All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cz.cuni.mff.d3s.spl.interpretation.DistributionLearningInterpretation Maven / Gradle / Ivy

Go to download

Stochastice Performance Logic is a formalism for capturing performance assumptions. It is, for example, possible to capture assumption that newer version of a function bar is faster than the previous version or that library foobar is faster than library barfoo when rendering antialiased text. The purpose of this framework is to allow evaluation of SPL formulas inside Java applications.

There is a newer version: 1.0.4
Show newest version
/*
 * Copyright 2015 Charles University in Prague
 * Copyright 2015 Vojtech Horky
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package cz.cuni.mff.d3s.spl.interpretation;

import cz.cuni.mff.d3s.spl.data.BenchmarkRun;
import cz.cuni.mff.d3s.spl.data.BenchmarkRunSummary;
import cz.cuni.mff.d3s.spl.data.BenchmarkRunUtils;
import cz.cuni.mff.d3s.spl.data.DataSnapshot;
import cz.cuni.mff.d3s.spl.utils.DistributionUtils;
import cz.cuni.mff.d3s.spl.utils.StatisticsUtils;
import org.apache.commons.math3.distribution.RealDistribution;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;


/** SPL interpretation based on learning the distribution before deciding.
 * 
 * 

* See * SPL: * Unit Testing Performance by * Bulej, Bures, Horky, Kotrc, Marek, Trojanek and Tuma for details. * */ public class DistributionLearningInterpretation implements Interpretation { private Random bootstrapRandom = new Random(0); private final int bootstrapSizeInnerMeans; private final int bootstrapSizeOuterMeans; private final int diffDistributionSampleCount; private PrintStream debug = null; public DistributionLearningInterpretation() { this(1000, 10000, 100000); } private DistributionLearningInterpretation(int innerMeansSize, int outerMeansSize, int diffDistrSize) { bootstrapSizeInnerMeans = innerMeansSize; bootstrapSizeOuterMeans = outerMeansSize; diffDistributionSampleCount = diffDistrSize; } public static DistributionLearningInterpretation getDebug(PrintStream output) { DistributionLearningInterpretation result = new DistributionLearningInterpretation(); result.debug = output; return result; } public static DistributionLearningInterpretation getDebugFast(PrintStream output) { DistributionLearningInterpretation result = getFast(); result.debug = output; return result; } public static DistributionLearningInterpretation getFast() { DistributionLearningInterpretation result = new DistributionLearningInterpretation(100, 100, 1000); return result; } public static DistributionLearningInterpretation getReasonable() { DistributionLearningInterpretation result = new DistributionLearningInterpretation(1000, 1000, 10000); return result; } /** {@inheritDoc} */ @Override public ComparisonResult compare(DataSnapshot left, DataSnapshot right) { double leftMean = computeMean(left); double rightMean = computeMean(right); if (debug != null) { debug.println("DistributionLearningInterpreation.compare"); debug.printf("means: %15.3f %15.3f\n", leftMean, rightMean); } RealDistribution leftDistr = boostrapEmpirical(left, -leftMean); if (debug != null) { debug.printf("left boostrapped:"); showDistribution(leftDistr); } RealDistribution rightDistr = boostrapEmpirical(right, -rightMean); if (debug != null) { debug.printf("right boostrapped:"); showDistribution(rightDistr); } RealDistribution diffDistr = substractDistributions(leftDistr, rightDistr); if (debug != null) { debug.printf("diff distribution:"); showDistribution(diffDistr); } double statistic = leftMean - rightMean; return new DistributionBasedComparisonResult(statistic, diffDistr); } /** {@inheritDoc} */ @Override public ComparisonResult compare(DataSnapshot data, double value) { throw new UnsupportedOperationException("This is not yet implemented."); } private RealDistribution boostrapEmpirical(DataSnapshot data, double shift) { List runs = new ArrayList<>(data.getRunCount()); for (BenchmarkRun run : data.getRuns()) { runs.add(run); } int runCount = runs.size(); double[] runMeans = new double[runCount * bootstrapSizeInnerMeans]; int startIndex = 0; for (int i = 0; i < runCount; i++, startIndex += bootstrapSizeInnerMeans) { double[] samples = BenchmarkRunUtils.toDoubleArray(runs.get(i)); bootstrapWithMean(samples, samples.length, bootstrapSizeInnerMeans, runMeans, startIndex); } double[] finalSamples = new double[bootstrapSizeOuterMeans]; bootstrapWithMean(runMeans, runs.size(), bootstrapSizeOuterMeans, finalSamples, 0); for (int i = 0; i < finalSamples.length; i++) { finalSamples[i] += shift; } return DistributionUtils.makeEmpirical(finalSamples); } private RealDistribution substractDistributions(RealDistribution left, RealDistribution right) { double[] leftSamples = left.sample(diffDistributionSampleCount); double[] rightSamples = left.sample(diffDistributionSampleCount); for (int i = 0; i < leftSamples.length; i++) { leftSamples[i] -= rightSamples[i]; } return DistributionUtils.makeEmpirical(leftSamples); } private double computeMean(DataSnapshot data) { BenchmarkRun merged = BenchmarkRunUtils.merge(data.getRuns()); BenchmarkRunSummary summary = new BenchmarkRunSummary(merged); return summary.getMean(); } private void bootstrapWithMean(double[] data, int bootstrapLength, int count, double[] result, int resultStartIndex) { double[] tmp = new double[bootstrapLength]; for (int i = 0; i < count; i++) { StatisticsUtils.bootstrap(data, tmp, bootstrapRandom); result[i + resultStartIndex] = StatisticsUtils.mean(tmp); } } private void showDistribution(RealDistribution distr) { assert debug != null; for (int i = 0; i < 10; i++) { debug.printf(" %.3f", distr.sample()); } debug.println(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy