sequence series reactance of the reduced branch.
*
*
* double x = 12;
* @return This builder for chaining.
*/
public Builder clearX() {
bitField0_ = (bitField0_ & ~0x00000800);
x_ = 0D;
onChanged();
return this;
}
private double x21_ ;
/**
*
*
* Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
* an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
* equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double x21 = 13;
* @return The x21.
*/
@java.lang.Override
public double getX21() {
return x21_;
}
/**
*
*
* Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
* an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
* equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double x21 = 13;
* @param value The x21 to set.
* @return This builder for chaining.
*/
public Builder setX21(double value) {
x21_ = value;
bitField0_ |= 0x00001000;
onChanged();
return this;
}
/**
*
*
* Reactance from terminal sequence 2 to terminal sequence 1. Used for steady state power flow. This attribute is optional and represents
* an unbalanced network such as off-nominal phase shifter. If only EquivalentBranch.x is given, then EquivalentBranch.x21 is assumed
* equal to EquivalentBranch.x. Usage rule: EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double x21 = 13;
* @return This builder for chaining.
*/
public Builder clearX21() {
bitField0_ = (bitField0_ & ~0x00001000);
x21_ = 0D;
onChanged();
return this;
}
private double zeroR12_ ;
/**
*
*
* Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR12 = 14;
* @return The zeroR12.
*/
@java.lang.Override
public double getZeroR12() {
return zeroR12_;
}
/**
*
*
* Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR12 = 14;
* @param value The zeroR12 to set.
* @return This builder for chaining.
*/
public Builder setZeroR12(double value) {
zeroR12_ = value;
bitField0_ |= 0x00002000;
onChanged();
return this;
}
/**
*
*
* Zero sequence series resistance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR12 = 14;
* @return This builder for chaining.
*/
public Builder clearZeroR12() {
bitField0_ = (bitField0_ & ~0x00002000);
zeroR12_ = 0D;
onChanged();
return this;
}
private double zeroR21_ ;
/**
*
*
* Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR21 = 15;
* @return The zeroR21.
*/
@java.lang.Override
public double getZeroR21() {
return zeroR21_;
}
/**
*
*
* Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR21 = 15;
* @param value The zeroR21 to set.
* @return This builder for chaining.
*/
public Builder setZeroR21(double value) {
zeroR21_ = value;
bitField0_ |= 0x00004000;
onChanged();
return this;
}
/**
*
*
* Zero sequence series resistance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroR21 = 15;
* @return This builder for chaining.
*/
public Builder clearZeroR21() {
bitField0_ = (bitField0_ & ~0x00004000);
zeroR21_ = 0D;
onChanged();
return this;
}
private double zeroX12_ ;
/**
*
*
* Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX12 = 16;
* @return The zeroX12.
*/
@java.lang.Override
public double getZeroX12() {
return zeroX12_;
}
/**
*
*
* Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX12 = 16;
* @param value The zeroX12 to set.
* @return This builder for chaining.
*/
public Builder setZeroX12(double value) {
zeroX12_ = value;
bitField0_ |= 0x00008000;
onChanged();
return this;
}
/**
*
*
* Zero sequence series reactance from terminal sequence 1 to terminal sequence 2. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX12 = 16;
* @return This builder for chaining.
*/
public Builder clearZeroX12() {
bitField0_ = (bitField0_ & ~0x00008000);
zeroX12_ = 0D;
onChanged();
return this;
}
private double zeroX21_ ;
/**
*
*
* Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX21 = 17;
* @return The zeroX21.
*/
@java.lang.Override
public double getZeroX21() {
return zeroX21_;
}
/**
*
*
* Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX21 = 17;
* @param value The zeroX21 to set.
* @return This builder for chaining.
*/
public Builder setZeroX21(double value) {
zeroX21_ = value;
bitField0_ |= 0x00010000;
onChanged();
return this;
}
/**
*
*
* Zero sequence series reactance from terminal sequence 2 to terminal sequence 1. Used for short circuit data exchange according to
* IEC 60909. Usage : EquivalentBranch is a result of network reduction prior to the data exchange.
*
*
* double zeroX21 = 17;
* @return This builder for chaining.
*/
public Builder clearZeroX21() {
bitField0_ = (bitField0_ & ~0x00010000);
zeroX21_ = 0D;
onChanged();
return this;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)
}
// @@protoc_insertion_point(class_scope:zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch)
private static final com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch();
}
public static com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public EquivalentBranch parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public com.zepben.protobuf.cim.iec61970.base.equivalents.EquivalentBranch getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}