cz.cuni.mff.d3s.spl.interpretation.KindergartenInterpretation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spl-evaluation-java Show documentation
Show all versions of spl-evaluation-java Show documentation
Stochastice Performance Logic is a formalism for capturing performance
assumptions. It is, for example, possible to capture assumption that
newer version of a function bar is faster than the previous version or
that library foobar is faster than library barfoo when rendering
antialiased text.
The purpose of this framework is to allow evaluation of SPL formulas
inside Java applications.
/*
* Copyright 2015 Charles University in Prague
* Copyright 2015 Vojtech Horky
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cz.cuni.mff.d3s.spl.interpretation;
import cz.cuni.mff.d3s.spl.data.BenchmarkRun;
import cz.cuni.mff.d3s.spl.data.DataSnapshot;
/** Primitive interpretation that merely compares arithmetic means.
*
*/
public class KindergartenInterpretation implements Interpretation {
public static final KindergartenInterpretation INSTANCE = new KindergartenInterpretation();
private static final int MIN_SAMPLE_COUNT = 2;
private static final double ZERO = 0.000001;
private static class ImpossibleToCompareResult implements ComparisonResult {
public static ImpossibleToCompareResult INSTANCE = new ImpossibleToCompareResult();
private ImpossibleToCompareResult() {
}
@Override
public Relation get(double significanceLevel) {
return Relation.UNKNOWN;
}
@Override
public double getStatistic() {
throw new UnsupportedOperationException();
}
@Override
public double getCriticalValue(double significanceLevel) {
throw new UnsupportedOperationException();
}
@Override
public double[] getConfidenceInterval(double confidenceLevel) {
throw new UnsupportedOperationException();
}
}
private static class MeanDifferenceComparisonResult implements ComparisonResult {
private double diff;
public MeanDifferenceComparisonResult(double left, double right) {
diff = left - right;
}
@Override
public Relation get(double significanceLevel) {
if ((diff > -ZERO) && (diff < ZERO)) {
return Relation.EQUAL;
} else if (diff < 0.) {
return Relation.LESS_THAN;
} else {
return Relation.GREATER_THAN;
}
}
@Override
public double getStatistic() {
throw new UnsupportedOperationException();
}
@Override
public double getCriticalValue(double significanceLevel) {
throw new UnsupportedOperationException();
}
@Override
public double[] getConfidenceInterval(double confidenceLevel) {
throw new UnsupportedOperationException();
}
}
private double getMean(DataSnapshot data) {
double sum = 0;
long count = 0;
for (BenchmarkRun run : data.getRuns()) {
for (double sample : run.getSamples()) {
sum += sample;
count++;
}
}
if (count == 0) {
return 0.;
} else {
return sum / count;
}
}
private boolean hasEnoughSamples(DataSnapshot data) {
if (data.getRunCount() == 0) {
return false;
}
long totalSampleCount = 0;
for (BenchmarkRun run : data.getRuns()) {
totalSampleCount += run.getSampleCount();
}
return totalSampleCount > MIN_SAMPLE_COUNT;
}
@Override
public ComparisonResult compare(DataSnapshot left, DataSnapshot right) {
if (!hasEnoughSamples(left) || !hasEnoughSamples(right)) {
return ImpossibleToCompareResult.INSTANCE;
}
return new MeanDifferenceComparisonResult(getMean(left), getMean(right));
}
@Override
public ComparisonResult compare(DataSnapshot data, double value) {
if (!hasEnoughSamples(data)) {
return ImpossibleToCompareResult.INSTANCE;
}
return new MeanDifferenceComparisonResult(getMean(data), value);
}
}