cz.cuni.mff.d3s.spl.data.DataSnapshotBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spl-evaluation-java Show documentation
Show all versions of spl-evaluation-java Show documentation
Stochastice Performance Logic is a formalism for capturing performance
assumptions. It is, for example, possible to capture assumption that
newer version of a function bar is faster than the previous version or
that library foobar is faster than library barfoo when rendering
antialiased text.
The purpose of this framework is to allow evaluation of SPL formulas
inside Java applications.
/*
* Copyright 2015 Charles University in Prague
* Copyright 2015 Vojtech Horky
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cz.cuni.mff.d3s.spl.data;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/** Helper class for creating data snapshots.
*
*/
public class DataSnapshotBuilder {
private List runs = new LinkedList<>();
private DataSnapshot prevEpoch = null;
public DataSnapshotBuilder() {
}
public synchronized DataSnapshot create() {
return create(runs, prevEpoch);
}
public synchronized DataSnapshot create(int skip) {
// skip 'skip' elements from the beginning
List skippedRuns = new LinkedList<>();
for (BenchmarkRun run : runs) {
skippedRuns.add(new ImmutableBenchmarkRun(run, skip));
}
return create(skippedRuns, prevEpoch);
}
public synchronized DataSnapshot create(double skip) {
// skip 'skip' percent of elements from the beginning
List skippedRuns = new LinkedList<>();
for (BenchmarkRun run : runs) {
skippedRuns.add(new ImmutableBenchmarkRun(run, (int) (run.getSampleCount() * skip)));
}
return create(skippedRuns, prevEpoch);
}
public synchronized DataSnapshotBuilder setPreviousEpoch(DataSnapshot snapshot) {
prevEpoch = snapshot;
return this;
}
public synchronized DataSnapshotBuilder addRun(BenchmarkRun run) {
runs.add(new ImmutableBenchmarkRun(run));
return this;
}
private DataSnapshot create(List runs, DataSnapshot prevEpoch) {
return new Snapshot(runs, prevEpoch);
}
private static class Snapshot implements DataSnapshot {
private List runs;
private DataSnapshot prevEpoch;
public Snapshot(List data, DataSnapshot prev) {
synchronized (data) {
runs = new ArrayList<>(data.size());
runs.addAll(data);
}
prevEpoch = prev;
}
@Override
public int getRunCount() {
return runs.size();
}
@Override
public BenchmarkRun getRun(int index) {
return runs.get(index);
}
@Override
public Iterable getRuns() {
return runs;
}
@Override
public DataSnapshot getPreviousEpoch() {
return prevEpoch;
}
}
}