All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection Maven / Gradle / Ivy

There is a newer version: 0.32.0-SNAPSHOT2
Show newest version
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: zepben/protobuf/cim/iec61970/base/wires/PowerElectronicsConnection.proto

package com.zepben.protobuf.cim.iec61970.base.wires;

/**
 * 
 **
 * A connection to the AC network for energy production or consumption that uses power electronics rather than
 * rotating machines.
 * 
* * Protobuf type {@code zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection} */ public final class PowerElectronicsConnection extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) PowerElectronicsConnectionOrBuilder { private static final long serialVersionUID = 0L; // Use PowerElectronicsConnection.newBuilder() to construct. private PowerElectronicsConnection(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private PowerElectronicsConnection() { powerElectronicsUnitMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); powerElectronicsConnectionPhaseMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); inverterStandard_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new PowerElectronicsConnection(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_wires_PowerElectronicsConnection_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_wires_PowerElectronicsConnection_fieldAccessorTable .ensureFieldAccessorsInitialized( com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.class, com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.Builder.class); } private int bitField0_; private int invVoltWattRespModeCase_ = 0; @SuppressWarnings("serial") private java.lang.Object invVoltWattRespMode_; public enum InvVoltWattRespModeCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { INVVOLTWATTRESPMODENULL(15), INVVOLTWATTRESPMODESET(16), INVVOLTWATTRESPMODE_NOT_SET(0); private final int value; private InvVoltWattRespModeCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static InvVoltWattRespModeCase valueOf(int value) { return forNumber(value); } public static InvVoltWattRespModeCase forNumber(int value) { switch (value) { case 15: return INVVOLTWATTRESPMODENULL; case 16: return INVVOLTWATTRESPMODESET; case 0: return INVVOLTWATTRESPMODE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public InvVoltWattRespModeCase getInvVoltWattRespModeCase() { return InvVoltWattRespModeCase.forNumber( invVoltWattRespModeCase_); } private int invVoltVarRespModeCase_ = 0; @SuppressWarnings("serial") private java.lang.Object invVoltVarRespMode_; public enum InvVoltVarRespModeCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { INVVOLTVARRESPMODENULL(25), INVVOLTVARRESPMODESET(26), INVVOLTVARRESPMODE_NOT_SET(0); private final int value; private InvVoltVarRespModeCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static InvVoltVarRespModeCase valueOf(int value) { return forNumber(value); } public static InvVoltVarRespModeCase forNumber(int value) { switch (value) { case 25: return INVVOLTVARRESPMODENULL; case 26: return INVVOLTVARRESPMODESET; case 0: return INVVOLTVARRESPMODE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public InvVoltVarRespModeCase getInvVoltVarRespModeCase() { return InvVoltVarRespModeCase.forNumber( invVoltVarRespModeCase_); } private int invReactivePowerModeCase_ = 0; @SuppressWarnings("serial") private java.lang.Object invReactivePowerMode_; public enum InvReactivePowerModeCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { INVREACTIVEPOWERMODENULL(35), INVREACTIVEPOWERMODESET(36), INVREACTIVEPOWERMODE_NOT_SET(0); private final int value; private InvReactivePowerModeCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static InvReactivePowerModeCase valueOf(int value) { return forNumber(value); } public static InvReactivePowerModeCase forNumber(int value) { switch (value) { case 35: return INVREACTIVEPOWERMODENULL; case 36: return INVREACTIVEPOWERMODESET; case 0: return INVREACTIVEPOWERMODE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public InvReactivePowerModeCase getInvReactivePowerModeCase() { return InvReactivePowerModeCase.forNumber( invReactivePowerModeCase_); } public static final int RCE_FIELD_NUMBER = 1; private com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce_; /** *
   **
   * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
   * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; * @return Whether the rce field is set. */ @java.lang.Override public boolean hasRce() { return ((bitField0_ & 0x00000001) != 0); } /** *
   **
   * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
   * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; * @return The rce. */ @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq getRce() { return rce_ == null ? com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.getDefaultInstance() : rce_; } /** *
   **
   * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
   * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEqOrBuilder getRceOrBuilder() { return rce_ == null ? com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.getDefaultInstance() : rce_; } public static final int MAXIFAULT_FIELD_NUMBER = 2; private int maxIFault_ = 0; /** *
   **
   * Maximum fault current this device will contribute, in per-unit of rated current, before the converter protection
   * will trip or bypass.
   * 
* * int32 maxIFault = 2; * @return The maxIFault. */ @java.lang.Override public int getMaxIFault() { return maxIFault_; } public static final int MAXQ_FIELD_NUMBER = 3; private double maxQ_ = 0D; /** *
   **
   * Maximum reactive power limit. This is the maximum (nameplate) limit for the unit.
   * 
* * double maxQ = 3; * @return The maxQ. */ @java.lang.Override public double getMaxQ() { return maxQ_; } public static final int MINQ_FIELD_NUMBER = 4; private double minQ_ = 0D; /** *
   **
   * Minimum reactive power limit for the unit. This is the minimum (nameplate) limit for the unit.
   * 
* * double minQ = 4; * @return The minQ. */ @java.lang.Override public double getMinQ() { return minQ_; } public static final int P_FIELD_NUMBER = 5; private double p_ = 0D; /** *
   **
   * Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
   * Starting value for a steady state solution.
   * 
* * double p = 5; * @return The p. */ @java.lang.Override public double getP() { return p_; } public static final int Q_FIELD_NUMBER = 6; private double q_ = 0D; /** *
   **
   * Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
   * Starting value for a steady state solution.
   * 
* * double q = 6; * @return The q. */ @java.lang.Override public double getQ() { return q_; } public static final int RATEDS_FIELD_NUMBER = 7; private int ratedS_ = 0; /** *
   **
   * Nameplate apparent power rating for the unit. The attribute shall have a positive value.
   * 
* * int32 ratedS = 7; * @return The ratedS. */ @java.lang.Override public int getRatedS() { return ratedS_; } public static final int RATEDU_FIELD_NUMBER = 8; private int ratedU_ = 0; /** *
   **
   * Rated voltage (nameplate data, Ur in IEC 60909-0). It is primarily used for short circuit data exchange according
   * to IEC 60909. The attribute shall be a positive value.
   * 
* * int32 ratedU = 8; * @return The ratedU. */ @java.lang.Override public int getRatedU() { return ratedU_; } public static final int POWERELECTRONICSUNITMRIDS_FIELD_NUMBER = 9; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList powerElectronicsUnitMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
   **
   * An AC network connection may have several power electronics units connecting through it.
   * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @return A list containing the powerElectronicsUnitMRIDs. */ public com.google.protobuf.ProtocolStringList getPowerElectronicsUnitMRIDsList() { return powerElectronicsUnitMRIDs_; } /** *
   **
   * An AC network connection may have several power electronics units connecting through it.
   * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @return The count of powerElectronicsUnitMRIDs. */ public int getPowerElectronicsUnitMRIDsCount() { return powerElectronicsUnitMRIDs_.size(); } /** *
   **
   * An AC network connection may have several power electronics units connecting through it.
   * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param index The index of the element to return. * @return The powerElectronicsUnitMRIDs at the given index. */ public java.lang.String getPowerElectronicsUnitMRIDs(int index) { return powerElectronicsUnitMRIDs_.get(index); } /** *
   **
   * An AC network connection may have several power electronics units connecting through it.
   * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param index The index of the value to return. * @return The bytes of the powerElectronicsUnitMRIDs at the given index. */ public com.google.protobuf.ByteString getPowerElectronicsUnitMRIDsBytes(int index) { return powerElectronicsUnitMRIDs_.getByteString(index); } public static final int POWERELECTRONICSCONNECTIONPHASEMRIDS_FIELD_NUMBER = 10; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList powerElectronicsConnectionPhaseMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
   **
   * The individual phases models for the power electronics connection.
   * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @return A list containing the powerElectronicsConnectionPhaseMRIDs. */ public com.google.protobuf.ProtocolStringList getPowerElectronicsConnectionPhaseMRIDsList() { return powerElectronicsConnectionPhaseMRIDs_; } /** *
   **
   * The individual phases models for the power electronics connection.
   * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @return The count of powerElectronicsConnectionPhaseMRIDs. */ public int getPowerElectronicsConnectionPhaseMRIDsCount() { return powerElectronicsConnectionPhaseMRIDs_.size(); } /** *
   **
   * The individual phases models for the power electronics connection.
   * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param index The index of the element to return. * @return The powerElectronicsConnectionPhaseMRIDs at the given index. */ public java.lang.String getPowerElectronicsConnectionPhaseMRIDs(int index) { return powerElectronicsConnectionPhaseMRIDs_.get(index); } /** *
   **
   * The individual phases models for the power electronics connection.
   * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param index The index of the value to return. * @return The bytes of the powerElectronicsConnectionPhaseMRIDs at the given index. */ public com.google.protobuf.ByteString getPowerElectronicsConnectionPhaseMRIDsBytes(int index) { return powerElectronicsConnectionPhaseMRIDs_.getByteString(index); } public static final int INVERTERSTANDARD_FIELD_NUMBER = 11; @SuppressWarnings("serial") private volatile java.lang.Object inverterStandard_ = ""; /** *
   **
   * The standard this inverter follows, such as AS4777.2:2020
   * 
* * string inverterStandard = 11; * @return The inverterStandard. */ @java.lang.Override public java.lang.String getInverterStandard() { java.lang.Object ref = inverterStandard_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); inverterStandard_ = s; return s; } } /** *
   **
   * The standard this inverter follows, such as AS4777.2:2020
   * 
* * string inverterStandard = 11; * @return The bytes for inverterStandard. */ @java.lang.Override public com.google.protobuf.ByteString getInverterStandardBytes() { java.lang.Object ref = inverterStandard_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); inverterStandard_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int SUSTAINOPOVERVOLTLIMIT_FIELD_NUMBER = 12; private int sustainOpOvervoltLimit_ = 0; /** *
   **
   * Indicates the sustained operation overvoltage limit in volts, when the average voltage for a 10-minute period exceeds the V¬nom-max.
   * 
* * int32 sustainOpOvervoltLimit = 12; * @return The sustainOpOvervoltLimit. */ @java.lang.Override public int getSustainOpOvervoltLimit() { return sustainOpOvervoltLimit_; } public static final int STOPATOVERFREQ_FIELD_NUMBER = 13; private float stopAtOverFreq_ = 0F; /** *
   **
   * Over frequency (stop) in Hz. Permitted range is between 51 and 52 (inclusive)
   * 
* * float stopAtOverFreq = 13; * @return The stopAtOverFreq. */ @java.lang.Override public float getStopAtOverFreq() { return stopAtOverFreq_; } public static final int STOPATUNDERFREQ_FIELD_NUMBER = 14; private float stopAtUnderFreq_ = 0F; /** *
   **
   * Under frequency (stop) in Hz Permitted range is between 47 and 49 (inclusive)
   * 
* * float stopAtUnderFreq = 14; * @return The stopAtUnderFreq. */ @java.lang.Override public float getStopAtUnderFreq() { return stopAtUnderFreq_; } public static final int INVVOLTWATTRESPMODENULL_FIELD_NUMBER = 15; /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return Whether the invVoltWattRespModeNull field is set. */ public boolean hasInvVoltWattRespModeNull() { return invVoltWattRespModeCase_ == 15; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return The enum numeric value on the wire for invVoltWattRespModeNull. */ public int getInvVoltWattRespModeNullValue() { if (invVoltWattRespModeCase_ == 15) { return (java.lang.Integer) invVoltWattRespMode_; } return 0; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return The invVoltWattRespModeNull. */ public com.google.protobuf.NullValue getInvVoltWattRespModeNull() { if (invVoltWattRespModeCase_ == 15) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invVoltWattRespMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } public static final int INVVOLTWATTRESPMODESET_FIELD_NUMBER = 16; /** * bool invVoltWattRespModeSet = 16; * @return Whether the invVoltWattRespModeSet field is set. */ @java.lang.Override public boolean hasInvVoltWattRespModeSet() { return invVoltWattRespModeCase_ == 16; } /** * bool invVoltWattRespModeSet = 16; * @return The invVoltWattRespModeSet. */ @java.lang.Override public boolean getInvVoltWattRespModeSet() { if (invVoltWattRespModeCase_ == 16) { return (java.lang.Boolean) invVoltWattRespMode_; } return false; } public static final int INVWATTRESPV1_FIELD_NUMBER = 17; private int invWattRespV1_ = 0; /** *
   **
   * Set point 1 in volts for inverter Volt-Watt response mode. Permitted range is between 200 and 300 (inclusive).
   * 
* * int32 invWattRespV1 = 17; * @return The invWattRespV1. */ @java.lang.Override public int getInvWattRespV1() { return invWattRespV1_; } public static final int INVWATTRESPV2_FIELD_NUMBER = 18; private int invWattRespV2_ = 0; /** *
   **
   * Set point 2 in volts for inverter Volt-Watt response mode. Permitted range is between 216 and 230 (inclusive).
   * 
* * int32 invWattRespV2 = 18; * @return The invWattRespV2. */ @java.lang.Override public int getInvWattRespV2() { return invWattRespV2_; } public static final int INVWATTRESPV3_FIELD_NUMBER = 19; private int invWattRespV3_ = 0; /** *
   **
   * Set point 3 in volts for inverter Volt-Watt response mode. Permitted range is between 235 and 255 (inclusive).
   * 
* * int32 invWattRespV3 = 19; * @return The invWattRespV3. */ @java.lang.Override public int getInvWattRespV3() { return invWattRespV3_; } public static final int INVWATTRESPV4_FIELD_NUMBER = 20; private int invWattRespV4_ = 0; /** *
   **
   * Set point 4 in volts for inverter Volt-Watt response mode. Permitted range is between 244 and 265 (inclusive).
   * 
* * int32 invWattRespV4 = 20; * @return The invWattRespV4. */ @java.lang.Override public int getInvWattRespV4() { return invWattRespV4_; } public static final int INVWATTRESPPATV1_FIELD_NUMBER = 21; private float invWattRespPAtV1_ = 0F; /** *
   **
   * Power output set point 1 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
   * 
* * float invWattRespPAtV1 = 21; * @return The invWattRespPAtV1. */ @java.lang.Override public float getInvWattRespPAtV1() { return invWattRespPAtV1_; } public static final int INVWATTRESPPATV2_FIELD_NUMBER = 22; private float invWattRespPAtV2_ = 0F; /** *
   **
   * Power output set point 2 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
   * 
* * float invWattRespPAtV2 = 22; * @return The invWattRespPAtV2. */ @java.lang.Override public float getInvWattRespPAtV2() { return invWattRespPAtV2_; } public static final int INVWATTRESPPATV3_FIELD_NUMBER = 23; private float invWattRespPAtV3_ = 0F; /** *
   **
   * Power output set point 3 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
   * 
* * float invWattRespPAtV3 = 23; * @return The invWattRespPAtV3. */ @java.lang.Override public float getInvWattRespPAtV3() { return invWattRespPAtV3_; } public static final int INVWATTRESPPATV4_FIELD_NUMBER = 24; private float invWattRespPAtV4_ = 0F; /** *
   **
   * Power output set point 4 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 0.2 (inclusive).
   * 
* * float invWattRespPAtV4 = 24; * @return The invWattRespPAtV4. */ @java.lang.Override public float getInvWattRespPAtV4() { return invWattRespPAtV4_; } public static final int INVVOLTVARRESPMODENULL_FIELD_NUMBER = 25; /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return Whether the invVoltVarRespModeNull field is set. */ public boolean hasInvVoltVarRespModeNull() { return invVoltVarRespModeCase_ == 25; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return The enum numeric value on the wire for invVoltVarRespModeNull. */ public int getInvVoltVarRespModeNullValue() { if (invVoltVarRespModeCase_ == 25) { return (java.lang.Integer) invVoltVarRespMode_; } return 0; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return The invVoltVarRespModeNull. */ public com.google.protobuf.NullValue getInvVoltVarRespModeNull() { if (invVoltVarRespModeCase_ == 25) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invVoltVarRespMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } public static final int INVVOLTVARRESPMODESET_FIELD_NUMBER = 26; /** * bool invVoltVarRespModeSet = 26; * @return Whether the invVoltVarRespModeSet field is set. */ @java.lang.Override public boolean hasInvVoltVarRespModeSet() { return invVoltVarRespModeCase_ == 26; } /** * bool invVoltVarRespModeSet = 26; * @return The invVoltVarRespModeSet. */ @java.lang.Override public boolean getInvVoltVarRespModeSet() { if (invVoltVarRespModeCase_ == 26) { return (java.lang.Boolean) invVoltVarRespMode_; } return false; } public static final int INVVARRESPV1_FIELD_NUMBER = 27; private int invVarRespV1_ = 0; /** *
   **
   * Set point 1 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
   * 
* * int32 invVarRespV1 = 27; * @return The invVarRespV1. */ @java.lang.Override public int getInvVarRespV1() { return invVarRespV1_; } public static final int INVVARRESPV2_FIELD_NUMBER = 28; private int invVarRespV2_ = 0; /** *
   **
   * Set point 2 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
   * 
* * int32 invVarRespV2 = 28; * @return The invVarRespV2. */ @java.lang.Override public int getInvVarRespV2() { return invVarRespV2_; } public static final int INVVARRESPV3_FIELD_NUMBER = 29; private int invVarRespV3_ = 0; /** *
   **
   * Set point 3 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
   * 
* * int32 invVarRespV3 = 29; * @return The invVarRespV3. */ @java.lang.Override public int getInvVarRespV3() { return invVarRespV3_; } public static final int INVVARRESPV4_FIELD_NUMBER = 30; private int invVarRespV4_ = 0; /** *
   **
   * Set point 4 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
   * 
* * int32 invVarRespV4 = 30; * @return The invVarRespV4. */ @java.lang.Override public int getInvVarRespV4() { return invVarRespV4_; } public static final int INVVARRESPQATV1_FIELD_NUMBER = 31; private float invVarRespQAtV1_ = 0F; /** *
   **
   * Power output set point 1 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between 0 and 0.6 (inclusive).
   * 
* * float invVarRespQAtV1 = 31; * @return The invVarRespQAtV1. */ @java.lang.Override public float getInvVarRespQAtV1() { return invVarRespQAtV1_; } public static final int INVVARRESPQATV2_FIELD_NUMBER = 32; private float invVarRespQAtV2_ = 0F; /** *
   **
   * Power output set point 2 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
   * negative number referring to a sink.
   * 
* * float invVarRespQAtV2 = 32; * @return The invVarRespQAtV2. */ @java.lang.Override public float getInvVarRespQAtV2() { return invVarRespQAtV2_; } public static final int INVVARRESPQATV3_FIELD_NUMBER = 33; private float invVarRespQAtV3_ = 0F; /** *
   **
   * Power output set point 3 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
   * negative number referring to a sink.
   * 
* * float invVarRespQAtV3 = 33; * @return The invVarRespQAtV3. */ @java.lang.Override public float getInvVarRespQAtV3() { return invVarRespQAtV3_; } public static final int INVVARRESPQATV4_FIELD_NUMBER = 34; private float invVarRespQAtV4_ = 0F; /** *
   **
   * Power output set point 4 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -0.6 and 0 (inclusive) with a
   * negative number referring to a sink.
   * 
* * float invVarRespQAtV4 = 34; * @return The invVarRespQAtV4. */ @java.lang.Override public float getInvVarRespQAtV4() { return invVarRespQAtV4_; } public static final int INVREACTIVEPOWERMODENULL_FIELD_NUMBER = 35; /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return Whether the invReactivePowerModeNull field is set. */ public boolean hasInvReactivePowerModeNull() { return invReactivePowerModeCase_ == 35; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return The enum numeric value on the wire for invReactivePowerModeNull. */ public int getInvReactivePowerModeNullValue() { if (invReactivePowerModeCase_ == 35) { return (java.lang.Integer) invReactivePowerMode_; } return 0; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return The invReactivePowerModeNull. */ public com.google.protobuf.NullValue getInvReactivePowerModeNull() { if (invReactivePowerModeCase_ == 35) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invReactivePowerMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } public static final int INVREACTIVEPOWERMODESET_FIELD_NUMBER = 36; /** * bool invReactivePowerModeSet = 36; * @return Whether the invReactivePowerModeSet field is set. */ @java.lang.Override public boolean hasInvReactivePowerModeSet() { return invReactivePowerModeCase_ == 36; } /** * bool invReactivePowerModeSet = 36; * @return The invReactivePowerModeSet. */ @java.lang.Override public boolean getInvReactivePowerModeSet() { if (invReactivePowerModeCase_ == 36) { return (java.lang.Boolean) invReactivePowerMode_; } return false; } public static final int INVFIXREACTIVEPOWER_FIELD_NUMBER = 37; private float invFixReactivePower_ = 0F; /** *
   **
   * Static Reactive Power, specified in a percentage output of the system. Permitted range is between -1.0 and 1.0 (inclusive), with a negative
   * sign referring to “sink”.
   * 
* * float invFixReactivePower = 37; * @return The invFixReactivePower. */ @java.lang.Override public float getInvFixReactivePower() { return invFixReactivePower_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getRce()); } if (maxIFault_ != 0) { output.writeInt32(2, maxIFault_); } if (java.lang.Double.doubleToRawLongBits(maxQ_) != 0) { output.writeDouble(3, maxQ_); } if (java.lang.Double.doubleToRawLongBits(minQ_) != 0) { output.writeDouble(4, minQ_); } if (java.lang.Double.doubleToRawLongBits(p_) != 0) { output.writeDouble(5, p_); } if (java.lang.Double.doubleToRawLongBits(q_) != 0) { output.writeDouble(6, q_); } if (ratedS_ != 0) { output.writeInt32(7, ratedS_); } if (ratedU_ != 0) { output.writeInt32(8, ratedU_); } for (int i = 0; i < powerElectronicsUnitMRIDs_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 9, powerElectronicsUnitMRIDs_.getRaw(i)); } for (int i = 0; i < powerElectronicsConnectionPhaseMRIDs_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 10, powerElectronicsConnectionPhaseMRIDs_.getRaw(i)); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(inverterStandard_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 11, inverterStandard_); } if (sustainOpOvervoltLimit_ != 0) { output.writeInt32(12, sustainOpOvervoltLimit_); } if (java.lang.Float.floatToRawIntBits(stopAtOverFreq_) != 0) { output.writeFloat(13, stopAtOverFreq_); } if (java.lang.Float.floatToRawIntBits(stopAtUnderFreq_) != 0) { output.writeFloat(14, stopAtUnderFreq_); } if (invVoltWattRespModeCase_ == 15) { output.writeEnum(15, ((java.lang.Integer) invVoltWattRespMode_)); } if (invVoltWattRespModeCase_ == 16) { output.writeBool( 16, (boolean)((java.lang.Boolean) invVoltWattRespMode_)); } if (invWattRespV1_ != 0) { output.writeInt32(17, invWattRespV1_); } if (invWattRespV2_ != 0) { output.writeInt32(18, invWattRespV2_); } if (invWattRespV3_ != 0) { output.writeInt32(19, invWattRespV3_); } if (invWattRespV4_ != 0) { output.writeInt32(20, invWattRespV4_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV1_) != 0) { output.writeFloat(21, invWattRespPAtV1_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV2_) != 0) { output.writeFloat(22, invWattRespPAtV2_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV3_) != 0) { output.writeFloat(23, invWattRespPAtV3_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV4_) != 0) { output.writeFloat(24, invWattRespPAtV4_); } if (invVoltVarRespModeCase_ == 25) { output.writeEnum(25, ((java.lang.Integer) invVoltVarRespMode_)); } if (invVoltVarRespModeCase_ == 26) { output.writeBool( 26, (boolean)((java.lang.Boolean) invVoltVarRespMode_)); } if (invVarRespV1_ != 0) { output.writeInt32(27, invVarRespV1_); } if (invVarRespV2_ != 0) { output.writeInt32(28, invVarRespV2_); } if (invVarRespV3_ != 0) { output.writeInt32(29, invVarRespV3_); } if (invVarRespV4_ != 0) { output.writeInt32(30, invVarRespV4_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV1_) != 0) { output.writeFloat(31, invVarRespQAtV1_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV2_) != 0) { output.writeFloat(32, invVarRespQAtV2_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV3_) != 0) { output.writeFloat(33, invVarRespQAtV3_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV4_) != 0) { output.writeFloat(34, invVarRespQAtV4_); } if (invReactivePowerModeCase_ == 35) { output.writeEnum(35, ((java.lang.Integer) invReactivePowerMode_)); } if (invReactivePowerModeCase_ == 36) { output.writeBool( 36, (boolean)((java.lang.Boolean) invReactivePowerMode_)); } if (java.lang.Float.floatToRawIntBits(invFixReactivePower_) != 0) { output.writeFloat(37, invFixReactivePower_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getRce()); } if (maxIFault_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(2, maxIFault_); } if (java.lang.Double.doubleToRawLongBits(maxQ_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(3, maxQ_); } if (java.lang.Double.doubleToRawLongBits(minQ_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(4, minQ_); } if (java.lang.Double.doubleToRawLongBits(p_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(5, p_); } if (java.lang.Double.doubleToRawLongBits(q_) != 0) { size += com.google.protobuf.CodedOutputStream .computeDoubleSize(6, q_); } if (ratedS_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(7, ratedS_); } if (ratedU_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(8, ratedU_); } { int dataSize = 0; for (int i = 0; i < powerElectronicsUnitMRIDs_.size(); i++) { dataSize += computeStringSizeNoTag(powerElectronicsUnitMRIDs_.getRaw(i)); } size += dataSize; size += 1 * getPowerElectronicsUnitMRIDsList().size(); } { int dataSize = 0; for (int i = 0; i < powerElectronicsConnectionPhaseMRIDs_.size(); i++) { dataSize += computeStringSizeNoTag(powerElectronicsConnectionPhaseMRIDs_.getRaw(i)); } size += dataSize; size += 1 * getPowerElectronicsConnectionPhaseMRIDsList().size(); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(inverterStandard_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(11, inverterStandard_); } if (sustainOpOvervoltLimit_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(12, sustainOpOvervoltLimit_); } if (java.lang.Float.floatToRawIntBits(stopAtOverFreq_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(13, stopAtOverFreq_); } if (java.lang.Float.floatToRawIntBits(stopAtUnderFreq_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(14, stopAtUnderFreq_); } if (invVoltWattRespModeCase_ == 15) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(15, ((java.lang.Integer) invVoltWattRespMode_)); } if (invVoltWattRespModeCase_ == 16) { size += com.google.protobuf.CodedOutputStream .computeBoolSize( 16, (boolean)((java.lang.Boolean) invVoltWattRespMode_)); } if (invWattRespV1_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(17, invWattRespV1_); } if (invWattRespV2_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(18, invWattRespV2_); } if (invWattRespV3_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(19, invWattRespV3_); } if (invWattRespV4_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(20, invWattRespV4_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV1_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(21, invWattRespPAtV1_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV2_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(22, invWattRespPAtV2_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV3_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(23, invWattRespPAtV3_); } if (java.lang.Float.floatToRawIntBits(invWattRespPAtV4_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(24, invWattRespPAtV4_); } if (invVoltVarRespModeCase_ == 25) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(25, ((java.lang.Integer) invVoltVarRespMode_)); } if (invVoltVarRespModeCase_ == 26) { size += com.google.protobuf.CodedOutputStream .computeBoolSize( 26, (boolean)((java.lang.Boolean) invVoltVarRespMode_)); } if (invVarRespV1_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(27, invVarRespV1_); } if (invVarRespV2_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(28, invVarRespV2_); } if (invVarRespV3_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(29, invVarRespV3_); } if (invVarRespV4_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(30, invVarRespV4_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV1_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(31, invVarRespQAtV1_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV2_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(32, invVarRespQAtV2_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV3_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(33, invVarRespQAtV3_); } if (java.lang.Float.floatToRawIntBits(invVarRespQAtV4_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(34, invVarRespQAtV4_); } if (invReactivePowerModeCase_ == 35) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(35, ((java.lang.Integer) invReactivePowerMode_)); } if (invReactivePowerModeCase_ == 36) { size += com.google.protobuf.CodedOutputStream .computeBoolSize( 36, (boolean)((java.lang.Boolean) invReactivePowerMode_)); } if (java.lang.Float.floatToRawIntBits(invFixReactivePower_) != 0) { size += com.google.protobuf.CodedOutputStream .computeFloatSize(37, invFixReactivePower_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection)) { return super.equals(obj); } com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection other = (com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) obj; if (hasRce() != other.hasRce()) return false; if (hasRce()) { if (!getRce() .equals(other.getRce())) return false; } if (getMaxIFault() != other.getMaxIFault()) return false; if (java.lang.Double.doubleToLongBits(getMaxQ()) != java.lang.Double.doubleToLongBits( other.getMaxQ())) return false; if (java.lang.Double.doubleToLongBits(getMinQ()) != java.lang.Double.doubleToLongBits( other.getMinQ())) return false; if (java.lang.Double.doubleToLongBits(getP()) != java.lang.Double.doubleToLongBits( other.getP())) return false; if (java.lang.Double.doubleToLongBits(getQ()) != java.lang.Double.doubleToLongBits( other.getQ())) return false; if (getRatedS() != other.getRatedS()) return false; if (getRatedU() != other.getRatedU()) return false; if (!getPowerElectronicsUnitMRIDsList() .equals(other.getPowerElectronicsUnitMRIDsList())) return false; if (!getPowerElectronicsConnectionPhaseMRIDsList() .equals(other.getPowerElectronicsConnectionPhaseMRIDsList())) return false; if (!getInverterStandard() .equals(other.getInverterStandard())) return false; if (getSustainOpOvervoltLimit() != other.getSustainOpOvervoltLimit()) return false; if (java.lang.Float.floatToIntBits(getStopAtOverFreq()) != java.lang.Float.floatToIntBits( other.getStopAtOverFreq())) return false; if (java.lang.Float.floatToIntBits(getStopAtUnderFreq()) != java.lang.Float.floatToIntBits( other.getStopAtUnderFreq())) return false; if (getInvWattRespV1() != other.getInvWattRespV1()) return false; if (getInvWattRespV2() != other.getInvWattRespV2()) return false; if (getInvWattRespV3() != other.getInvWattRespV3()) return false; if (getInvWattRespV4() != other.getInvWattRespV4()) return false; if (java.lang.Float.floatToIntBits(getInvWattRespPAtV1()) != java.lang.Float.floatToIntBits( other.getInvWattRespPAtV1())) return false; if (java.lang.Float.floatToIntBits(getInvWattRespPAtV2()) != java.lang.Float.floatToIntBits( other.getInvWattRespPAtV2())) return false; if (java.lang.Float.floatToIntBits(getInvWattRespPAtV3()) != java.lang.Float.floatToIntBits( other.getInvWattRespPAtV3())) return false; if (java.lang.Float.floatToIntBits(getInvWattRespPAtV4()) != java.lang.Float.floatToIntBits( other.getInvWattRespPAtV4())) return false; if (getInvVarRespV1() != other.getInvVarRespV1()) return false; if (getInvVarRespV2() != other.getInvVarRespV2()) return false; if (getInvVarRespV3() != other.getInvVarRespV3()) return false; if (getInvVarRespV4() != other.getInvVarRespV4()) return false; if (java.lang.Float.floatToIntBits(getInvVarRespQAtV1()) != java.lang.Float.floatToIntBits( other.getInvVarRespQAtV1())) return false; if (java.lang.Float.floatToIntBits(getInvVarRespQAtV2()) != java.lang.Float.floatToIntBits( other.getInvVarRespQAtV2())) return false; if (java.lang.Float.floatToIntBits(getInvVarRespQAtV3()) != java.lang.Float.floatToIntBits( other.getInvVarRespQAtV3())) return false; if (java.lang.Float.floatToIntBits(getInvVarRespQAtV4()) != java.lang.Float.floatToIntBits( other.getInvVarRespQAtV4())) return false; if (java.lang.Float.floatToIntBits(getInvFixReactivePower()) != java.lang.Float.floatToIntBits( other.getInvFixReactivePower())) return false; if (!getInvVoltWattRespModeCase().equals(other.getInvVoltWattRespModeCase())) return false; switch (invVoltWattRespModeCase_) { case 15: if (getInvVoltWattRespModeNullValue() != other.getInvVoltWattRespModeNullValue()) return false; break; case 16: if (getInvVoltWattRespModeSet() != other.getInvVoltWattRespModeSet()) return false; break; case 0: default: } if (!getInvVoltVarRespModeCase().equals(other.getInvVoltVarRespModeCase())) return false; switch (invVoltVarRespModeCase_) { case 25: if (getInvVoltVarRespModeNullValue() != other.getInvVoltVarRespModeNullValue()) return false; break; case 26: if (getInvVoltVarRespModeSet() != other.getInvVoltVarRespModeSet()) return false; break; case 0: default: } if (!getInvReactivePowerModeCase().equals(other.getInvReactivePowerModeCase())) return false; switch (invReactivePowerModeCase_) { case 35: if (getInvReactivePowerModeNullValue() != other.getInvReactivePowerModeNullValue()) return false; break; case 36: if (getInvReactivePowerModeSet() != other.getInvReactivePowerModeSet()) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasRce()) { hash = (37 * hash) + RCE_FIELD_NUMBER; hash = (53 * hash) + getRce().hashCode(); } hash = (37 * hash) + MAXIFAULT_FIELD_NUMBER; hash = (53 * hash) + getMaxIFault(); hash = (37 * hash) + MAXQ_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getMaxQ())); hash = (37 * hash) + MINQ_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getMinQ())); hash = (37 * hash) + P_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getP())); hash = (37 * hash) + Q_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getQ())); hash = (37 * hash) + RATEDS_FIELD_NUMBER; hash = (53 * hash) + getRatedS(); hash = (37 * hash) + RATEDU_FIELD_NUMBER; hash = (53 * hash) + getRatedU(); if (getPowerElectronicsUnitMRIDsCount() > 0) { hash = (37 * hash) + POWERELECTRONICSUNITMRIDS_FIELD_NUMBER; hash = (53 * hash) + getPowerElectronicsUnitMRIDsList().hashCode(); } if (getPowerElectronicsConnectionPhaseMRIDsCount() > 0) { hash = (37 * hash) + POWERELECTRONICSCONNECTIONPHASEMRIDS_FIELD_NUMBER; hash = (53 * hash) + getPowerElectronicsConnectionPhaseMRIDsList().hashCode(); } hash = (37 * hash) + INVERTERSTANDARD_FIELD_NUMBER; hash = (53 * hash) + getInverterStandard().hashCode(); hash = (37 * hash) + SUSTAINOPOVERVOLTLIMIT_FIELD_NUMBER; hash = (53 * hash) + getSustainOpOvervoltLimit(); hash = (37 * hash) + STOPATOVERFREQ_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getStopAtOverFreq()); hash = (37 * hash) + STOPATUNDERFREQ_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getStopAtUnderFreq()); hash = (37 * hash) + INVWATTRESPV1_FIELD_NUMBER; hash = (53 * hash) + getInvWattRespV1(); hash = (37 * hash) + INVWATTRESPV2_FIELD_NUMBER; hash = (53 * hash) + getInvWattRespV2(); hash = (37 * hash) + INVWATTRESPV3_FIELD_NUMBER; hash = (53 * hash) + getInvWattRespV3(); hash = (37 * hash) + INVWATTRESPV4_FIELD_NUMBER; hash = (53 * hash) + getInvWattRespV4(); hash = (37 * hash) + INVWATTRESPPATV1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvWattRespPAtV1()); hash = (37 * hash) + INVWATTRESPPATV2_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvWattRespPAtV2()); hash = (37 * hash) + INVWATTRESPPATV3_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvWattRespPAtV3()); hash = (37 * hash) + INVWATTRESPPATV4_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvWattRespPAtV4()); hash = (37 * hash) + INVVARRESPV1_FIELD_NUMBER; hash = (53 * hash) + getInvVarRespV1(); hash = (37 * hash) + INVVARRESPV2_FIELD_NUMBER; hash = (53 * hash) + getInvVarRespV2(); hash = (37 * hash) + INVVARRESPV3_FIELD_NUMBER; hash = (53 * hash) + getInvVarRespV3(); hash = (37 * hash) + INVVARRESPV4_FIELD_NUMBER; hash = (53 * hash) + getInvVarRespV4(); hash = (37 * hash) + INVVARRESPQATV1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvVarRespQAtV1()); hash = (37 * hash) + INVVARRESPQATV2_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvVarRespQAtV2()); hash = (37 * hash) + INVVARRESPQATV3_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvVarRespQAtV3()); hash = (37 * hash) + INVVARRESPQATV4_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvVarRespQAtV4()); hash = (37 * hash) + INVFIXREACTIVEPOWER_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits( getInvFixReactivePower()); switch (invVoltWattRespModeCase_) { case 15: hash = (37 * hash) + INVVOLTWATTRESPMODENULL_FIELD_NUMBER; hash = (53 * hash) + getInvVoltWattRespModeNullValue(); break; case 16: hash = (37 * hash) + INVVOLTWATTRESPMODESET_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getInvVoltWattRespModeSet()); break; case 0: default: } switch (invVoltVarRespModeCase_) { case 25: hash = (37 * hash) + INVVOLTVARRESPMODENULL_FIELD_NUMBER; hash = (53 * hash) + getInvVoltVarRespModeNullValue(); break; case 26: hash = (37 * hash) + INVVOLTVARRESPMODESET_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getInvVoltVarRespModeSet()); break; case 0: default: } switch (invReactivePowerModeCase_) { case 35: hash = (37 * hash) + INVREACTIVEPOWERMODENULL_FIELD_NUMBER; hash = (53 * hash) + getInvReactivePowerModeNullValue(); break; case 36: hash = (37 * hash) + INVREACTIVEPOWERMODESET_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getInvReactivePowerModeSet()); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   **
   * A connection to the AC network for energy production or consumption that uses power electronics rather than
   * rotating machines.
   * 
* * Protobuf type {@code zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_wires_PowerElectronicsConnection_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_wires_PowerElectronicsConnection_fieldAccessorTable .ensureFieldAccessorsInitialized( com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.class, com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.Builder.class); } // Construct using com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getRceFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; bitField1_ = 0; rce_ = null; if (rceBuilder_ != null) { rceBuilder_.dispose(); rceBuilder_ = null; } maxIFault_ = 0; maxQ_ = 0D; minQ_ = 0D; p_ = 0D; q_ = 0D; ratedS_ = 0; ratedU_ = 0; powerElectronicsUnitMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); powerElectronicsConnectionPhaseMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); inverterStandard_ = ""; sustainOpOvervoltLimit_ = 0; stopAtOverFreq_ = 0F; stopAtUnderFreq_ = 0F; invWattRespV1_ = 0; invWattRespV2_ = 0; invWattRespV3_ = 0; invWattRespV4_ = 0; invWattRespPAtV1_ = 0F; invWattRespPAtV2_ = 0F; invWattRespPAtV3_ = 0F; invWattRespPAtV4_ = 0F; invVarRespV1_ = 0; invVarRespV2_ = 0; invVarRespV3_ = 0; invVarRespV4_ = 0; invVarRespQAtV1_ = 0F; invVarRespQAtV2_ = 0F; invVarRespQAtV3_ = 0F; invVarRespQAtV4_ = 0F; invFixReactivePower_ = 0F; invVoltWattRespModeCase_ = 0; invVoltWattRespMode_ = null; invVoltVarRespModeCase_ = 0; invVoltVarRespMode_ = null; invReactivePowerModeCase_ = 0; invReactivePowerMode_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnectionOuterClass.internal_static_zepben_protobuf_cim_iec61970_base_wires_PowerElectronicsConnection_descriptor; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection getDefaultInstanceForType() { return com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.getDefaultInstance(); } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection build() { com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection buildPartial() { com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection result = new com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection(this); if (bitField0_ != 0) { buildPartial0(result); } if (bitField1_ != 0) { buildPartial1(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartial0(com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.rce_ = rceBuilder_ == null ? rce_ : rceBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.maxIFault_ = maxIFault_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.maxQ_ = maxQ_; } if (((from_bitField0_ & 0x00000008) != 0)) { result.minQ_ = minQ_; } if (((from_bitField0_ & 0x00000010) != 0)) { result.p_ = p_; } if (((from_bitField0_ & 0x00000020) != 0)) { result.q_ = q_; } if (((from_bitField0_ & 0x00000040) != 0)) { result.ratedS_ = ratedS_; } if (((from_bitField0_ & 0x00000080) != 0)) { result.ratedU_ = ratedU_; } if (((from_bitField0_ & 0x00000100) != 0)) { powerElectronicsUnitMRIDs_.makeImmutable(); result.powerElectronicsUnitMRIDs_ = powerElectronicsUnitMRIDs_; } if (((from_bitField0_ & 0x00000200) != 0)) { powerElectronicsConnectionPhaseMRIDs_.makeImmutable(); result.powerElectronicsConnectionPhaseMRIDs_ = powerElectronicsConnectionPhaseMRIDs_; } if (((from_bitField0_ & 0x00000400) != 0)) { result.inverterStandard_ = inverterStandard_; } if (((from_bitField0_ & 0x00000800) != 0)) { result.sustainOpOvervoltLimit_ = sustainOpOvervoltLimit_; } if (((from_bitField0_ & 0x00001000) != 0)) { result.stopAtOverFreq_ = stopAtOverFreq_; } if (((from_bitField0_ & 0x00002000) != 0)) { result.stopAtUnderFreq_ = stopAtUnderFreq_; } if (((from_bitField0_ & 0x00010000) != 0)) { result.invWattRespV1_ = invWattRespV1_; } if (((from_bitField0_ & 0x00020000) != 0)) { result.invWattRespV2_ = invWattRespV2_; } if (((from_bitField0_ & 0x00040000) != 0)) { result.invWattRespV3_ = invWattRespV3_; } if (((from_bitField0_ & 0x00080000) != 0)) { result.invWattRespV4_ = invWattRespV4_; } if (((from_bitField0_ & 0x00100000) != 0)) { result.invWattRespPAtV1_ = invWattRespPAtV1_; } if (((from_bitField0_ & 0x00200000) != 0)) { result.invWattRespPAtV2_ = invWattRespPAtV2_; } if (((from_bitField0_ & 0x00400000) != 0)) { result.invWattRespPAtV3_ = invWattRespPAtV3_; } if (((from_bitField0_ & 0x00800000) != 0)) { result.invWattRespPAtV4_ = invWattRespPAtV4_; } if (((from_bitField0_ & 0x04000000) != 0)) { result.invVarRespV1_ = invVarRespV1_; } if (((from_bitField0_ & 0x08000000) != 0)) { result.invVarRespV2_ = invVarRespV2_; } if (((from_bitField0_ & 0x10000000) != 0)) { result.invVarRespV3_ = invVarRespV3_; } if (((from_bitField0_ & 0x20000000) != 0)) { result.invVarRespV4_ = invVarRespV4_; } if (((from_bitField0_ & 0x40000000) != 0)) { result.invVarRespQAtV1_ = invVarRespQAtV1_; } if (((from_bitField0_ & 0x80000000) != 0)) { result.invVarRespQAtV2_ = invVarRespQAtV2_; } result.bitField0_ |= to_bitField0_; } private void buildPartial1(com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection result) { int from_bitField1_ = bitField1_; if (((from_bitField1_ & 0x00000001) != 0)) { result.invVarRespQAtV3_ = invVarRespQAtV3_; } if (((from_bitField1_ & 0x00000002) != 0)) { result.invVarRespQAtV4_ = invVarRespQAtV4_; } if (((from_bitField1_ & 0x00000010) != 0)) { result.invFixReactivePower_ = invFixReactivePower_; } } private void buildPartialOneofs(com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection result) { result.invVoltWattRespModeCase_ = invVoltWattRespModeCase_; result.invVoltWattRespMode_ = this.invVoltWattRespMode_; result.invVoltVarRespModeCase_ = invVoltVarRespModeCase_; result.invVoltVarRespMode_ = this.invVoltVarRespMode_; result.invReactivePowerModeCase_ = invReactivePowerModeCase_; result.invReactivePowerMode_ = this.invReactivePowerMode_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) { return mergeFrom((com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection other) { if (other == com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection.getDefaultInstance()) return this; if (other.hasRce()) { mergeRce(other.getRce()); } if (other.getMaxIFault() != 0) { setMaxIFault(other.getMaxIFault()); } if (other.getMaxQ() != 0D) { setMaxQ(other.getMaxQ()); } if (other.getMinQ() != 0D) { setMinQ(other.getMinQ()); } if (other.getP() != 0D) { setP(other.getP()); } if (other.getQ() != 0D) { setQ(other.getQ()); } if (other.getRatedS() != 0) { setRatedS(other.getRatedS()); } if (other.getRatedU() != 0) { setRatedU(other.getRatedU()); } if (!other.powerElectronicsUnitMRIDs_.isEmpty()) { if (powerElectronicsUnitMRIDs_.isEmpty()) { powerElectronicsUnitMRIDs_ = other.powerElectronicsUnitMRIDs_; bitField0_ |= 0x00000100; } else { ensurePowerElectronicsUnitMRIDsIsMutable(); powerElectronicsUnitMRIDs_.addAll(other.powerElectronicsUnitMRIDs_); } onChanged(); } if (!other.powerElectronicsConnectionPhaseMRIDs_.isEmpty()) { if (powerElectronicsConnectionPhaseMRIDs_.isEmpty()) { powerElectronicsConnectionPhaseMRIDs_ = other.powerElectronicsConnectionPhaseMRIDs_; bitField0_ |= 0x00000200; } else { ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); powerElectronicsConnectionPhaseMRIDs_.addAll(other.powerElectronicsConnectionPhaseMRIDs_); } onChanged(); } if (!other.getInverterStandard().isEmpty()) { inverterStandard_ = other.inverterStandard_; bitField0_ |= 0x00000400; onChanged(); } if (other.getSustainOpOvervoltLimit() != 0) { setSustainOpOvervoltLimit(other.getSustainOpOvervoltLimit()); } if (other.getStopAtOverFreq() != 0F) { setStopAtOverFreq(other.getStopAtOverFreq()); } if (other.getStopAtUnderFreq() != 0F) { setStopAtUnderFreq(other.getStopAtUnderFreq()); } if (other.getInvWattRespV1() != 0) { setInvWattRespV1(other.getInvWattRespV1()); } if (other.getInvWattRespV2() != 0) { setInvWattRespV2(other.getInvWattRespV2()); } if (other.getInvWattRespV3() != 0) { setInvWattRespV3(other.getInvWattRespV3()); } if (other.getInvWattRespV4() != 0) { setInvWattRespV4(other.getInvWattRespV4()); } if (other.getInvWattRespPAtV1() != 0F) { setInvWattRespPAtV1(other.getInvWattRespPAtV1()); } if (other.getInvWattRespPAtV2() != 0F) { setInvWattRespPAtV2(other.getInvWattRespPAtV2()); } if (other.getInvWattRespPAtV3() != 0F) { setInvWattRespPAtV3(other.getInvWattRespPAtV3()); } if (other.getInvWattRespPAtV4() != 0F) { setInvWattRespPAtV4(other.getInvWattRespPAtV4()); } if (other.getInvVarRespV1() != 0) { setInvVarRespV1(other.getInvVarRespV1()); } if (other.getInvVarRespV2() != 0) { setInvVarRespV2(other.getInvVarRespV2()); } if (other.getInvVarRespV3() != 0) { setInvVarRespV3(other.getInvVarRespV3()); } if (other.getInvVarRespV4() != 0) { setInvVarRespV4(other.getInvVarRespV4()); } if (other.getInvVarRespQAtV1() != 0F) { setInvVarRespQAtV1(other.getInvVarRespQAtV1()); } if (other.getInvVarRespQAtV2() != 0F) { setInvVarRespQAtV2(other.getInvVarRespQAtV2()); } if (other.getInvVarRespQAtV3() != 0F) { setInvVarRespQAtV3(other.getInvVarRespQAtV3()); } if (other.getInvVarRespQAtV4() != 0F) { setInvVarRespQAtV4(other.getInvVarRespQAtV4()); } if (other.getInvFixReactivePower() != 0F) { setInvFixReactivePower(other.getInvFixReactivePower()); } switch (other.getInvVoltWattRespModeCase()) { case INVVOLTWATTRESPMODENULL: { setInvVoltWattRespModeNullValue(other.getInvVoltWattRespModeNullValue()); break; } case INVVOLTWATTRESPMODESET: { setInvVoltWattRespModeSet(other.getInvVoltWattRespModeSet()); break; } case INVVOLTWATTRESPMODE_NOT_SET: { break; } } switch (other.getInvVoltVarRespModeCase()) { case INVVOLTVARRESPMODENULL: { setInvVoltVarRespModeNullValue(other.getInvVoltVarRespModeNullValue()); break; } case INVVOLTVARRESPMODESET: { setInvVoltVarRespModeSet(other.getInvVoltVarRespModeSet()); break; } case INVVOLTVARRESPMODE_NOT_SET: { break; } } switch (other.getInvReactivePowerModeCase()) { case INVREACTIVEPOWERMODENULL: { setInvReactivePowerModeNullValue(other.getInvReactivePowerModeNullValue()); break; } case INVREACTIVEPOWERMODESET: { setInvReactivePowerModeSet(other.getInvReactivePowerModeSet()); break; } case INVREACTIVEPOWERMODE_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage( getRceFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 case 16: { maxIFault_ = input.readInt32(); bitField0_ |= 0x00000002; break; } // case 16 case 25: { maxQ_ = input.readDouble(); bitField0_ |= 0x00000004; break; } // case 25 case 33: { minQ_ = input.readDouble(); bitField0_ |= 0x00000008; break; } // case 33 case 41: { p_ = input.readDouble(); bitField0_ |= 0x00000010; break; } // case 41 case 49: { q_ = input.readDouble(); bitField0_ |= 0x00000020; break; } // case 49 case 56: { ratedS_ = input.readInt32(); bitField0_ |= 0x00000040; break; } // case 56 case 64: { ratedU_ = input.readInt32(); bitField0_ |= 0x00000080; break; } // case 64 case 74: { java.lang.String s = input.readStringRequireUtf8(); ensurePowerElectronicsUnitMRIDsIsMutable(); powerElectronicsUnitMRIDs_.add(s); break; } // case 74 case 82: { java.lang.String s = input.readStringRequireUtf8(); ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); powerElectronicsConnectionPhaseMRIDs_.add(s); break; } // case 82 case 90: { inverterStandard_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000400; break; } // case 90 case 96: { sustainOpOvervoltLimit_ = input.readInt32(); bitField0_ |= 0x00000800; break; } // case 96 case 109: { stopAtOverFreq_ = input.readFloat(); bitField0_ |= 0x00001000; break; } // case 109 case 117: { stopAtUnderFreq_ = input.readFloat(); bitField0_ |= 0x00002000; break; } // case 117 case 120: { int rawValue = input.readEnum(); invVoltWattRespModeCase_ = 15; invVoltWattRespMode_ = rawValue; break; } // case 120 case 128: { invVoltWattRespMode_ = input.readBool(); invVoltWattRespModeCase_ = 16; break; } // case 128 case 136: { invWattRespV1_ = input.readInt32(); bitField0_ |= 0x00010000; break; } // case 136 case 144: { invWattRespV2_ = input.readInt32(); bitField0_ |= 0x00020000; break; } // case 144 case 152: { invWattRespV3_ = input.readInt32(); bitField0_ |= 0x00040000; break; } // case 152 case 160: { invWattRespV4_ = input.readInt32(); bitField0_ |= 0x00080000; break; } // case 160 case 173: { invWattRespPAtV1_ = input.readFloat(); bitField0_ |= 0x00100000; break; } // case 173 case 181: { invWattRespPAtV2_ = input.readFloat(); bitField0_ |= 0x00200000; break; } // case 181 case 189: { invWattRespPAtV3_ = input.readFloat(); bitField0_ |= 0x00400000; break; } // case 189 case 197: { invWattRespPAtV4_ = input.readFloat(); bitField0_ |= 0x00800000; break; } // case 197 case 200: { int rawValue = input.readEnum(); invVoltVarRespModeCase_ = 25; invVoltVarRespMode_ = rawValue; break; } // case 200 case 208: { invVoltVarRespMode_ = input.readBool(); invVoltVarRespModeCase_ = 26; break; } // case 208 case 216: { invVarRespV1_ = input.readInt32(); bitField0_ |= 0x04000000; break; } // case 216 case 224: { invVarRespV2_ = input.readInt32(); bitField0_ |= 0x08000000; break; } // case 224 case 232: { invVarRespV3_ = input.readInt32(); bitField0_ |= 0x10000000; break; } // case 232 case 240: { invVarRespV4_ = input.readInt32(); bitField0_ |= 0x20000000; break; } // case 240 case 253: { invVarRespQAtV1_ = input.readFloat(); bitField0_ |= 0x40000000; break; } // case 253 case 261: { invVarRespQAtV2_ = input.readFloat(); bitField0_ |= 0x80000000; break; } // case 261 case 269: { invVarRespQAtV3_ = input.readFloat(); bitField1_ |= 0x00000001; break; } // case 269 case 277: { invVarRespQAtV4_ = input.readFloat(); bitField1_ |= 0x00000002; break; } // case 277 case 280: { int rawValue = input.readEnum(); invReactivePowerModeCase_ = 35; invReactivePowerMode_ = rawValue; break; } // case 280 case 288: { invReactivePowerMode_ = input.readBool(); invReactivePowerModeCase_ = 36; break; } // case 288 case 301: { invFixReactivePower_ = input.readFloat(); bitField1_ |= 0x00000010; break; } // case 301 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int invVoltWattRespModeCase_ = 0; private java.lang.Object invVoltWattRespMode_; public InvVoltWattRespModeCase getInvVoltWattRespModeCase() { return InvVoltWattRespModeCase.forNumber( invVoltWattRespModeCase_); } public Builder clearInvVoltWattRespMode() { invVoltWattRespModeCase_ = 0; invVoltWattRespMode_ = null; onChanged(); return this; } private int invVoltVarRespModeCase_ = 0; private java.lang.Object invVoltVarRespMode_; public InvVoltVarRespModeCase getInvVoltVarRespModeCase() { return InvVoltVarRespModeCase.forNumber( invVoltVarRespModeCase_); } public Builder clearInvVoltVarRespMode() { invVoltVarRespModeCase_ = 0; invVoltVarRespMode_ = null; onChanged(); return this; } private int invReactivePowerModeCase_ = 0; private java.lang.Object invReactivePowerMode_; public InvReactivePowerModeCase getInvReactivePowerModeCase() { return InvReactivePowerModeCase.forNumber( invReactivePowerModeCase_); } public Builder clearInvReactivePowerMode() { invReactivePowerModeCase_ = 0; invReactivePowerMode_ = null; onChanged(); return this; } private int bitField0_; private int bitField1_; private com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce_; private com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.Builder, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEqOrBuilder> rceBuilder_; /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; * @return Whether the rce field is set. */ public boolean hasRce() { return ((bitField0_ & 0x00000001) != 0); } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; * @return The rce. */ public com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq getRce() { if (rceBuilder_ == null) { return rce_ == null ? com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.getDefaultInstance() : rce_; } else { return rceBuilder_.getMessage(); } } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public Builder setRce(com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq value) { if (rceBuilder_ == null) { if (value == null) { throw new NullPointerException(); } rce_ = value; } else { rceBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public Builder setRce( com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.Builder builderForValue) { if (rceBuilder_ == null) { rce_ = builderForValue.build(); } else { rceBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public Builder mergeRce(com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq value) { if (rceBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && rce_ != null && rce_ != com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.getDefaultInstance()) { getRceBuilder().mergeFrom(value); } else { rce_ = value; } } else { rceBuilder_.mergeFrom(value); } if (rce_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public Builder clearRce() { bitField0_ = (bitField0_ & ~0x00000001); rce_ = null; if (rceBuilder_ != null) { rceBuilder_.dispose(); rceBuilder_ = null; } onChanged(); return this; } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.Builder getRceBuilder() { bitField0_ |= 0x00000001; onChanged(); return getRceFieldBuilder().getBuilder(); } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ public com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEqOrBuilder getRceOrBuilder() { if (rceBuilder_ != null) { return rceBuilder_.getMessageOrBuilder(); } else { return rce_ == null ? com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.getDefaultInstance() : rce_; } } /** *
     **
     * The RegulatingConductingEquipment fields for this PowerElectronicsConnection.
     * 
* * .zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq rce = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.Builder, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEqOrBuilder> getRceFieldBuilder() { if (rceBuilder_ == null) { rceBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEq.Builder, com.zepben.protobuf.cim.iec61970.base.wires.RegulatingCondEqOrBuilder>( getRce(), getParentForChildren(), isClean()); rce_ = null; } return rceBuilder_; } private int maxIFault_ ; /** *
     **
     * Maximum fault current this device will contribute, in per-unit of rated current, before the converter protection
     * will trip or bypass.
     * 
* * int32 maxIFault = 2; * @return The maxIFault. */ @java.lang.Override public int getMaxIFault() { return maxIFault_; } /** *
     **
     * Maximum fault current this device will contribute, in per-unit of rated current, before the converter protection
     * will trip or bypass.
     * 
* * int32 maxIFault = 2; * @param value The maxIFault to set. * @return This builder for chaining. */ public Builder setMaxIFault(int value) { maxIFault_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** *
     **
     * Maximum fault current this device will contribute, in per-unit of rated current, before the converter protection
     * will trip or bypass.
     * 
* * int32 maxIFault = 2; * @return This builder for chaining. */ public Builder clearMaxIFault() { bitField0_ = (bitField0_ & ~0x00000002); maxIFault_ = 0; onChanged(); return this; } private double maxQ_ ; /** *
     **
     * Maximum reactive power limit. This is the maximum (nameplate) limit for the unit.
     * 
* * double maxQ = 3; * @return The maxQ. */ @java.lang.Override public double getMaxQ() { return maxQ_; } /** *
     **
     * Maximum reactive power limit. This is the maximum (nameplate) limit for the unit.
     * 
* * double maxQ = 3; * @param value The maxQ to set. * @return This builder for chaining. */ public Builder setMaxQ(double value) { maxQ_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
     **
     * Maximum reactive power limit. This is the maximum (nameplate) limit for the unit.
     * 
* * double maxQ = 3; * @return This builder for chaining. */ public Builder clearMaxQ() { bitField0_ = (bitField0_ & ~0x00000004); maxQ_ = 0D; onChanged(); return this; } private double minQ_ ; /** *
     **
     * Minimum reactive power limit for the unit. This is the minimum (nameplate) limit for the unit.
     * 
* * double minQ = 4; * @return The minQ. */ @java.lang.Override public double getMinQ() { return minQ_; } /** *
     **
     * Minimum reactive power limit for the unit. This is the minimum (nameplate) limit for the unit.
     * 
* * double minQ = 4; * @param value The minQ to set. * @return This builder for chaining. */ public Builder setMinQ(double value) { minQ_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** *
     **
     * Minimum reactive power limit for the unit. This is the minimum (nameplate) limit for the unit.
     * 
* * double minQ = 4; * @return This builder for chaining. */ public Builder clearMinQ() { bitField0_ = (bitField0_ & ~0x00000008); minQ_ = 0D; onChanged(); return this; } private double p_ ; /** *
     **
     * Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double p = 5; * @return The p. */ @java.lang.Override public double getP() { return p_; } /** *
     **
     * Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double p = 5; * @param value The p to set. * @return This builder for chaining. */ public Builder setP(double value) { p_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** *
     **
     * Active power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double p = 5; * @return This builder for chaining. */ public Builder clearP() { bitField0_ = (bitField0_ & ~0x00000010); p_ = 0D; onChanged(); return this; } private double q_ ; /** *
     **
     * Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double q = 6; * @return The q. */ @java.lang.Override public double getQ() { return q_; } /** *
     **
     * Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double q = 6; * @param value The q to set. * @return This builder for chaining. */ public Builder setQ(double value) { q_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** *
     **
     * Reactive power injection. Load sign convention is used, i.e. positive sign means flow out from a node.
     * Starting value for a steady state solution.
     * 
* * double q = 6; * @return This builder for chaining. */ public Builder clearQ() { bitField0_ = (bitField0_ & ~0x00000020); q_ = 0D; onChanged(); return this; } private int ratedS_ ; /** *
     **
     * Nameplate apparent power rating for the unit. The attribute shall have a positive value.
     * 
* * int32 ratedS = 7; * @return The ratedS. */ @java.lang.Override public int getRatedS() { return ratedS_; } /** *
     **
     * Nameplate apparent power rating for the unit. The attribute shall have a positive value.
     * 
* * int32 ratedS = 7; * @param value The ratedS to set. * @return This builder for chaining. */ public Builder setRatedS(int value) { ratedS_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** *
     **
     * Nameplate apparent power rating for the unit. The attribute shall have a positive value.
     * 
* * int32 ratedS = 7; * @return This builder for chaining. */ public Builder clearRatedS() { bitField0_ = (bitField0_ & ~0x00000040); ratedS_ = 0; onChanged(); return this; } private int ratedU_ ; /** *
     **
     * Rated voltage (nameplate data, Ur in IEC 60909-0). It is primarily used for short circuit data exchange according
     * to IEC 60909. The attribute shall be a positive value.
     * 
* * int32 ratedU = 8; * @return The ratedU. */ @java.lang.Override public int getRatedU() { return ratedU_; } /** *
     **
     * Rated voltage (nameplate data, Ur in IEC 60909-0). It is primarily used for short circuit data exchange according
     * to IEC 60909. The attribute shall be a positive value.
     * 
* * int32 ratedU = 8; * @param value The ratedU to set. * @return This builder for chaining. */ public Builder setRatedU(int value) { ratedU_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } /** *
     **
     * Rated voltage (nameplate data, Ur in IEC 60909-0). It is primarily used for short circuit data exchange according
     * to IEC 60909. The attribute shall be a positive value.
     * 
* * int32 ratedU = 8; * @return This builder for chaining. */ public Builder clearRatedU() { bitField0_ = (bitField0_ & ~0x00000080); ratedU_ = 0; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList powerElectronicsUnitMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensurePowerElectronicsUnitMRIDsIsMutable() { if (!powerElectronicsUnitMRIDs_.isModifiable()) { powerElectronicsUnitMRIDs_ = new com.google.protobuf.LazyStringArrayList(powerElectronicsUnitMRIDs_); } bitField0_ |= 0x00000100; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @return A list containing the powerElectronicsUnitMRIDs. */ public com.google.protobuf.ProtocolStringList getPowerElectronicsUnitMRIDsList() { powerElectronicsUnitMRIDs_.makeImmutable(); return powerElectronicsUnitMRIDs_; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @return The count of powerElectronicsUnitMRIDs. */ public int getPowerElectronicsUnitMRIDsCount() { return powerElectronicsUnitMRIDs_.size(); } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param index The index of the element to return. * @return The powerElectronicsUnitMRIDs at the given index. */ public java.lang.String getPowerElectronicsUnitMRIDs(int index) { return powerElectronicsUnitMRIDs_.get(index); } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param index The index of the value to return. * @return The bytes of the powerElectronicsUnitMRIDs at the given index. */ public com.google.protobuf.ByteString getPowerElectronicsUnitMRIDsBytes(int index) { return powerElectronicsUnitMRIDs_.getByteString(index); } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param index The index to set the value at. * @param value The powerElectronicsUnitMRIDs to set. * @return This builder for chaining. */ public Builder setPowerElectronicsUnitMRIDs( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensurePowerElectronicsUnitMRIDsIsMutable(); powerElectronicsUnitMRIDs_.set(index, value); bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param value The powerElectronicsUnitMRIDs to add. * @return This builder for chaining. */ public Builder addPowerElectronicsUnitMRIDs( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensurePowerElectronicsUnitMRIDsIsMutable(); powerElectronicsUnitMRIDs_.add(value); bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param values The powerElectronicsUnitMRIDs to add. * @return This builder for chaining. */ public Builder addAllPowerElectronicsUnitMRIDs( java.lang.Iterable values) { ensurePowerElectronicsUnitMRIDsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, powerElectronicsUnitMRIDs_); bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @return This builder for chaining. */ public Builder clearPowerElectronicsUnitMRIDs() { powerElectronicsUnitMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000100);; onChanged(); return this; } /** *
     **
     * An AC network connection may have several power electronics units connecting through it.
     * 
* * repeated string powerElectronicsUnitMRIDs = 9; * @param value The bytes of the powerElectronicsUnitMRIDs to add. * @return This builder for chaining. */ public Builder addPowerElectronicsUnitMRIDsBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensurePowerElectronicsUnitMRIDsIsMutable(); powerElectronicsUnitMRIDs_.add(value); bitField0_ |= 0x00000100; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList powerElectronicsConnectionPhaseMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensurePowerElectronicsConnectionPhaseMRIDsIsMutable() { if (!powerElectronicsConnectionPhaseMRIDs_.isModifiable()) { powerElectronicsConnectionPhaseMRIDs_ = new com.google.protobuf.LazyStringArrayList(powerElectronicsConnectionPhaseMRIDs_); } bitField0_ |= 0x00000200; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @return A list containing the powerElectronicsConnectionPhaseMRIDs. */ public com.google.protobuf.ProtocolStringList getPowerElectronicsConnectionPhaseMRIDsList() { powerElectronicsConnectionPhaseMRIDs_.makeImmutable(); return powerElectronicsConnectionPhaseMRIDs_; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @return The count of powerElectronicsConnectionPhaseMRIDs. */ public int getPowerElectronicsConnectionPhaseMRIDsCount() { return powerElectronicsConnectionPhaseMRIDs_.size(); } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param index The index of the element to return. * @return The powerElectronicsConnectionPhaseMRIDs at the given index. */ public java.lang.String getPowerElectronicsConnectionPhaseMRIDs(int index) { return powerElectronicsConnectionPhaseMRIDs_.get(index); } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param index The index of the value to return. * @return The bytes of the powerElectronicsConnectionPhaseMRIDs at the given index. */ public com.google.protobuf.ByteString getPowerElectronicsConnectionPhaseMRIDsBytes(int index) { return powerElectronicsConnectionPhaseMRIDs_.getByteString(index); } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param index The index to set the value at. * @param value The powerElectronicsConnectionPhaseMRIDs to set. * @return This builder for chaining. */ public Builder setPowerElectronicsConnectionPhaseMRIDs( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); powerElectronicsConnectionPhaseMRIDs_.set(index, value); bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param value The powerElectronicsConnectionPhaseMRIDs to add. * @return This builder for chaining. */ public Builder addPowerElectronicsConnectionPhaseMRIDs( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); powerElectronicsConnectionPhaseMRIDs_.add(value); bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param values The powerElectronicsConnectionPhaseMRIDs to add. * @return This builder for chaining. */ public Builder addAllPowerElectronicsConnectionPhaseMRIDs( java.lang.Iterable values) { ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, powerElectronicsConnectionPhaseMRIDs_); bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @return This builder for chaining. */ public Builder clearPowerElectronicsConnectionPhaseMRIDs() { powerElectronicsConnectionPhaseMRIDs_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000200);; onChanged(); return this; } /** *
     **
     * The individual phases models for the power electronics connection.
     * 
* * repeated string powerElectronicsConnectionPhaseMRIDs = 10; * @param value The bytes of the powerElectronicsConnectionPhaseMRIDs to add. * @return This builder for chaining. */ public Builder addPowerElectronicsConnectionPhaseMRIDsBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensurePowerElectronicsConnectionPhaseMRIDsIsMutable(); powerElectronicsConnectionPhaseMRIDs_.add(value); bitField0_ |= 0x00000200; onChanged(); return this; } private java.lang.Object inverterStandard_ = ""; /** *
     **
     * The standard this inverter follows, such as AS4777.2:2020
     * 
* * string inverterStandard = 11; * @return The inverterStandard. */ public java.lang.String getInverterStandard() { java.lang.Object ref = inverterStandard_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); inverterStandard_ = s; return s; } else { return (java.lang.String) ref; } } /** *
     **
     * The standard this inverter follows, such as AS4777.2:2020
     * 
* * string inverterStandard = 11; * @return The bytes for inverterStandard. */ public com.google.protobuf.ByteString getInverterStandardBytes() { java.lang.Object ref = inverterStandard_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); inverterStandard_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     **
     * The standard this inverter follows, such as AS4777.2:2020
     * 
* * string inverterStandard = 11; * @param value The inverterStandard to set. * @return This builder for chaining. */ public Builder setInverterStandard( java.lang.String value) { if (value == null) { throw new NullPointerException(); } inverterStandard_ = value; bitField0_ |= 0x00000400; onChanged(); return this; } /** *
     **
     * The standard this inverter follows, such as AS4777.2:2020
     * 
* * string inverterStandard = 11; * @return This builder for chaining. */ public Builder clearInverterStandard() { inverterStandard_ = getDefaultInstance().getInverterStandard(); bitField0_ = (bitField0_ & ~0x00000400); onChanged(); return this; } /** *
     **
     * The standard this inverter follows, such as AS4777.2:2020
     * 
* * string inverterStandard = 11; * @param value The bytes for inverterStandard to set. * @return This builder for chaining. */ public Builder setInverterStandardBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); inverterStandard_ = value; bitField0_ |= 0x00000400; onChanged(); return this; } private int sustainOpOvervoltLimit_ ; /** *
     **
     * Indicates the sustained operation overvoltage limit in volts, when the average voltage for a 10-minute period exceeds the V¬nom-max.
     * 
* * int32 sustainOpOvervoltLimit = 12; * @return The sustainOpOvervoltLimit. */ @java.lang.Override public int getSustainOpOvervoltLimit() { return sustainOpOvervoltLimit_; } /** *
     **
     * Indicates the sustained operation overvoltage limit in volts, when the average voltage for a 10-minute period exceeds the V¬nom-max.
     * 
* * int32 sustainOpOvervoltLimit = 12; * @param value The sustainOpOvervoltLimit to set. * @return This builder for chaining. */ public Builder setSustainOpOvervoltLimit(int value) { sustainOpOvervoltLimit_ = value; bitField0_ |= 0x00000800; onChanged(); return this; } /** *
     **
     * Indicates the sustained operation overvoltage limit in volts, when the average voltage for a 10-minute period exceeds the V¬nom-max.
     * 
* * int32 sustainOpOvervoltLimit = 12; * @return This builder for chaining. */ public Builder clearSustainOpOvervoltLimit() { bitField0_ = (bitField0_ & ~0x00000800); sustainOpOvervoltLimit_ = 0; onChanged(); return this; } private float stopAtOverFreq_ ; /** *
     **
     * Over frequency (stop) in Hz. Permitted range is between 51 and 52 (inclusive)
     * 
* * float stopAtOverFreq = 13; * @return The stopAtOverFreq. */ @java.lang.Override public float getStopAtOverFreq() { return stopAtOverFreq_; } /** *
     **
     * Over frequency (stop) in Hz. Permitted range is between 51 and 52 (inclusive)
     * 
* * float stopAtOverFreq = 13; * @param value The stopAtOverFreq to set. * @return This builder for chaining. */ public Builder setStopAtOverFreq(float value) { stopAtOverFreq_ = value; bitField0_ |= 0x00001000; onChanged(); return this; } /** *
     **
     * Over frequency (stop) in Hz. Permitted range is between 51 and 52 (inclusive)
     * 
* * float stopAtOverFreq = 13; * @return This builder for chaining. */ public Builder clearStopAtOverFreq() { bitField0_ = (bitField0_ & ~0x00001000); stopAtOverFreq_ = 0F; onChanged(); return this; } private float stopAtUnderFreq_ ; /** *
     **
     * Under frequency (stop) in Hz Permitted range is between 47 and 49 (inclusive)
     * 
* * float stopAtUnderFreq = 14; * @return The stopAtUnderFreq. */ @java.lang.Override public float getStopAtUnderFreq() { return stopAtUnderFreq_; } /** *
     **
     * Under frequency (stop) in Hz Permitted range is between 47 and 49 (inclusive)
     * 
* * float stopAtUnderFreq = 14; * @param value The stopAtUnderFreq to set. * @return This builder for chaining. */ public Builder setStopAtUnderFreq(float value) { stopAtUnderFreq_ = value; bitField0_ |= 0x00002000; onChanged(); return this; } /** *
     **
     * Under frequency (stop) in Hz Permitted range is between 47 and 49 (inclusive)
     * 
* * float stopAtUnderFreq = 14; * @return This builder for chaining. */ public Builder clearStopAtUnderFreq() { bitField0_ = (bitField0_ & ~0x00002000); stopAtUnderFreq_ = 0F; onChanged(); return this; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return Whether the invVoltWattRespModeNull field is set. */ @java.lang.Override public boolean hasInvVoltWattRespModeNull() { return invVoltWattRespModeCase_ == 15; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return The enum numeric value on the wire for invVoltWattRespModeNull. */ @java.lang.Override public int getInvVoltWattRespModeNullValue() { if (invVoltWattRespModeCase_ == 15) { return ((java.lang.Integer) invVoltWattRespMode_).intValue(); } return 0; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @param value The enum numeric value on the wire for invVoltWattRespModeNull to set. * @return This builder for chaining. */ public Builder setInvVoltWattRespModeNullValue(int value) { invVoltWattRespModeCase_ = 15; invVoltWattRespMode_ = value; onChanged(); return this; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return The invVoltWattRespModeNull. */ @java.lang.Override public com.google.protobuf.NullValue getInvVoltWattRespModeNull() { if (invVoltWattRespModeCase_ == 15) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invVoltWattRespMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @param value The invVoltWattRespModeNull to set. * @return This builder for chaining. */ public Builder setInvVoltWattRespModeNull(com.google.protobuf.NullValue value) { if (value == null) { throw new NullPointerException(); } invVoltWattRespModeCase_ = 15; invVoltWattRespMode_ = value.getNumber(); onChanged(); return this; } /** * .google.protobuf.NullValue invVoltWattRespModeNull = 15; * @return This builder for chaining. */ public Builder clearInvVoltWattRespModeNull() { if (invVoltWattRespModeCase_ == 15) { invVoltWattRespModeCase_ = 0; invVoltWattRespMode_ = null; onChanged(); } return this; } /** * bool invVoltWattRespModeSet = 16; * @return Whether the invVoltWattRespModeSet field is set. */ public boolean hasInvVoltWattRespModeSet() { return invVoltWattRespModeCase_ == 16; } /** * bool invVoltWattRespModeSet = 16; * @return The invVoltWattRespModeSet. */ public boolean getInvVoltWattRespModeSet() { if (invVoltWattRespModeCase_ == 16) { return (java.lang.Boolean) invVoltWattRespMode_; } return false; } /** * bool invVoltWattRespModeSet = 16; * @param value The invVoltWattRespModeSet to set. * @return This builder for chaining. */ public Builder setInvVoltWattRespModeSet(boolean value) { invVoltWattRespModeCase_ = 16; invVoltWattRespMode_ = value; onChanged(); return this; } /** * bool invVoltWattRespModeSet = 16; * @return This builder for chaining. */ public Builder clearInvVoltWattRespModeSet() { if (invVoltWattRespModeCase_ == 16) { invVoltWattRespModeCase_ = 0; invVoltWattRespMode_ = null; onChanged(); } return this; } private int invWattRespV1_ ; /** *
     **
     * Set point 1 in volts for inverter Volt-Watt response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invWattRespV1 = 17; * @return The invWattRespV1. */ @java.lang.Override public int getInvWattRespV1() { return invWattRespV1_; } /** *
     **
     * Set point 1 in volts for inverter Volt-Watt response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invWattRespV1 = 17; * @param value The invWattRespV1 to set. * @return This builder for chaining. */ public Builder setInvWattRespV1(int value) { invWattRespV1_ = value; bitField0_ |= 0x00010000; onChanged(); return this; } /** *
     **
     * Set point 1 in volts for inverter Volt-Watt response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invWattRespV1 = 17; * @return This builder for chaining. */ public Builder clearInvWattRespV1() { bitField0_ = (bitField0_ & ~0x00010000); invWattRespV1_ = 0; onChanged(); return this; } private int invWattRespV2_ ; /** *
     **
     * Set point 2 in volts for inverter Volt-Watt response mode. Permitted range is between 216 and 230 (inclusive).
     * 
* * int32 invWattRespV2 = 18; * @return The invWattRespV2. */ @java.lang.Override public int getInvWattRespV2() { return invWattRespV2_; } /** *
     **
     * Set point 2 in volts for inverter Volt-Watt response mode. Permitted range is between 216 and 230 (inclusive).
     * 
* * int32 invWattRespV2 = 18; * @param value The invWattRespV2 to set. * @return This builder for chaining. */ public Builder setInvWattRespV2(int value) { invWattRespV2_ = value; bitField0_ |= 0x00020000; onChanged(); return this; } /** *
     **
     * Set point 2 in volts for inverter Volt-Watt response mode. Permitted range is between 216 and 230 (inclusive).
     * 
* * int32 invWattRespV2 = 18; * @return This builder for chaining. */ public Builder clearInvWattRespV2() { bitField0_ = (bitField0_ & ~0x00020000); invWattRespV2_ = 0; onChanged(); return this; } private int invWattRespV3_ ; /** *
     **
     * Set point 3 in volts for inverter Volt-Watt response mode. Permitted range is between 235 and 255 (inclusive).
     * 
* * int32 invWattRespV3 = 19; * @return The invWattRespV3. */ @java.lang.Override public int getInvWattRespV3() { return invWattRespV3_; } /** *
     **
     * Set point 3 in volts for inverter Volt-Watt response mode. Permitted range is between 235 and 255 (inclusive).
     * 
* * int32 invWattRespV3 = 19; * @param value The invWattRespV3 to set. * @return This builder for chaining. */ public Builder setInvWattRespV3(int value) { invWattRespV3_ = value; bitField0_ |= 0x00040000; onChanged(); return this; } /** *
     **
     * Set point 3 in volts for inverter Volt-Watt response mode. Permitted range is between 235 and 255 (inclusive).
     * 
* * int32 invWattRespV3 = 19; * @return This builder for chaining. */ public Builder clearInvWattRespV3() { bitField0_ = (bitField0_ & ~0x00040000); invWattRespV3_ = 0; onChanged(); return this; } private int invWattRespV4_ ; /** *
     **
     * Set point 4 in volts for inverter Volt-Watt response mode. Permitted range is between 244 and 265 (inclusive).
     * 
* * int32 invWattRespV4 = 20; * @return The invWattRespV4. */ @java.lang.Override public int getInvWattRespV4() { return invWattRespV4_; } /** *
     **
     * Set point 4 in volts for inverter Volt-Watt response mode. Permitted range is between 244 and 265 (inclusive).
     * 
* * int32 invWattRespV4 = 20; * @param value The invWattRespV4 to set. * @return This builder for chaining. */ public Builder setInvWattRespV4(int value) { invWattRespV4_ = value; bitField0_ |= 0x00080000; onChanged(); return this; } /** *
     **
     * Set point 4 in volts for inverter Volt-Watt response mode. Permitted range is between 244 and 265 (inclusive).
     * 
* * int32 invWattRespV4 = 20; * @return This builder for chaining. */ public Builder clearInvWattRespV4() { bitField0_ = (bitField0_ & ~0x00080000); invWattRespV4_ = 0; onChanged(); return this; } private float invWattRespPAtV1_ ; /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV1 = 21; * @return The invWattRespPAtV1. */ @java.lang.Override public float getInvWattRespPAtV1() { return invWattRespPAtV1_; } /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV1 = 21; * @param value The invWattRespPAtV1 to set. * @return This builder for chaining. */ public Builder setInvWattRespPAtV1(float value) { invWattRespPAtV1_ = value; bitField0_ |= 0x00100000; onChanged(); return this; } /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV1 = 21; * @return This builder for chaining. */ public Builder clearInvWattRespPAtV1() { bitField0_ = (bitField0_ & ~0x00100000); invWattRespPAtV1_ = 0F; onChanged(); return this; } private float invWattRespPAtV2_ ; /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV2 = 22; * @return The invWattRespPAtV2. */ @java.lang.Override public float getInvWattRespPAtV2() { return invWattRespPAtV2_; } /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV2 = 22; * @param value The invWattRespPAtV2 to set. * @return This builder for chaining. */ public Builder setInvWattRespPAtV2(float value) { invWattRespPAtV2_ = value; bitField0_ |= 0x00200000; onChanged(); return this; } /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV2 = 22; * @return This builder for chaining. */ public Builder clearInvWattRespPAtV2() { bitField0_ = (bitField0_ & ~0x00200000); invWattRespPAtV2_ = 0F; onChanged(); return this; } private float invWattRespPAtV3_ ; /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV3 = 23; * @return The invWattRespPAtV3. */ @java.lang.Override public float getInvWattRespPAtV3() { return invWattRespPAtV3_; } /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV3 = 23; * @param value The invWattRespPAtV3 to set. * @return This builder for chaining. */ public Builder setInvWattRespPAtV3(float value) { invWattRespPAtV3_ = value; bitField0_ |= 0x00400000; onChanged(); return this; } /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 1 (inclusive).
     * 
* * float invWattRespPAtV3 = 23; * @return This builder for chaining. */ public Builder clearInvWattRespPAtV3() { bitField0_ = (bitField0_ & ~0x00400000); invWattRespPAtV3_ = 0F; onChanged(); return this; } private float invWattRespPAtV4_ ; /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 0.2 (inclusive).
     * 
* * float invWattRespPAtV4 = 24; * @return The invWattRespPAtV4. */ @java.lang.Override public float getInvWattRespPAtV4() { return invWattRespPAtV4_; } /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 0.2 (inclusive).
     * 
* * float invWattRespPAtV4 = 24; * @param value The invWattRespPAtV4 to set. * @return This builder for chaining. */ public Builder setInvWattRespPAtV4(float value) { invWattRespPAtV4_ = value; bitField0_ |= 0x00800000; onChanged(); return this; } /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-Watt response mode. Permitted range is between 0 and 0.2 (inclusive).
     * 
* * float invWattRespPAtV4 = 24; * @return This builder for chaining. */ public Builder clearInvWattRespPAtV4() { bitField0_ = (bitField0_ & ~0x00800000); invWattRespPAtV4_ = 0F; onChanged(); return this; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return Whether the invVoltVarRespModeNull field is set. */ @java.lang.Override public boolean hasInvVoltVarRespModeNull() { return invVoltVarRespModeCase_ == 25; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return The enum numeric value on the wire for invVoltVarRespModeNull. */ @java.lang.Override public int getInvVoltVarRespModeNullValue() { if (invVoltVarRespModeCase_ == 25) { return ((java.lang.Integer) invVoltVarRespMode_).intValue(); } return 0; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @param value The enum numeric value on the wire for invVoltVarRespModeNull to set. * @return This builder for chaining. */ public Builder setInvVoltVarRespModeNullValue(int value) { invVoltVarRespModeCase_ = 25; invVoltVarRespMode_ = value; onChanged(); return this; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return The invVoltVarRespModeNull. */ @java.lang.Override public com.google.protobuf.NullValue getInvVoltVarRespModeNull() { if (invVoltVarRespModeCase_ == 25) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invVoltVarRespMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @param value The invVoltVarRespModeNull to set. * @return This builder for chaining. */ public Builder setInvVoltVarRespModeNull(com.google.protobuf.NullValue value) { if (value == null) { throw new NullPointerException(); } invVoltVarRespModeCase_ = 25; invVoltVarRespMode_ = value.getNumber(); onChanged(); return this; } /** * .google.protobuf.NullValue invVoltVarRespModeNull = 25; * @return This builder for chaining. */ public Builder clearInvVoltVarRespModeNull() { if (invVoltVarRespModeCase_ == 25) { invVoltVarRespModeCase_ = 0; invVoltVarRespMode_ = null; onChanged(); } return this; } /** * bool invVoltVarRespModeSet = 26; * @return Whether the invVoltVarRespModeSet field is set. */ public boolean hasInvVoltVarRespModeSet() { return invVoltVarRespModeCase_ == 26; } /** * bool invVoltVarRespModeSet = 26; * @return The invVoltVarRespModeSet. */ public boolean getInvVoltVarRespModeSet() { if (invVoltVarRespModeCase_ == 26) { return (java.lang.Boolean) invVoltVarRespMode_; } return false; } /** * bool invVoltVarRespModeSet = 26; * @param value The invVoltVarRespModeSet to set. * @return This builder for chaining. */ public Builder setInvVoltVarRespModeSet(boolean value) { invVoltVarRespModeCase_ = 26; invVoltVarRespMode_ = value; onChanged(); return this; } /** * bool invVoltVarRespModeSet = 26; * @return This builder for chaining. */ public Builder clearInvVoltVarRespModeSet() { if (invVoltVarRespModeCase_ == 26) { invVoltVarRespModeCase_ = 0; invVoltVarRespMode_ = null; onChanged(); } return this; } private int invVarRespV1_ ; /** *
     **
     * Set point 1 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV1 = 27; * @return The invVarRespV1. */ @java.lang.Override public int getInvVarRespV1() { return invVarRespV1_; } /** *
     **
     * Set point 1 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV1 = 27; * @param value The invVarRespV1 to set. * @return This builder for chaining. */ public Builder setInvVarRespV1(int value) { invVarRespV1_ = value; bitField0_ |= 0x04000000; onChanged(); return this; } /** *
     **
     * Set point 1 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV1 = 27; * @return This builder for chaining. */ public Builder clearInvVarRespV1() { bitField0_ = (bitField0_ & ~0x04000000); invVarRespV1_ = 0; onChanged(); return this; } private int invVarRespV2_ ; /** *
     **
     * Set point 2 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV2 = 28; * @return The invVarRespV2. */ @java.lang.Override public int getInvVarRespV2() { return invVarRespV2_; } /** *
     **
     * Set point 2 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV2 = 28; * @param value The invVarRespV2 to set. * @return This builder for chaining. */ public Builder setInvVarRespV2(int value) { invVarRespV2_ = value; bitField0_ |= 0x08000000; onChanged(); return this; } /** *
     **
     * Set point 2 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV2 = 28; * @return This builder for chaining. */ public Builder clearInvVarRespV2() { bitField0_ = (bitField0_ & ~0x08000000); invVarRespV2_ = 0; onChanged(); return this; } private int invVarRespV3_ ; /** *
     **
     * Set point 3 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV3 = 29; * @return The invVarRespV3. */ @java.lang.Override public int getInvVarRespV3() { return invVarRespV3_; } /** *
     **
     * Set point 3 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV3 = 29; * @param value The invVarRespV3 to set. * @return This builder for chaining. */ public Builder setInvVarRespV3(int value) { invVarRespV3_ = value; bitField0_ |= 0x10000000; onChanged(); return this; } /** *
     **
     * Set point 3 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV3 = 29; * @return This builder for chaining. */ public Builder clearInvVarRespV3() { bitField0_ = (bitField0_ & ~0x10000000); invVarRespV3_ = 0; onChanged(); return this; } private int invVarRespV4_ ; /** *
     **
     * Set point 4 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV4 = 30; * @return The invVarRespV4. */ @java.lang.Override public int getInvVarRespV4() { return invVarRespV4_; } /** *
     **
     * Set point 4 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV4 = 30; * @param value The invVarRespV4 to set. * @return This builder for chaining. */ public Builder setInvVarRespV4(int value) { invVarRespV4_ = value; bitField0_ |= 0x20000000; onChanged(); return this; } /** *
     **
     * Set point 4 in volts for inverter Volt-VAr response mode. Permitted range is between 200 and 300 (inclusive).
     * 
* * int32 invVarRespV4 = 30; * @return This builder for chaining. */ public Builder clearInvVarRespV4() { bitField0_ = (bitField0_ & ~0x20000000); invVarRespV4_ = 0; onChanged(); return this; } private float invVarRespQAtV1_ ; /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between 0 and 0.6 (inclusive).
     * 
* * float invVarRespQAtV1 = 31; * @return The invVarRespQAtV1. */ @java.lang.Override public float getInvVarRespQAtV1() { return invVarRespQAtV1_; } /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between 0 and 0.6 (inclusive).
     * 
* * float invVarRespQAtV1 = 31; * @param value The invVarRespQAtV1 to set. * @return This builder for chaining. */ public Builder setInvVarRespQAtV1(float value) { invVarRespQAtV1_ = value; bitField0_ |= 0x40000000; onChanged(); return this; } /** *
     **
     * Power output set point 1 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between 0 and 0.6 (inclusive).
     * 
* * float invVarRespQAtV1 = 31; * @return This builder for chaining. */ public Builder clearInvVarRespQAtV1() { bitField0_ = (bitField0_ & ~0x40000000); invVarRespQAtV1_ = 0F; onChanged(); return this; } private float invVarRespQAtV2_ ; /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV2 = 32; * @return The invVarRespQAtV2. */ @java.lang.Override public float getInvVarRespQAtV2() { return invVarRespQAtV2_; } /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV2 = 32; * @param value The invVarRespQAtV2 to set. * @return This builder for chaining. */ public Builder setInvVarRespQAtV2(float value) { invVarRespQAtV2_ = value; bitField0_ |= 0x80000000; onChanged(); return this; } /** *
     **
     * Power output set point 2 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV2 = 32; * @return This builder for chaining. */ public Builder clearInvVarRespQAtV2() { bitField0_ = (bitField0_ & ~0x80000000); invVarRespQAtV2_ = 0F; onChanged(); return this; } private float invVarRespQAtV3_ ; /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV3 = 33; * @return The invVarRespQAtV3. */ @java.lang.Override public float getInvVarRespQAtV3() { return invVarRespQAtV3_; } /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV3 = 33; * @param value The invVarRespQAtV3 to set. * @return This builder for chaining. */ public Builder setInvVarRespQAtV3(float value) { invVarRespQAtV3_ = value; bitField1_ |= 0x00000001; onChanged(); return this; } /** *
     **
     * Power output set point 3 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -1 and 1 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV3 = 33; * @return This builder for chaining. */ public Builder clearInvVarRespQAtV3() { bitField1_ = (bitField1_ & ~0x00000001); invVarRespQAtV3_ = 0F; onChanged(); return this; } private float invVarRespQAtV4_ ; /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -0.6 and 0 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV4 = 34; * @return The invVarRespQAtV4. */ @java.lang.Override public float getInvVarRespQAtV4() { return invVarRespQAtV4_; } /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -0.6 and 0 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV4 = 34; * @param value The invVarRespQAtV4 to set. * @return This builder for chaining. */ public Builder setInvVarRespQAtV4(float value) { invVarRespQAtV4_ = value; bitField1_ |= 0x00000002; onChanged(); return this; } /** *
     **
     * Power output set point 4 as a percentage of rated output for inverter Volt-VAr response mode. Permitted range is between -0.6 and 0 (inclusive) with a
     * negative number referring to a sink.
     * 
* * float invVarRespQAtV4 = 34; * @return This builder for chaining. */ public Builder clearInvVarRespQAtV4() { bitField1_ = (bitField1_ & ~0x00000002); invVarRespQAtV4_ = 0F; onChanged(); return this; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return Whether the invReactivePowerModeNull field is set. */ @java.lang.Override public boolean hasInvReactivePowerModeNull() { return invReactivePowerModeCase_ == 35; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return The enum numeric value on the wire for invReactivePowerModeNull. */ @java.lang.Override public int getInvReactivePowerModeNullValue() { if (invReactivePowerModeCase_ == 35) { return ((java.lang.Integer) invReactivePowerMode_).intValue(); } return 0; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @param value The enum numeric value on the wire for invReactivePowerModeNull to set. * @return This builder for chaining. */ public Builder setInvReactivePowerModeNullValue(int value) { invReactivePowerModeCase_ = 35; invReactivePowerMode_ = value; onChanged(); return this; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return The invReactivePowerModeNull. */ @java.lang.Override public com.google.protobuf.NullValue getInvReactivePowerModeNull() { if (invReactivePowerModeCase_ == 35) { com.google.protobuf.NullValue result = com.google.protobuf.NullValue.forNumber( (java.lang.Integer) invReactivePowerMode_); return result == null ? com.google.protobuf.NullValue.UNRECOGNIZED : result; } return com.google.protobuf.NullValue.NULL_VALUE; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @param value The invReactivePowerModeNull to set. * @return This builder for chaining. */ public Builder setInvReactivePowerModeNull(com.google.protobuf.NullValue value) { if (value == null) { throw new NullPointerException(); } invReactivePowerModeCase_ = 35; invReactivePowerMode_ = value.getNumber(); onChanged(); return this; } /** * .google.protobuf.NullValue invReactivePowerModeNull = 35; * @return This builder for chaining. */ public Builder clearInvReactivePowerModeNull() { if (invReactivePowerModeCase_ == 35) { invReactivePowerModeCase_ = 0; invReactivePowerMode_ = null; onChanged(); } return this; } /** * bool invReactivePowerModeSet = 36; * @return Whether the invReactivePowerModeSet field is set. */ public boolean hasInvReactivePowerModeSet() { return invReactivePowerModeCase_ == 36; } /** * bool invReactivePowerModeSet = 36; * @return The invReactivePowerModeSet. */ public boolean getInvReactivePowerModeSet() { if (invReactivePowerModeCase_ == 36) { return (java.lang.Boolean) invReactivePowerMode_; } return false; } /** * bool invReactivePowerModeSet = 36; * @param value The invReactivePowerModeSet to set. * @return This builder for chaining. */ public Builder setInvReactivePowerModeSet(boolean value) { invReactivePowerModeCase_ = 36; invReactivePowerMode_ = value; onChanged(); return this; } /** * bool invReactivePowerModeSet = 36; * @return This builder for chaining. */ public Builder clearInvReactivePowerModeSet() { if (invReactivePowerModeCase_ == 36) { invReactivePowerModeCase_ = 0; invReactivePowerMode_ = null; onChanged(); } return this; } private float invFixReactivePower_ ; /** *
     **
     * Static Reactive Power, specified in a percentage output of the system. Permitted range is between -1.0 and 1.0 (inclusive), with a negative
     * sign referring to “sink”.
     * 
* * float invFixReactivePower = 37; * @return The invFixReactivePower. */ @java.lang.Override public float getInvFixReactivePower() { return invFixReactivePower_; } /** *
     **
     * Static Reactive Power, specified in a percentage output of the system. Permitted range is between -1.0 and 1.0 (inclusive), with a negative
     * sign referring to “sink”.
     * 
* * float invFixReactivePower = 37; * @param value The invFixReactivePower to set. * @return This builder for chaining. */ public Builder setInvFixReactivePower(float value) { invFixReactivePower_ = value; bitField1_ |= 0x00000010; onChanged(); return this; } /** *
     **
     * Static Reactive Power, specified in a percentage output of the system. Permitted range is between -1.0 and 1.0 (inclusive), with a negative
     * sign referring to “sink”.
     * 
* * float invFixReactivePower = 37; * @return This builder for chaining. */ public Builder clearInvFixReactivePower() { bitField1_ = (bitField1_ & ~0x00000010); invFixReactivePower_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) } // @@protoc_insertion_point(class_scope:zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection) private static final com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection(); } public static com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public PowerElectronicsConnection parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.zepben.protobuf.cim.iec61970.base.wires.PowerElectronicsConnection getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy