com.bulletphysics.dynamics.constraintsolver.JacobianEntry Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jbullet Show documentation
Show all versions of jbullet Show documentation
JBullet - Java port of Bullet Physics Library
The newest version!
/*
* Java port of Bullet (c) 2008 Martin Dvorak
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package com.bulletphysics.dynamics.constraintsolver;
import com.bulletphysics.BulletGlobals;
import com.bulletphysics.linearmath.VectorUtil;
import cz.advel.stack.Stack;
import javax.vecmath.Matrix3f;
import javax.vecmath.Vector3f;
//notes:
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
// which makes the btJacobianEntry memory layout 16 bytes
// if you only are interested in angular part, just feed massInvA and massInvB zero
/**
* Jacobian entry is an abstraction that allows to describe constraints.
* It can be used in combination with a constraint solver.
* Can be used to relate the effect of an impulse to the constraint error.
*
* @author jezek2
*/
public class JacobianEntry {
//protected final BulletStack stack = BulletStack.get();
public final Vector3f linearJointAxis = new Vector3f();
public final Vector3f aJ = new Vector3f();
public final Vector3f bJ = new Vector3f();
public final Vector3f m_0MinvJt = new Vector3f();
public final Vector3f m_1MinvJt = new Vector3f();
// Optimization: can be stored in the w/last component of one of the vectors
public float Adiag;
public JacobianEntry() {
}
/**
* Constraint between two different rigidbodies.
*/
public void init(Matrix3f world2A,
Matrix3f world2B,
Vector3f rel_pos1, Vector3f rel_pos2,
Vector3f jointAxis,
Vector3f inertiaInvA,
float massInvA,
Vector3f inertiaInvB,
float massInvB)
{
linearJointAxis.set(jointAxis);
aJ.cross(rel_pos1, linearJointAxis);
world2A.transform(aJ);
bJ.set(linearJointAxis);
bJ.negate();
bJ.cross(rel_pos2, bJ);
world2B.transform(bJ);
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
Adiag = massInvA + m_0MinvJt.dot(aJ) + massInvB + m_1MinvJt.dot(bJ);
assert (Adiag > 0f);
}
/**
* Angular constraint between two different rigidbodies.
*/
public void init(Vector3f jointAxis,
Matrix3f world2A,
Matrix3f world2B,
Vector3f inertiaInvA,
Vector3f inertiaInvB)
{
linearJointAxis.set(0f, 0f, 0f);
aJ.set(jointAxis);
world2A.transform(aJ);
bJ.set(jointAxis);
bJ.negate();
world2B.transform(bJ);
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
Adiag = m_0MinvJt.dot(aJ) + m_1MinvJt.dot(bJ);
assert (Adiag > 0f);
}
/**
* Angular constraint between two different rigidbodies.
*/
public void init(Vector3f axisInA,
Vector3f axisInB,
Vector3f inertiaInvA,
Vector3f inertiaInvB)
{
linearJointAxis.set(0f, 0f, 0f);
aJ.set(axisInA);
bJ.set(axisInB);
bJ.negate();
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
Adiag = m_0MinvJt.dot(aJ) + m_1MinvJt.dot(bJ);
assert (Adiag > 0f);
}
/**
* Constraint on one rigidbody.
*/
public void init(
Matrix3f world2A,
Vector3f rel_pos1, Vector3f rel_pos2,
Vector3f jointAxis,
Vector3f inertiaInvA,
float massInvA)
{
linearJointAxis.set(jointAxis);
aJ.cross(rel_pos1, jointAxis);
world2A.transform(aJ);
bJ.set(jointAxis);
bJ.negate();
bJ.cross(rel_pos2, bJ);
world2A.transform(bJ);
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
m_1MinvJt.set(0f, 0f, 0f);
Adiag = massInvA + m_0MinvJt.dot(aJ);
assert (Adiag > 0f);
}
public float getDiagonal() { return Adiag; }
/**
* For two constraints on the same rigidbody (for example vehicle friction).
*/
public float getNonDiagonal(JacobianEntry jacB, float massInvA) {
JacobianEntry jacA = this;
float lin = massInvA * jacA.linearJointAxis.dot(jacB.linearJointAxis);
float ang = jacA.m_0MinvJt.dot(jacB.aJ);
return lin + ang;
}
/**
* For two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies).
*/
public float getNonDiagonal(JacobianEntry jacB, float massInvA, float massInvB) {
JacobianEntry jacA = this;
Vector3f lin = Stack.alloc(Vector3f.class);
VectorUtil.mul(lin, jacA.linearJointAxis, jacB.linearJointAxis);
Vector3f ang0 = Stack.alloc(Vector3f.class);
VectorUtil.mul(ang0, jacA.m_0MinvJt, jacB.aJ);
Vector3f ang1 = Stack.alloc(Vector3f.class);
VectorUtil.mul(ang1, jacA.m_1MinvJt, jacB.bJ);
Vector3f lin0 = Stack.alloc(Vector3f.class);
lin0.scale(massInvA, lin);
Vector3f lin1 = Stack.alloc(Vector3f.class);
lin1.scale(massInvB, lin);
Vector3f sum = Stack.alloc(Vector3f.class);
VectorUtil.add(sum, ang0, ang1, lin0, lin1);
return sum.x + sum.y + sum.z;
}
public float getRelativeVelocity(Vector3f linvelA, Vector3f angvelA, Vector3f linvelB, Vector3f angvelB) {
Vector3f linrel = Stack.alloc(Vector3f.class);
linrel.sub(linvelA, linvelB);
Vector3f angvela = Stack.alloc(Vector3f.class);
VectorUtil.mul(angvela, angvelA, aJ);
Vector3f angvelb = Stack.alloc(Vector3f.class);
VectorUtil.mul(angvelb, angvelB, bJ);
VectorUtil.mul(linrel, linrel, linearJointAxis);
angvela.add(angvelb);
angvela.add(linrel);
float rel_vel2 = angvela.x + angvela.y + angvela.z;
return rel_vel2 + BulletGlobals.FLT_EPSILON;
}
}