com.bulletphysics.collision.narrowphase.VoronoiSimplexSolver Maven / Gradle / Ivy
/*
* Java port of Bullet (c) 2008 Martin Dvorak
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package com.bulletphysics.collision.narrowphase;
import com.bulletphysics.util.ObjectPool;
import com.bulletphysics.linearmath.VectorUtil;
import cz.advel.stack.Stack;
import cz.advel.stack.StaticAlloc;
import javax.vecmath.Vector3f;
/**
* VoronoiSimplexSolver is an implementation of the closest point distance algorithm
* from a 1-4 points simplex to the origin. Can be used with GJK, as an alternative
* to Johnson distance algorithm.
*
* @author jezek2
*/
public class VoronoiSimplexSolver extends SimplexSolverInterface {
//protected final BulletStack stack = BulletStack.get();
protected final ObjectPool subsimplexResultsPool = ObjectPool.get(SubSimplexClosestResult.class);
private static final int VORONOI_SIMPLEX_MAX_VERTS = 5;
private static final int VERTA = 0;
private static final int VERTB = 1;
private static final int VERTC = 2;
private static final int VERTD = 3;
public int numVertices;
public final Vector3f[] simplexVectorW = new Vector3f[VORONOI_SIMPLEX_MAX_VERTS];
public final Vector3f[] simplexPointsP = new Vector3f[VORONOI_SIMPLEX_MAX_VERTS];
public final Vector3f[] simplexPointsQ = new Vector3f[VORONOI_SIMPLEX_MAX_VERTS];
public final Vector3f cachedP1 = new Vector3f();
public final Vector3f cachedP2 = new Vector3f();
public final Vector3f cachedV = new Vector3f();
public final Vector3f lastW = new Vector3f();
public boolean cachedValidClosest;
public final SubSimplexClosestResult cachedBC = new SubSimplexClosestResult();
public boolean needsUpdate;
{
for (int i=0; i0);
numVertices--;
simplexVectorW[index].set(simplexVectorW[numVertices]);
simplexPointsP[index].set(simplexPointsP[numVertices]);
simplexPointsQ[index].set(simplexPointsQ[numVertices]);
}
public void reduceVertices(UsageBitfield usedVerts) {
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
removeVertex(3);
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
removeVertex(2);
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
removeVertex(1);
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
removeVertex(0);
}
@StaticAlloc
public boolean updateClosestVectorAndPoints() {
if (needsUpdate)
{
cachedBC.reset();
needsUpdate = false;
switch (numVertices())
{
case 0:
cachedValidClosest = false;
break;
case 1:
{
cachedP1.set(simplexPointsP[0]);
cachedP2.set(simplexPointsQ[0]);
cachedV.sub(cachedP1, cachedP2); //== m_simplexVectorW[0]
cachedBC.reset();
cachedBC.setBarycentricCoordinates(1f, 0f, 0f, 0f);
cachedValidClosest = cachedBC.isValid();
break;
}
case 2:
{
Vector3f tmp = Stack.alloc(Vector3f.class);
//closest point origin from line segment
Vector3f from = simplexVectorW[0];
Vector3f to = simplexVectorW[1];
Vector3f nearest = Stack.alloc(Vector3f.class);
Vector3f p = Stack.alloc(Vector3f.class);
p.set(0f, 0f, 0f);
Vector3f diff = Stack.alloc(Vector3f.class);
diff.sub(p, from);
Vector3f v = Stack.alloc(Vector3f.class);
v.sub(to, from);
float t = v.dot(diff);
if (t > 0) {
float dotVV = v.dot(v);
if (t < dotVV) {
t /= dotVV;
tmp.scale(t, v);
diff.sub(tmp);
cachedBC.usedVertices.usedVertexA = true;
cachedBC.usedVertices.usedVertexB = true;
} else {
t = 1;
diff.sub(v);
// reduce to 1 point
cachedBC.usedVertices.usedVertexB = true;
}
} else
{
t = 0;
//reduce to 1 point
cachedBC.usedVertices.usedVertexA = true;
}
cachedBC.setBarycentricCoordinates(1f-t, t, 0f, 0f);
tmp.scale(t, v);
nearest.add(from, tmp);
tmp.sub(simplexPointsP[1], simplexPointsP[0]);
tmp.scale(t);
cachedP1.add(simplexPointsP[0], tmp);
tmp.sub(simplexPointsQ[1], simplexPointsQ[0]);
tmp.scale(t);
cachedP2.add(simplexPointsQ[0], tmp);
cachedV.sub(cachedP1, cachedP2);
reduceVertices(cachedBC.usedVertices);
cachedValidClosest = cachedBC.isValid();
break;
}
case 3:
{
Vector3f tmp1 = Stack.alloc(Vector3f.class);
Vector3f tmp2 = Stack.alloc(Vector3f.class);
Vector3f tmp3 = Stack.alloc(Vector3f.class);
// closest point origin from triangle
Vector3f p = Stack.alloc(Vector3f.class);
p.set(0f, 0f, 0f);
Vector3f a = simplexVectorW[0];
Vector3f b = simplexVectorW[1];
Vector3f c = simplexVectorW[2];
closestPtPointTriangle(p,a,b,c,cachedBC);
tmp1.scale(cachedBC.barycentricCoords[0], simplexPointsP[0]);
tmp2.scale(cachedBC.barycentricCoords[1], simplexPointsP[1]);
tmp3.scale(cachedBC.barycentricCoords[2], simplexPointsP[2]);
VectorUtil.add(cachedP1, tmp1, tmp2, tmp3);
tmp1.scale(cachedBC.barycentricCoords[0], simplexPointsQ[0]);
tmp2.scale(cachedBC.barycentricCoords[1], simplexPointsQ[1]);
tmp3.scale(cachedBC.barycentricCoords[2], simplexPointsQ[2]);
VectorUtil.add(cachedP2, tmp1, tmp2, tmp3);
cachedV.sub(cachedP1, cachedP2);
reduceVertices(cachedBC.usedVertices);
cachedValidClosest = cachedBC.isValid();
break;
}
case 4:
{
Vector3f tmp1 = Stack.alloc(Vector3f.class);
Vector3f tmp2 = Stack.alloc(Vector3f.class);
Vector3f tmp3 = Stack.alloc(Vector3f.class);
Vector3f tmp4 = Stack.alloc(Vector3f.class);
Vector3f p = Stack.alloc(Vector3f.class);
p.set(0f, 0f, 0f);
Vector3f a = simplexVectorW[0];
Vector3f b = simplexVectorW[1];
Vector3f c = simplexVectorW[2];
Vector3f d = simplexVectorW[3];
boolean hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,cachedBC);
if (hasSeperation)
{
tmp1.scale(cachedBC.barycentricCoords[0], simplexPointsP[0]);
tmp2.scale(cachedBC.barycentricCoords[1], simplexPointsP[1]);
tmp3.scale(cachedBC.barycentricCoords[2], simplexPointsP[2]);
tmp4.scale(cachedBC.barycentricCoords[3], simplexPointsP[3]);
VectorUtil.add(cachedP1, tmp1, tmp2, tmp3, tmp4);
tmp1.scale(cachedBC.barycentricCoords[0], simplexPointsQ[0]);
tmp2.scale(cachedBC.barycentricCoords[1], simplexPointsQ[1]);
tmp3.scale(cachedBC.barycentricCoords[2], simplexPointsQ[2]);
tmp4.scale(cachedBC.barycentricCoords[3], simplexPointsQ[3]);
VectorUtil.add(cachedP2, tmp1, tmp2, tmp3, tmp4);
cachedV.sub(cachedP1, cachedP2);
reduceVertices (cachedBC.usedVertices);
} else
{
// printf("sub distance got penetration\n");
if (cachedBC.degenerate)
{
cachedValidClosest = false;
} else
{
cachedValidClosest = true;
//degenerate case == false, penetration = true + zero
cachedV.set(0f, 0f, 0f);
}
break;
}
cachedValidClosest = cachedBC.isValid();
//closest point origin from tetrahedron
break;
}
default:
{
cachedValidClosest = false;
}
}
}
return cachedValidClosest;
}
@StaticAlloc
public boolean closestPtPointTriangle(Vector3f p, Vector3f a, Vector3f b, Vector3f c, SubSimplexClosestResult result) {
result.usedVertices.reset();
// Check if P in vertex region outside A
Vector3f ab = Stack.alloc(Vector3f.class);
ab.sub(b, a);
Vector3f ac = Stack.alloc(Vector3f.class);
ac.sub(c, a);
Vector3f ap = Stack.alloc(Vector3f.class);
ap.sub(p, a);
float d1 = ab.dot(ap);
float d2 = ac.dot(ap);
if (d1 <= 0f && d2 <= 0f)
{
result.closestPointOnSimplex.set(a);
result.usedVertices.usedVertexA = true;
result.setBarycentricCoordinates(1f, 0f, 0f, 0f);
return true; // a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
Vector3f bp = Stack.alloc(Vector3f.class);
bp.sub(p, b);
float d3 = ab.dot(bp);
float d4 = ac.dot(bp);
if (d3 >= 0f && d4 <= d3)
{
result.closestPointOnSimplex.set(b);
result.usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(0, 1f, 0f, 0f);
return true; // b; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
float vc = d1*d4 - d3*d2;
if (vc <= 0f && d1 >= 0f && d3 <= 0f) {
float v = d1 / (d1 - d3);
result.closestPointOnSimplex.scaleAdd(v, ab, a);
result.usedVertices.usedVertexA = true;
result.usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(1f-v, v, 0f, 0f);
return true;
//return a + v * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
Vector3f cp = Stack.alloc(Vector3f.class);
cp.sub(p, c);
float d5 = ab.dot(cp);
float d6 = ac.dot(cp);
if (d6 >= 0f && d5 <= d6)
{
result.closestPointOnSimplex.set(c);
result.usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0f, 0f, 1f, 0f);
return true;//c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
float vb = d5*d2 - d1*d6;
if (vb <= 0f && d2 >= 0f && d6 <= 0f) {
float w = d2 / (d2 - d6);
result.closestPointOnSimplex.scaleAdd(w, ac, a);
result.usedVertices.usedVertexA = true;
result.usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1f-w, 0f, w, 0f);
return true;
//return a + w * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
float va = d3*d6 - d5*d4;
if (va <= 0f && (d4 - d3) >= 0f && (d5 - d6) >= 0f) {
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
Vector3f tmp = Stack.alloc(Vector3f.class);
tmp.sub(c, b);
result.closestPointOnSimplex.scaleAdd(w, tmp, b);
result.usedVertices.usedVertexB = true;
result.usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0, 1f-w, w, 0f);
return true;
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
float denom = 1f / (va + vb + vc);
float v = vb * denom;
float w = vc * denom;
Vector3f tmp1 = Stack.alloc(Vector3f.class);
Vector3f tmp2 = Stack.alloc(Vector3f.class);
tmp1.scale(v, ab);
tmp2.scale(w, ac);
VectorUtil.add(result.closestPointOnSimplex, a, tmp1, tmp2);
result.usedVertices.usedVertexA = true;
result.usedVertices.usedVertexB = true;
result.usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1f-v-w, v, w, 0f);
return true;
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w
}
/// Test if point p and d lie on opposite sides of plane through abc
@StaticAlloc
public static int pointOutsideOfPlane(Vector3f p, Vector3f a, Vector3f b, Vector3f c, Vector3f d)
{
Vector3f tmp = Stack.alloc(Vector3f.class);
Vector3f normal = Stack.alloc(Vector3f.class);
normal.sub(b, a);
tmp.sub(c, a);
normal.cross(normal, tmp);
tmp.sub(p, a);
float signp = tmp.dot(normal); // [AP AB AC]
tmp.sub(d, a);
float signd = tmp.dot(normal); // [AD AB AC]
//#ifdef CATCH_DEGENERATE_TETRAHEDRON
// #ifdef BT_USE_DOUBLE_PRECISION
// if (signd * signd < (btScalar(1e-8) * btScalar(1e-8)))
// {
// return -1;
// }
// #else
if (signd * signd < ((1e-4f) * (1e-4f)))
{
// printf("affine dependent/degenerate\n");//
return -1;
}
//#endif
//#endif
// Points on opposite sides if expression signs are opposite
return (signp * signd < 0f)? 1 : 0;
}
@StaticAlloc
public boolean closestPtPointTetrahedron(Vector3f p, Vector3f a, Vector3f b, Vector3f c, Vector3f d, SubSimplexClosestResult finalResult) {
SubSimplexClosestResult tempResult = subsimplexResultsPool.get();
tempResult.reset();
try {
Vector3f tmp = Stack.alloc(Vector3f.class);
Vector3f q = Stack.alloc(Vector3f.class);
// Start out assuming point inside all halfspaces, so closest to itself
finalResult.closestPointOnSimplex.set(p);
finalResult.usedVertices.reset();
finalResult.usedVertices.usedVertexA = true;
finalResult.usedVertices.usedVertexB = true;
finalResult.usedVertices.usedVertexC = true;
finalResult.usedVertices.usedVertexD = true;
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
{
finalResult.degenerate = true;
return false;
}
if (pointOutsideABC == 0 && pointOutsideACD == 0 && pointOutsideADB == 0 && pointOutsideBDC == 0)
{
return false;
}
float bestSqDist = Float.MAX_VALUE;
// If point outside face abc then compute closest point on abc
if (pointOutsideABC != 0)
{
closestPtPointTriangle(p, a, b, c,tempResult);
q.set(tempResult.closestPointOnSimplex);
tmp.sub(q, p);
float sqDist = tmp.dot(tmp);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) {
bestSqDist = sqDist;
finalResult.closestPointOnSimplex.set(q);
//convert result bitmask!
finalResult.usedVertices.reset();
finalResult.usedVertices.usedVertexA = tempResult.usedVertices.usedVertexA;
finalResult.usedVertices.usedVertexB = tempResult.usedVertices.usedVertexB;
finalResult.usedVertices.usedVertexC = tempResult.usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.barycentricCoords[VERTA],
tempResult.barycentricCoords[VERTB],
tempResult.barycentricCoords[VERTC],
0
);
}
}
// Repeat test for face acd
if (pointOutsideACD != 0)
{
closestPtPointTriangle(p, a, c, d,tempResult);
q.set(tempResult.closestPointOnSimplex);
//convert result bitmask!
tmp.sub(q, p);
float sqDist = tmp.dot(tmp);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.closestPointOnSimplex.set(q);
finalResult.usedVertices.reset();
finalResult.usedVertices.usedVertexA = tempResult.usedVertices.usedVertexA;
finalResult.usedVertices.usedVertexC = tempResult.usedVertices.usedVertexB;
finalResult.usedVertices.usedVertexD = tempResult.usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.barycentricCoords[VERTA],
0,
tempResult.barycentricCoords[VERTB],
tempResult.barycentricCoords[VERTC]
);
}
}
// Repeat test for face adb
if (pointOutsideADB != 0)
{
closestPtPointTriangle(p, a, d, b,tempResult);
q.set(tempResult.closestPointOnSimplex);
//convert result bitmask!
tmp.sub(q, p);
float sqDist = tmp.dot(tmp);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.closestPointOnSimplex.set(q);
finalResult.usedVertices.reset();
finalResult.usedVertices.usedVertexA = tempResult.usedVertices.usedVertexA;
finalResult.usedVertices.usedVertexB = tempResult.usedVertices.usedVertexC;
finalResult.usedVertices.usedVertexD = tempResult.usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
tempResult.barycentricCoords[VERTA],
tempResult.barycentricCoords[VERTC],
0,
tempResult.barycentricCoords[VERTB]
);
}
}
// Repeat test for face bdc
if (pointOutsideBDC != 0)
{
closestPtPointTriangle(p, b, d, c,tempResult);
q.set(tempResult.closestPointOnSimplex);
//convert result bitmask!
tmp.sub(q, p);
float sqDist = tmp.dot(tmp);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.closestPointOnSimplex.set(q);
finalResult.usedVertices.reset();
//
finalResult.usedVertices.usedVertexB = tempResult.usedVertices.usedVertexA;
finalResult.usedVertices.usedVertexC = tempResult.usedVertices.usedVertexC;
finalResult.usedVertices.usedVertexD = tempResult.usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
0,
tempResult.barycentricCoords[VERTA],
tempResult.barycentricCoords[VERTC],
tempResult.barycentricCoords[VERTB]
);
}
}
//help! we ended up full !
if (finalResult.usedVertices.usedVertexA &&
finalResult.usedVertices.usedVertexB &&
finalResult.usedVertices.usedVertexC &&
finalResult.usedVertices.usedVertexD)
{
return true;
}
return true;
}
finally {
subsimplexResultsPool.release(tempResult);
}
}
/**
* Clear the simplex, remove all the vertices.
*/
public void reset() {
cachedValidClosest = false;
numVertices = 0;
needsUpdate = true;
lastW.set(1e30f, 1e30f, 1e30f);
cachedBC.reset();
}
public void addVertex(Vector3f w, Vector3f p, Vector3f q) {
lastW.set(w);
needsUpdate = true;
simplexVectorW[numVertices].set(w);
simplexPointsP[numVertices].set(p);
simplexPointsQ[numVertices].set(q);
numVertices++;
}
/**
* Return/calculate the closest vertex.
*/
public boolean closest(Vector3f v) {
boolean succes = updateClosestVectorAndPoints();
v.set(cachedV);
return succes;
}
public float maxVertex() {
int i, numverts = numVertices();
float maxV = 0f;
for (i = 0; i < numverts; i++) {
float curLen2 = simplexVectorW[i].lengthSquared();
if (maxV < curLen2) {
maxV = curLen2;
}
}
return maxV;
}
public boolean fullSimplex() {
return (numVertices == 4);
}
public int getSimplex(Vector3f[] pBuf, Vector3f[] qBuf, Vector3f[] yBuf) {
for (int i = 0; i < numVertices(); i++) {
yBuf[i].set(simplexVectorW[i]);
pBuf[i].set(simplexPointsP[i]);
qBuf[i].set(simplexPointsQ[i]);
}
return numVertices();
}
public boolean inSimplex(Vector3f w) {
boolean found = false;
int i, numverts = numVertices();
//btScalar maxV = btScalar(0.);
//w is in the current (reduced) simplex
for (i = 0; i < numverts; i++) {
if (simplexVectorW[i].equals(w)) {
found = true;
}
}
//check in case lastW is already removed
if (w.equals(lastW)) {
return true;
}
return found;
}
public void backup_closest(Vector3f v) {
v.set(cachedV);
}
public boolean emptySimplex() {
return (numVertices() == 0);
}
public void compute_points(Vector3f p1, Vector3f p2) {
updateClosestVectorAndPoints();
p1.set(cachedP1);
p2.set(cachedP2);
}
public int numVertices() {
return numVertices;
}
////////////////////////////////////////////////////////////////////////////
public static class UsageBitfield {
public boolean usedVertexA;
public boolean usedVertexB;
public boolean usedVertexC;
public boolean usedVertexD;
public void reset() {
usedVertexA = false;
usedVertexB = false;
usedVertexC = false;
usedVertexD = false;
}
}
public static class SubSimplexClosestResult {
public final Vector3f closestPointOnSimplex = new Vector3f();
//MASK for m_usedVertices
//stores the simplex vertex-usage, using the MASK,
// if m_usedVertices & MASK then the related vertex is used
public final UsageBitfield usedVertices = new UsageBitfield();
public final float[] barycentricCoords = new float[4];
public boolean degenerate;
public void reset() {
degenerate = false;
setBarycentricCoordinates(0f, 0f, 0f, 0f);
usedVertices.reset();
}
public boolean isValid() {
boolean valid = (barycentricCoords[0] >= 0f) &&
(barycentricCoords[1] >= 0f) &&
(barycentricCoords[2] >= 0f) &&
(barycentricCoords[3] >= 0f);
return valid;
}
public void setBarycentricCoordinates(float a, float b, float c, float d) {
barycentricCoords[0] = a;
barycentricCoords[1] = b;
barycentricCoords[2] = c;
barycentricCoords[3] = d;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy