com.bulletphysics.dynamics.constraintsolver.SolverBody Maven / Gradle / Ivy
/*
* Java port of Bullet (c) 2008 Martin Dvorak
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
package com.bulletphysics.dynamics.constraintsolver;
import com.bulletphysics.dynamics.RigidBody;
import com.bulletphysics.linearmath.Transform;
import com.bulletphysics.linearmath.TransformUtil;
import cz.advel.stack.Stack;
import javax.vecmath.Vector3f;
/**
* SolverBody is an internal data structure for the constraint solver. Only necessary
* data is packed to increase cache coherence/performance.
*
* @author jezek2
*/
public class SolverBody {
//protected final BulletStack stack = BulletStack.get();
public final Vector3f angularVelocity = new Vector3f();
public float angularFactor;
public float invMass;
public float friction;
public RigidBody originalBody;
public final Vector3f linearVelocity = new Vector3f();
public final Vector3f centerOfMassPosition = new Vector3f();
public final Vector3f pushVelocity = new Vector3f();
public final Vector3f turnVelocity = new Vector3f();
public void getVelocityInLocalPoint(Vector3f rel_pos, Vector3f velocity) {
Vector3f tmp = Stack.alloc(Vector3f.class);
tmp.cross(angularVelocity, rel_pos);
velocity.add(linearVelocity, tmp);
}
/**
* Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position.
*/
public void internalApplyImpulse(Vector3f linearComponent, Vector3f angularComponent, float impulseMagnitude) {
if (invMass != 0f) {
linearVelocity.scaleAdd(impulseMagnitude, linearComponent, linearVelocity);
angularVelocity.scaleAdd(impulseMagnitude * angularFactor, angularComponent, angularVelocity);
}
}
public void internalApplyPushImpulse(Vector3f linearComponent, Vector3f angularComponent, float impulseMagnitude) {
if (invMass != 0f) {
pushVelocity.scaleAdd(impulseMagnitude, linearComponent, pushVelocity);
turnVelocity.scaleAdd(impulseMagnitude * angularFactor, angularComponent, turnVelocity);
}
}
public void writebackVelocity() {
if (invMass != 0f) {
originalBody.setLinearVelocity(linearVelocity);
originalBody.setAngularVelocity(angularVelocity);
//m_originalBody->setCompanionId(-1);
}
}
public void writebackVelocity(float timeStep) {
if (invMass != 0f) {
originalBody.setLinearVelocity(linearVelocity);
originalBody.setAngularVelocity(angularVelocity);
// correct the position/orientation based on push/turn recovery
Transform newTransform = Stack.alloc(Transform.class);
Transform curTrans = originalBody.getWorldTransform(Stack.alloc(Transform.class));
TransformUtil.integrateTransform(curTrans, pushVelocity, turnVelocity, timeStep, newTransform);
originalBody.setWorldTransform(newTransform);
//m_originalBody->setCompanionId(-1);
}
}
public void readVelocity() {
if (invMass != 0f) {
originalBody.getLinearVelocity(linearVelocity);
originalBody.getAngularVelocity(angularVelocity);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy