All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download all versions of learning JAR files with all dependencies


learning from group de.cit-ec.tcs.alignment (version 3.1.1)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (3.1.1)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 3.1.0)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (3.1.0)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 3.0.1)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (3.0.1)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 3.0.0)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (3.0.0)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 2.1.2)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (2.1.2)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 2.1.1)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (2.1.1)
 

0 downloads

learning from group de.cit-ec.tcs.alignment (version 2.1.0)

This module is a custom implementation of the Large Margin Nearest Neighbor classification scheme of Weinberger, Saul, et al. (2009). It contains an implementation of the k-nearest neighbor and LMNN classifier as well as (most importantly) gradient calculation schemes on the LMNN cost function given a sequential data set and a user-choice of alignment algorithm. This enables users to learn parameters of the alignment distance in question using a gradient descent on the LMNN cost function. More information on this approach can be found in the Masters Thesis "Adaptive Affine Sequence Alignment Using Algebraic Dynamic Programming"

Group: de.cit-ec.tcs.alignment Artifact: learning
Show documentation Show source 
Download learning.jar (2.1.0)
 

0 downloads



Page 1 from 1 (items total 7)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy