com.bulletphysics.collision.broadphase.Dbvt Maven / Gradle / Ivy
/*
* Java port of Bullet (c) 2008 Martin Dvorak
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
// Dbvt implementation by Nathanael Presson
package com.bulletphysics.collision.broadphase;
import com.bulletphysics.BulletGlobals;
import com.bulletphysics.linearmath.MiscUtil;
import com.bulletphysics.linearmath.Transform;
import com.bulletphysics.util.IntArrayList;
import com.bulletphysics.util.ObjectArrayList;
import cz.advel.stack.Stack;
import java.util.Collections;
import javax.vecmath.Vector3f;
/**
*
* @author jezek2
*/
public class Dbvt {
public static final int SIMPLE_STACKSIZE = 64;
public static final int DOUBLE_STACKSIZE = SIMPLE_STACKSIZE * 2;
public Node root = null;
public Node free = null;
public int lkhd = -1;
public int leaves = 0;
public /*unsigned*/ int opath = 0;
public Dbvt() {
}
public void clear() {
if (root != null) {
recursedeletenode(this, root);
}
//btAlignedFree(m_free);
free = null;
}
public boolean empty() {
return (root == null);
}
public void optimizeBottomUp() {
if (root != null) {
ObjectArrayList leaves = new ObjectArrayList(this.leaves);
fetchleaves(this, root, leaves);
bottomup(this, leaves);
root = leaves.getQuick(0);
}
}
public void optimizeTopDown() {
optimizeTopDown(128);
}
public void optimizeTopDown(int bu_treshold) {
if (root != null) {
ObjectArrayList leaves = new ObjectArrayList(this.leaves);
fetchleaves(this, root, leaves);
root = topdown(this, leaves, bu_treshold);
}
}
public void optimizeIncremental(int passes) {
if (passes < 0) {
passes = leaves;
}
if (root != null && (passes > 0)) {
Node[] root_ref = new Node[1];
do {
Node node = root;
int bit = 0;
while (node.isinternal()) {
root_ref[0] = root;
node = sort(node, root_ref).childs[(opath >>> bit) & 1];
root = root_ref[0];
bit = (bit + 1) & (/*sizeof(unsigned)*/4 * 8 - 1);
}
update(node);
++opath;
}
while ((--passes) != 0);
}
}
public Node insert(DbvtAabbMm box, Object data) {
Node leaf = createnode(this, null, box, data);
insertleaf(this, root, leaf);
leaves++;
return leaf;
}
public void update(Node leaf) {
update(leaf, -1);
}
public void update(Node leaf, int lookahead) {
Node root = removeleaf(this, leaf);
if (root != null) {
if (lookahead >= 0) {
for (int i = 0; (i < lookahead) && root.parent != null; i++) {
root = root.parent;
}
}
else {
root = this.root;
}
}
insertleaf(this, root, leaf);
}
public void update(Node leaf, DbvtAabbMm volume) {
Node root = removeleaf(this, leaf);
if (root != null) {
if (lkhd >= 0) {
for (int i = 0; (i < lkhd) && root.parent != null; i++) {
root = root.parent;
}
}
else {
root = this.root;
}
}
leaf.volume.set(volume);
insertleaf(this, root, leaf);
}
public boolean update(Node leaf, DbvtAabbMm volume, Vector3f velocity, float margin) {
if (leaf.volume.Contain(volume)) {
return false;
}
Vector3f tmp = Stack.alloc(Vector3f.class);
tmp.set(margin, margin, margin);
volume.Expand(tmp);
volume.SignedExpand(velocity);
update(leaf, volume);
return true;
}
public boolean update(Node leaf, DbvtAabbMm volume, Vector3f velocity) {
if (leaf.volume.Contain(volume)) {
return false;
}
volume.SignedExpand(velocity);
update(leaf, volume);
return true;
}
public boolean update(Node leaf, DbvtAabbMm volume, float margin) {
if (leaf.volume.Contain(volume)) {
return false;
}
Vector3f tmp = Stack.alloc(Vector3f.class);
tmp.set(margin, margin, margin);
volume.Expand(tmp);
update(leaf, volume);
return true;
}
public void remove(Node leaf) {
removeleaf(this, leaf);
deletenode(this, leaf);
leaves--;
}
public void write(IWriter iwriter) {
throw new UnsupportedOperationException();
}
public void clone(Dbvt dest) {
clone(dest, null);
}
public void clone(Dbvt dest, IClone iclone) {
throw new UnsupportedOperationException();
}
public static int countLeaves(Node node) {
if (node.isinternal()) {
return countLeaves(node.childs[0]) + countLeaves(node.childs[1]);
}
else {
return 1;
}
}
public static void extractLeaves(Node node, ObjectArrayList leaves) {
if (node.isinternal()) {
extractLeaves(node.childs[0], leaves);
extractLeaves(node.childs[1], leaves);
}
else {
leaves.add(node);
}
}
public static void enumNodes(Node root, ICollide policy) {
//DBVT_CHECKTYPE
policy.Process(root);
if (root.isinternal()) {
enumNodes(root.childs[0], policy);
enumNodes(root.childs[1], policy);
}
}
public static void enumLeaves(Node root, ICollide policy) {
//DBVT_CHECKTYPE
if (root.isinternal()) {
enumLeaves(root.childs[0], policy);
enumLeaves(root.childs[1], policy);
}
else {
policy.Process(root);
}
}
public static void collideTT(Node root0, Node root1, ICollide policy) {
//DBVT_CHECKTYPE
if (root0 != null && root1 != null) {
ObjectArrayList stack = new ObjectArrayList(DOUBLE_STACKSIZE);
stack.add(new sStkNN(root0, root1));
do {
sStkNN p = stack.remove(stack.size() - 1);
if (p.a == p.b) {
if (p.a.isinternal()) {
stack.add(new sStkNN(p.a.childs[0], p.a.childs[0]));
stack.add(new sStkNN(p.a.childs[1], p.a.childs[1]));
stack.add(new sStkNN(p.a.childs[0], p.a.childs[1]));
}
}
else if (DbvtAabbMm.Intersect(p.a.volume, p.b.volume)) {
if (p.a.isinternal()) {
if (p.b.isinternal()) {
stack.add(new sStkNN(p.a.childs[0], p.b.childs[0]));
stack.add(new sStkNN(p.a.childs[1], p.b.childs[0]));
stack.add(new sStkNN(p.a.childs[0], p.b.childs[1]));
stack.add(new sStkNN(p.a.childs[1], p.b.childs[1]));
}
else {
stack.add(new sStkNN(p.a.childs[0], p.b));
stack.add(new sStkNN(p.a.childs[1], p.b));
}
}
else {
if (p.b.isinternal()) {
stack.add(new sStkNN(p.a, p.b.childs[0]));
stack.add(new sStkNN(p.a, p.b.childs[1]));
}
else {
policy.Process(p.a, p.b);
}
}
}
}
while (stack.size() > 0);
}
}
public static void collideTT(Node root0, Node root1, Transform xform, ICollide policy) {
//DBVT_CHECKTYPE
if (root0 != null && root1 != null) {
ObjectArrayList stack = new ObjectArrayList(DOUBLE_STACKSIZE);
stack.add(new sStkNN(root0, root1));
do {
sStkNN p = stack.remove(stack.size() - 1);
if (p.a == p.b) {
if (p.a.isinternal()) {
stack.add(new sStkNN(p.a.childs[0], p.a.childs[0]));
stack.add(new sStkNN(p.a.childs[1], p.a.childs[1]));
stack.add(new sStkNN(p.a.childs[0], p.a.childs[1]));
}
}
else if (DbvtAabbMm.Intersect(p.a.volume, p.b.volume, xform)) {
if (p.a.isinternal()) {
if (p.b.isinternal()) {
stack.add(new sStkNN(p.a.childs[0], p.b.childs[0]));
stack.add(new sStkNN(p.a.childs[1], p.b.childs[0]));
stack.add(new sStkNN(p.a.childs[0], p.b.childs[1]));
stack.add(new sStkNN(p.a.childs[1], p.b.childs[1]));
}
else {
stack.add(new sStkNN(p.a.childs[0], p.b));
stack.add(new sStkNN(p.a.childs[1], p.b));
}
}
else {
if (p.b.isinternal()) {
stack.add(new sStkNN(p.a, p.b.childs[0]));
stack.add(new sStkNN(p.a, p.b.childs[1]));
}
else {
policy.Process(p.a, p.b);
}
}
}
}
while (stack.size() > 0);
}
}
public static void collideTT(Node root0, Transform xform0, Node root1, Transform xform1, ICollide policy) {
Transform xform = Stack.alloc(Transform.class);
xform.inverse(xform0);
xform.mul(xform1);
collideTT(root0, root1, xform, policy);
}
public static void collideTV(Node root, DbvtAabbMm volume, ICollide policy) {
//DBVT_CHECKTYPE
if (root != null) {
ObjectArrayList stack = new ObjectArrayList(SIMPLE_STACKSIZE);
stack.add(root);
do {
Node n = stack.remove(stack.size() - 1);
if (DbvtAabbMm.Intersect(n.volume, volume)) {
if (n.isinternal()) {
stack.add(n.childs[0]);
stack.add(n.childs[1]);
}
else {
policy.Process(n);
}
}
}
while (stack.size() > 0);
}
}
public static void collideRAY(Node root, Vector3f origin, Vector3f direction, ICollide policy) {
//DBVT_CHECKTYPE
if (root != null) {
Vector3f normal = Stack.alloc(Vector3f.class);
normal.normalize(direction);
Vector3f invdir = Stack.alloc(Vector3f.class);
invdir.set(1f / normal.x, 1f / normal.y, 1f / normal.z);
int[] signs = new int[] { direction.x<0 ? 1:0, direction.y<0 ? 1:0, direction.z<0 ? 1:0 };
ObjectArrayList stack = new ObjectArrayList(SIMPLE_STACKSIZE);
stack.add(root);
do {
Node node = stack.remove(stack.size() - 1);
if (DbvtAabbMm.Intersect(node.volume, origin, invdir, signs)) {
if (node.isinternal()) {
stack.add(node.childs[0]);
stack.add(node.childs[1]);
}
else {
policy.Process(node);
}
}
}
while (stack.size() != 0);
}
}
public static void collideKDOP(Node root, Vector3f[] normals, float[] offsets, int count, ICollide policy) {
//DBVT_CHECKTYPE
if (root != null) {
int inside = (1 << count) - 1;
ObjectArrayList stack = new ObjectArrayList(SIMPLE_STACKSIZE);
int[] signs = new int[4 * 8];
assert (count < (/*sizeof(signs)*/128 / /*sizeof(signs[0])*/ 4));
for (int i=0; i= 0) ? 1 : 0) +
((normals[i].y >= 0) ? 2 : 0) +
((normals[i].z >= 0) ? 4 : 0);
}
stack.add(new sStkNP(root, 0));
do {
sStkNP se = stack.remove(stack.size() - 1);
boolean out = false;
for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1) {
if (0 == (se.mask & j)) {
int side = se.node.volume.Classify(normals[i], offsets[i], signs[i]);
switch (side) {
case -1:
out = true;
break;
case +1:
se.mask |= j;
break;
}
}
}
if (!out) {
if ((se.mask != inside) && (se.node.isinternal())) {
stack.add(new sStkNP(se.node.childs[0], se.mask));
stack.add(new sStkNP(se.node.childs[1], se.mask));
}
else {
if (policy.AllLeaves(se.node)) {
enumLeaves(se.node, policy);
}
}
}
}
while (stack.size() != 0);
}
}
public static void collideOCL(Node root, Vector3f[] normals, float[] offsets, Vector3f sortaxis, int count, ICollide policy) {
collideOCL(root, normals, offsets, sortaxis, count, policy, true);
}
public static void collideOCL(Node root, Vector3f[] normals, float[] offsets, Vector3f sortaxis, int count, ICollide policy, boolean fullsort) {
//DBVT_CHECKTYPE
if (root != null) {
int srtsgns = (sortaxis.x >= 0 ? 1 : 0) +
(sortaxis.y >= 0 ? 2 : 0) +
(sortaxis.z >= 0 ? 4 : 0);
int inside = (1 << count) - 1;
ObjectArrayList stock = new ObjectArrayList();
IntArrayList ifree = new IntArrayList();
IntArrayList stack = new IntArrayList();
int[] signs = new int[/*sizeof(unsigned)*8*/4 * 8];
assert (count < (/*sizeof(signs)*/128 / /*sizeof(signs[0])*/ 4));
for (int i = 0; i < count; i++) {
signs[i] = ((normals[i].x >= 0) ? 1 : 0) +
((normals[i].y >= 0) ? 2 : 0) +
((normals[i].z >= 0) ? 4 : 0);
}
//stock.reserve(SIMPLE_STACKSIZE);
//stack.reserve(SIMPLE_STACKSIZE);
//ifree.reserve(SIMPLE_STACKSIZE);
stack.add(allocate(ifree, stock, new sStkNPS(root, 0, root.volume.ProjectMinimum(sortaxis, srtsgns))));
do {
// JAVA NOTE: check
int id = stack.remove(stack.size() - 1);
sStkNPS se = stock.getQuick(id);
ifree.add(id);
if (se.mask != inside) {
boolean out = false;
for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1) {
if (0 == (se.mask & j)) {
int side = se.node.volume.Classify(normals[i], offsets[i], signs[i]);
switch (side) {
case -1:
out = true;
break;
case +1:
se.mask |= j;
break;
}
}
}
if (out) {
continue;
}
}
if (policy.Descent(se.node)) {
if (se.node.isinternal()) {
Node[] pns = new Node[]{se.node.childs[0], se.node.childs[1]};
sStkNPS[] nes = new sStkNPS[]{new sStkNPS(pns[0], se.mask, pns[0].volume.ProjectMinimum(sortaxis, srtsgns)),
new sStkNPS(pns[1], se.mask, pns[1].volume.ProjectMinimum(sortaxis, srtsgns))
};
int q = nes[0].value < nes[1].value ? 1 : 0;
int j = stack.size();
if (fullsort && (j > 0)) {
/* Insert 0 */
j = nearest(stack, stock, nes[q].value, 0, stack.size());
stack.add(0);
//#if DBVT_USE_MEMMOVE
//memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
//#else
for (int k = stack.size() - 1; k > j; --k) {
stack.set(k, stack.get(k - 1));
//#endif
}
stack.set(j, allocate(ifree, stock, nes[q]));
/* Insert 1 */
j = nearest(stack, stock, nes[1 - q].value, j, stack.size());
stack.add(0);
//#if DBVT_USE_MEMMOVE
//memmove(&stack[j+1],&stack[j],sizeof(int)*(stack.size()-j-1));
//#else
for (int k = stack.size() - 1; k > j; --k) {
stack.set(k, stack.get(k - 1));
//#endif
}
stack.set(j, allocate(ifree, stock, nes[1 - q]));
}
else {
stack.add(allocate(ifree, stock, nes[q]));
stack.add(allocate(ifree, stock, nes[1 - q]));
}
}
else {
policy.Process(se.node, se.value);
}
}
}
while (stack.size() != 0);
}
}
public static void collideTU(Node root, ICollide policy) {
//DBVT_CHECKTYPE
if (root != null) {
ObjectArrayList stack = new ObjectArrayList(SIMPLE_STACKSIZE);
stack.add(root);
do {
Node n = stack.remove(stack.size() - 1);
if (policy.Descent(n)) {
if (n.isinternal()) {
stack.add(n.childs[0]);
stack.add(n.childs[1]);
}
else {
policy.Process(n);
}
}
}
while (stack.size() > 0);
}
}
public static int nearest(IntArrayList i, ObjectArrayList a, float v, int l, int h) {
int m = 0;
while (l < h) {
m = (l + h) >> 1;
if (a.getQuick(i.get(m)).value >= v) {
l = m + 1;
}
else {
h = m;
}
}
return h;
}
public static int allocate(IntArrayList ifree, ObjectArrayList stock, sStkNPS value) {
int i;
if (ifree.size() > 0) {
i = ifree.get(ifree.size() - 1);
ifree.remove(ifree.size() - 1);
stock.getQuick(i).set(value);
}
else {
i = stock.size();
stock.add(value);
}
return (i);
}
////////////////////////////////////////////////////////////////////////////
private static int indexof(Node node) {
return (node.parent.childs[1] == node)? 1:0;
}
private static DbvtAabbMm merge(DbvtAabbMm a, DbvtAabbMm b, DbvtAabbMm out) {
DbvtAabbMm.Merge(a, b, out);
return out;
}
// volume+edge lengths
private static float size(DbvtAabbMm a) {
Vector3f edges = a.Lengths(Stack.alloc(Vector3f.class));
return (edges.x * edges.y * edges.z +
edges.x + edges.y + edges.z);
}
private static void deletenode(Dbvt pdbvt, Node node) {
//btAlignedFree(pdbvt->m_free);
pdbvt.free = node;
}
private static void recursedeletenode(Dbvt pdbvt, Node node) {
if (!node.isleaf()) {
recursedeletenode(pdbvt, node.childs[0]);
recursedeletenode(pdbvt, node.childs[1]);
}
if (node == pdbvt.root) {
pdbvt.root = null;
}
deletenode(pdbvt, node);
}
private static Node createnode(Dbvt pdbvt, Node parent, DbvtAabbMm volume, Object data) {
Node node;
if (pdbvt.free != null) {
node = pdbvt.free;
pdbvt.free = null;
}
else {
node = new Node();
}
node.parent = parent;
node.volume.set(volume);
node.data = data;
node.childs[1] = null;
return node;
}
private static void insertleaf(Dbvt pdbvt, Node root, Node leaf) {
if (pdbvt.root == null) {
pdbvt.root = leaf;
leaf.parent = null;
}
else {
if (!root.isleaf()) {
do {
if (DbvtAabbMm.Proximity(root.childs[0].volume, leaf.volume) <
DbvtAabbMm.Proximity(root.childs[1].volume, leaf.volume)) {
root = root.childs[0];
}
else {
root = root.childs[1];
}
}
while (!root.isleaf());
}
Node prev = root.parent;
Node node = createnode(pdbvt, prev, merge(leaf.volume, root.volume, new DbvtAabbMm()), null);
if (prev != null) {
prev.childs[indexof(root)] = node;
node.childs[0] = root;
root.parent = node;
node.childs[1] = leaf;
leaf.parent = node;
do {
if (!prev.volume.Contain(node.volume)) {
DbvtAabbMm.Merge(prev.childs[0].volume, prev.childs[1].volume, prev.volume);
}
else {
break;
}
node = prev;
}
while (null != (prev = node.parent));
}
else {
node.childs[0] = root;
root.parent = node;
node.childs[1] = leaf;
leaf.parent = node;
pdbvt.root = node;
}
}
}
private static Node removeleaf(Dbvt pdbvt, Node leaf) {
if (leaf == pdbvt.root) {
pdbvt.root = null;
return null;
}
else {
Node parent = leaf.parent;
Node prev = parent.parent;
Node sibling = parent.childs[1 - indexof(leaf)];
if (prev != null) {
prev.childs[indexof(parent)] = sibling;
sibling.parent = prev;
deletenode(pdbvt, parent);
while (prev != null) {
DbvtAabbMm pb = prev.volume;
DbvtAabbMm.Merge(prev.childs[0].volume, prev.childs[1].volume, prev.volume);
if (DbvtAabbMm.NotEqual(pb, prev.volume)) {
prev = prev.parent;
}
else {
break;
}
}
return (prev != null? prev : pdbvt.root);
}
else {
pdbvt.root = sibling;
sibling.parent = null;
deletenode(pdbvt, parent);
return pdbvt.root;
}
}
}
private static void fetchleaves(Dbvt pdbvt, Node root, ObjectArrayList leaves) {
fetchleaves(pdbvt, root, leaves, -1);
}
private static void fetchleaves(Dbvt pdbvt, Node root, ObjectArrayList leaves, int depth) {
if (root.isinternal() && depth != 0) {
fetchleaves(pdbvt, root.childs[0], leaves, depth - 1);
fetchleaves(pdbvt, root.childs[1], leaves, depth - 1);
deletenode(pdbvt, root);
}
else {
leaves.add(root);
}
}
private static void split(ObjectArrayList leaves, ObjectArrayList left, ObjectArrayList right, Vector3f org, Vector3f axis) {
Vector3f tmp = Stack.alloc(Vector3f.class);
MiscUtil.resize(left, 0, Node.class);
MiscUtil.resize(right, 0, Node.class);
for (int i=0, ni=leaves.size(); i leaves) {
DbvtAabbMm volume = new DbvtAabbMm(leaves.getQuick(0).volume);
for (int i=1, ni=leaves.size(); i leaves) {
DbvtAabbMm tmpVolume = new DbvtAabbMm();
while (leaves.size() > 1) {
float minsize = BulletGlobals.SIMD_INFINITY;
int[] minidx = new int[] { -1, -1 };
for (int i=0; i leaves, int bu_treshold) {
if (leaves.size() > 1) {
if (leaves.size() > bu_treshold) {
DbvtAabbMm vol = bounds(leaves);
Vector3f org = vol.Center(Stack.alloc(Vector3f.class));
ObjectArrayList[] sets = new ObjectArrayList[2];
for (int i=0; i 0f? 1 : 0]++;
}
}
for (int i=0; i<3; i++) {
if ((splitcount[i][0] > 0) && (splitcount[i][1] > 0)) {
int midp = Math.abs(splitcount[i][0] - splitcount[i][1]);
if (midp < bestmidp) {
bestaxis = i;
bestmidp = midp;
}
}
}
if (bestaxis >= 0) {
//sets[0].reserve(splitcount[bestaxis][0]);
//sets[1].reserve(splitcount[bestaxis][1]);
split(leaves, sets[0], sets[1], org, axis[bestaxis]);
}
else {
//sets[0].reserve(leaves.size()/2+1);
//sets[1].reserve(leaves.size()/2);
for (int i=0, ni=leaves.size(); i n.hashCode()) {
int i = indexof(n);
int j = 1 - i;
Node s = p.childs[j];
Node q = p.parent;
assert (n == p.childs[i]);
if (q != null) {
q.childs[indexof(p)] = n;
}
else {
r[0] = n;
}
s.parent = n;
p.parent = n;
n.parent = q;
p.childs[0] = n.childs[0];
p.childs[1] = n.childs[1];
n.childs[0].parent = p;
n.childs[1].parent = p;
n.childs[i] = p;
n.childs[j] = s;
DbvtAabbMm.swap(p.volume, n.volume);
return p;
}
return n;
}
private static Node walkup(Node n, int count) {
while (n != null && (count--) != 0) {
n = n.parent;
}
return n;
}
////////////////////////////////////////////////////////////////////////////
public static class Node {
public final DbvtAabbMm volume = new DbvtAabbMm();
public Node parent;
public final Node[] childs = new Node[2];
public Object data;
public boolean isleaf() {
return childs[1] == null;
}
public boolean isinternal() {
return !isleaf();
}
}
/** Stack element */
public static class sStkNN {
public Node a;
public Node b;
public sStkNN(Node na, Node nb) {
a = na;
b = nb;
}
}
public static class sStkNP {
public Node node;
public int mask;
public sStkNP(Node n, int m) {
node = n;
mask = m;
}
}
public static class sStkNPS {
public Node node;
public int mask;
public float value;
public sStkNPS() {
}
public sStkNPS(Node n, int m, float v) {
node = n;
mask = m;
value = v;
}
public void set(sStkNPS o) {
node = o.node;
mask = o.mask;
value = o.value;
}
}
public static class sStkCLN {
public Node node;
public Node parent;
public sStkCLN(Node n, Node p) {
node = n;
parent = p;
}
}
public static class ICollide {
public void Process(Node n1, Node n2) {
}
public void Process(Node n) {
}
public void Process(Node n, float f) {
Process(n);
}
public boolean Descent(Node n) {
return true;
}
public boolean AllLeaves(Node n) {
return true;
}
}
public static abstract class IWriter {
public abstract void Prepare(Node root, int numnodes);
public abstract void WriteNode(Node n, int index, int parent, int child0, int child1);
public abstract void WriteLeaf(Node n, int index, int parent);
}
public static class IClone {
public void CloneLeaf(Node n) {
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy