com.bulletphysics.collision.shapes.CompoundShape Maven / Gradle / Ivy
/*
* Java port of Bullet (c) 2008 Martin Dvorak
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package com.bulletphysics.collision.shapes;
import com.bulletphysics.collision.broadphase.BroadphaseNativeType;
import com.bulletphysics.linearmath.MatrixUtil;
import com.bulletphysics.linearmath.Transform;
import com.bulletphysics.linearmath.VectorUtil;
import com.bulletphysics.util.ObjectArrayList;
import cz.advel.stack.Stack;
import javax.vecmath.Matrix3f;
import javax.vecmath.Vector3f;
// JAVA NOTE: CompoundShape from 2.71
/**
* CompoundShape allows to store multiple other {@link CollisionShape}s. This allows
* for moving concave collision objects. This is more general than the {@link BvhTriangleMeshShape}.
*
* @author jezek2
*/
public class CompoundShape extends CollisionShape {
private final ObjectArrayList children = new ObjectArrayList();
private final Vector3f localAabbMin = new Vector3f(1e30f, 1e30f, 1e30f);
private final Vector3f localAabbMax = new Vector3f(-1e30f, -1e30f, -1e30f);
private OptimizedBvh aabbTree = null;
private float collisionMargin = 0f;
protected final Vector3f localScaling = new Vector3f(1f, 1f, 1f);
public void addChildShape(Transform localTransform, CollisionShape shape) {
//m_childTransforms.push_back(localTransform);
//m_childShapes.push_back(shape);
CompoundShapeChild child = new CompoundShapeChild();
child.transform.set(localTransform);
child.childShape = shape;
child.childShapeType = shape.getShapeType();
child.childMargin = shape.getMargin();
children.add(child);
// extend the local aabbMin/aabbMax
Vector3f _localAabbMin = Stack.alloc(Vector3f.class), _localAabbMax = Stack.alloc(Vector3f.class);
shape.getAabb(localTransform, _localAabbMin, _localAabbMax);
// JAVA NOTE: rewritten
// for (int i=0;i<3;i++)
// {
// if (this.localAabbMin[i] > _localAabbMin[i])
// {
// this.localAabbMin[i] = _localAabbMin[i];
// }
// if (this.localAabbMax[i] < _localAabbMax[i])
// {
// this.localAabbMax[i] = _localAabbMax[i];
// }
// }
VectorUtil.setMin(this.localAabbMin, _localAabbMin);
VectorUtil.setMax(this.localAabbMax, _localAabbMax);
}
/**
* Remove all children shapes that contain the specified shape.
*/
public void removeChildShape(CollisionShape shape) {
boolean done_removing;
// Find the children containing the shape specified, and remove those children.
do {
done_removing = true;
for (int i = 0; i < children.size(); i++) {
if (children.getQuick(i).childShape == shape) {
children.removeQuick(i);
done_removing = false; // Do another iteration pass after removing from the vector
break;
}
}
}
while (!done_removing);
recalculateLocalAabb();
}
public int getNumChildShapes() {
return children.size();
}
public CollisionShape getChildShape(int index) {
return children.getQuick(index).childShape;
}
public Transform getChildTransform(int index, Transform out) {
out.set(children.getQuick(index).transform);
return out;
}
public ObjectArrayList getChildList() {
return children;
}
/**
* getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version.
*/
@Override
public void getAabb(Transform trans, Vector3f aabbMin, Vector3f aabbMax) {
Vector3f localHalfExtents = Stack.alloc(Vector3f.class);
localHalfExtents.sub(localAabbMax, localAabbMin);
localHalfExtents.scale(0.5f);
localHalfExtents.x += getMargin();
localHalfExtents.y += getMargin();
localHalfExtents.z += getMargin();
Vector3f localCenter = Stack.alloc(Vector3f.class);
localCenter.add(localAabbMax, localAabbMin);
localCenter.scale(0.5f);
Matrix3f abs_b = Stack.alloc(trans.basis);
MatrixUtil.absolute(abs_b);
Vector3f center = Stack.alloc(localCenter);
trans.transform(center);
Vector3f tmp = Stack.alloc(Vector3f.class);
Vector3f extent = Stack.alloc(Vector3f.class);
abs_b.getRow(0, tmp);
extent.x = tmp.dot(localHalfExtents);
abs_b.getRow(1, tmp);
extent.y = tmp.dot(localHalfExtents);
abs_b.getRow(2, tmp);
extent.z = tmp.dot(localHalfExtents);
aabbMin.sub(center, extent);
aabbMax.add(center, extent);
}
/**
* Re-calculate the local Aabb. Is called at the end of removeChildShapes.
* Use this yourself if you modify the children or their transforms.
*/
public void recalculateLocalAabb() {
// Recalculate the local aabb
// Brute force, it iterates over all the shapes left.
localAabbMin.set(1e30f, 1e30f, 1e30f);
localAabbMax.set(-1e30f, -1e30f, -1e30f);
Vector3f tmpLocalAabbMin = Stack.alloc(Vector3f.class);
Vector3f tmpLocalAabbMax = Stack.alloc(Vector3f.class);
// extend the local aabbMin/aabbMax
for (int j = 0; j < children.size(); j++) {
children.getQuick(j).childShape.getAabb(children.getQuick(j).transform, tmpLocalAabbMin, tmpLocalAabbMax);
for (int i = 0; i < 3; i++) {
if (VectorUtil.getCoord(localAabbMin, i) > VectorUtil.getCoord(tmpLocalAabbMin, i)) {
VectorUtil.setCoord(localAabbMin, i, VectorUtil.getCoord(tmpLocalAabbMin, i));
}
if (VectorUtil.getCoord(localAabbMax, i) < VectorUtil.getCoord(tmpLocalAabbMax, i)) {
VectorUtil.setCoord(localAabbMax, i, VectorUtil.getCoord(tmpLocalAabbMax, i));
}
}
}
}
@Override
public void setLocalScaling(Vector3f scaling) {
localScaling.set(scaling);
}
@Override
public Vector3f getLocalScaling(Vector3f out) {
out.set(localScaling);
return out;
}
@Override
public void calculateLocalInertia(float mass, Vector3f inertia) {
// approximation: take the inertia from the aabb for now
Transform ident = Stack.alloc(Transform.class);
ident.setIdentity();
Vector3f aabbMin = Stack.alloc(Vector3f.class), aabbMax = Stack.alloc(Vector3f.class);
getAabb(ident, aabbMin, aabbMax);
Vector3f halfExtents = Stack.alloc(Vector3f.class);
halfExtents.sub(aabbMax, aabbMin);
halfExtents.scale(0.5f);
float lx = 2f * halfExtents.x;
float ly = 2f * halfExtents.y;
float lz = 2f * halfExtents.z;
inertia.x = (mass / 12f) * (ly * ly + lz * lz);
inertia.y = (mass / 12f) * (lx * lx + lz * lz);
inertia.z = (mass / 12f) * (lx * lx + ly * ly);
}
@Override
public BroadphaseNativeType getShapeType() {
return BroadphaseNativeType.COMPOUND_SHAPE_PROXYTYPE;
}
@Override
public void setMargin(float margin) {
collisionMargin = margin;
}
@Override
public float getMargin() {
return collisionMargin;
}
@Override
public String getName() {
return "Compound";
}
// this is optional, but should make collision queries faster, by culling non-overlapping nodes
// void createAabbTreeFromChildren();
public OptimizedBvh getAabbTree() {
return aabbTree;
}
/**
* Computes the exact moment of inertia and the transform from the coordinate
* system defined by the principal axes of the moment of inertia and the center
* of mass to the current coordinate system. "masses" points to an array
* of masses of the children. The resulting transform "principal" has to be
* applied inversely to all children transforms in order for the local coordinate
* system of the compound shape to be centered at the center of mass and to coincide
* with the principal axes. This also necessitates a correction of the world transform
* of the collision object by the principal transform.
*/
public void calculatePrincipalAxisTransform(float[] masses, Transform principal, Vector3f inertia) {
int n = children.size();
float totalMass = 0;
Vector3f center = Stack.alloc(Vector3f.class);
center.set(0, 0, 0);
for (int k = 0; k < n; k++) {
center.scaleAdd(masses[k], children.getQuick(k).transform.origin, center);
totalMass += masses[k];
}
center.scale(1f / totalMass);
principal.origin.set(center);
Matrix3f tensor = Stack.alloc(Matrix3f.class);
tensor.setZero();
for (int k = 0; k < n; k++) {
Vector3f i = Stack.alloc(Vector3f.class);
children.getQuick(k).childShape.calculateLocalInertia(masses[k], i);
Transform t = children.getQuick(k).transform;
Vector3f o = Stack.alloc(Vector3f.class);
o.sub(t.origin, center);
// compute inertia tensor in coordinate system of compound shape
Matrix3f j = Stack.alloc(Matrix3f.class);
j.transpose(t.basis);
j.m00 *= i.x;
j.m01 *= i.x;
j.m02 *= i.x;
j.m10 *= i.y;
j.m11 *= i.y;
j.m12 *= i.y;
j.m20 *= i.z;
j.m21 *= i.z;
j.m22 *= i.z;
j.mul(t.basis, j);
// add inertia tensor
tensor.add(j);
// compute inertia tensor of pointmass at o
float o2 = o.lengthSquared();
j.setRow(0, o2, 0, 0);
j.setRow(1, 0, o2, 0);
j.setRow(2, 0, 0, o2);
j.m00 += o.x * -o.x;
j.m01 += o.y * -o.x;
j.m02 += o.z * -o.x;
j.m10 += o.x * -o.y;
j.m11 += o.y * -o.y;
j.m12 += o.z * -o.y;
j.m20 += o.x * -o.z;
j.m21 += o.y * -o.z;
j.m22 += o.z * -o.z;
// add inertia tensor of pointmass
tensor.m00 += masses[k] * j.m00;
tensor.m01 += masses[k] * j.m01;
tensor.m02 += masses[k] * j.m02;
tensor.m10 += masses[k] * j.m10;
tensor.m11 += masses[k] * j.m11;
tensor.m12 += masses[k] * j.m12;
tensor.m20 += masses[k] * j.m20;
tensor.m21 += masses[k] * j.m21;
tensor.m22 += masses[k] * j.m22;
}
MatrixUtil.diagonalize(tensor, principal.basis, 0.00001f, 20);
inertia.set(tensor.m00, tensor.m11, tensor.m22);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy