All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math.analysis.RombergIntegrator Maven / Gradle / Ivy

There is a newer version: 20040218.045431
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MaxIterationsExceededException;

/**
 * Implements the 
 * Romberg Algorithm for integration of real univariate functions. For
 * reference, see Introduction to Numerical Analysis, ISBN 038795452X,
 * chapter 3.
 * 

* Romberg integration employs k successvie refinements of the trapezoid * rule to remove error terms less than order O(N^(-2k)). Simpson's rule * is a special case of k = 2.

* * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ * @since 1.2 */ public class RombergIntegrator extends UnivariateRealIntegratorImpl { /** serializable version identifier */ private static final long serialVersionUID = -1058849527738180243L; /** * Construct an integrator for the given function. * * @param f function to integrate */ public RombergIntegrator(UnivariateRealFunction f) { super(f, 32); } /** * Integrate the function in the given interval. * * @param min the lower bound for the interval * @param max the upper bound for the interval * @return the value of integral * @throws MaxIterationsExceededException if the maximum iteration count is exceeded * or the integrator detects convergence problems otherwise * @throws FunctionEvaluationException if an error occurs evaluating the * function * @throws IllegalArgumentException if any parameters are invalid */ public double integrate(double min, double max) throws MaxIterationsExceededException, FunctionEvaluationException, IllegalArgumentException { int i = 1, j, m = maximalIterationCount + 1; // Array strcture here can be improved for better space // efficiency because only the lower triangle is used. double r, t[][] = new double[m][m], s, olds; clearResult(); verifyInterval(min, max); verifyIterationCount(); TrapezoidIntegrator qtrap = new TrapezoidIntegrator(this.f); t[0][0] = qtrap.stage(min, max, 0); olds = t[0][0]; while (i <= maximalIterationCount) { t[i][0] = qtrap.stage(min, max, i); for (j = 1; j <= i; j++) { // Richardson extrapolation coefficient r = (1L << (2 * j)) -1; t[i][j] = t[i][j-1] + (t[i][j-1] - t[i-1][j-1]) / r; } s = t[i][i]; if (i >= minimalIterationCount) { if (Math.abs(s - olds) <= Math.abs(relativeAccuracy * olds)) { setResult(s, i); return result; } } olds = s; i++; } throw new MaxIterationsExceededException(maximalIterationCount); } /** * Verifies that the iteration limits are valid and within the range. * * @throws IllegalArgumentException if not */ protected void verifyIterationCount() throws IllegalArgumentException { super.verifyIterationCount(); // at most 32 bisection refinements due to higher order divider if (maximalIterationCount > 32) { throw new IllegalArgumentException ("Iteration upper limit out of [0, 32] range: " + maximalIterationCount); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy