de.datexis.ner.eval.MentionAnnotatorEval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of texoo-entity-recognition Show documentation
Show all versions of texoo-entity-recognition Show documentation
TeXoo module for Named Entity Recognition
package de.datexis.ner.eval;
import com.google.common.collect.Lists;
import de.datexis.evaluation.ModelEvaluation;
import static de.datexis.evaluation.ModelEvaluation.Measure.*;
import de.datexis.model.Annotation;
import de.datexis.ner.MentionAnnotation;
import de.datexis.model.Dataset;
import de.datexis.model.Document;
import de.datexis.model.Token;
import de.datexis.model.tag.BIO2Tag;
import java.util.List;
import java.util.TreeMap;
import java.util.stream.Collectors;
import org.nd4j.linalg.primitives.Counter;
/**
* Evaluates Precision/Recall/F1 for span-based annotation (e.g. NER)
* @author sarnold
*/
@Deprecated
public class MentionAnnotatorEval extends ModelEvaluation {
Annotation.Source expectedSource;
Annotation.Source predictedSource;
public MentionAnnotatorEval(String experimentName) {
this(experimentName, Annotation.Source.GOLD, Annotation.Source.PRED);
}
public MentionAnnotatorEval(String experimentName, Annotation.Source expected, Annotation.Source predicted) {
super(experimentName);
this.expectedSource = expected;
this.predictedSource = predicted;
}
// please set train and test after training!
@Deprecated
public MentionAnnotatorEval(String experimentName, Dataset train, Dataset test) {
super(experimentName, train, test);
}
public void clear() {
counts = new TreeMap<>();
counts.put(TP, new Counter<>());
counts.put(FP, new Counter<>());
counts.put(TN, new Counter<>());
counts.put(FN, new Counter<>());
}
public void evaluateAnnotations() {
int i = 0;
for(Document d : test.getDocuments()) {
counts.get(TP).setCount(i, getTP(d));
counts.get(FP).setCount(i, getFP(d));
counts.get(TN).setCount(i, getTN(d));
counts.get(FN).setCount(i, getFN(d));
i++;
}
// FIXME: required to update totalCount() - fixed in next Nd4j https://github.com/deeplearning4j/nd4j/commit/2698b2e23d8ccf6cf71c3bf6fc325e9638877ae8
counts.get(TP).removeKey(-1);
counts.get(FP).removeKey(-1);
counts.get(TN).removeKey(-1);
counts.get(FN).removeKey(-1);
}
public double getTP() {
return counts.get(TP).totalCount();
}
public double getFP() {
return counts.get(FP).totalCount();
}
public double getTN() {
return counts.get(TN).totalCount();
}
public double getFN() {
return counts.get(FN).totalCount();
}
private double getTP(Document d) {
int result = 0;
List predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, MentionAnnotation.class).iterator());
List expected = Lists.newArrayList(d.streamAnnotations(expectedSource, MentionAnnotation.class).iterator());
for(MentionAnnotation pred : predicted) {
// was: if(expected.contains(pred)) result++;
// TODO: optimize inner loops or use streams with match equality function
for(MentionAnnotation exp : expected) {
if(pred.matches(exp, Annotation.Match.STRONG)) {
result++;
break; // allow only one match
}
}
}
return result;
}
private double getFP(Document d) {
int result = 0;
List predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, MentionAnnotation.class).iterator());
List expected = Lists.newArrayList(d.streamAnnotations(expectedSource, MentionAnnotation.class).iterator());
for(MentionAnnotation pred : predicted) {
// was: if(!expected.contains(pred)) result++;
boolean found = false;
for(MentionAnnotation exp : expected) {
if(exp.matches(pred, Annotation.Match.STRONG)) {
found = true;
break;
}
}
if(!found) result++;
}
return result;
}
private double getTN(Document d) {
// no annotation is explicitly NOT in test
return 0;
}
private double getFN(Document d) {
int result = 0;
List predicted = Lists.newArrayList(d.streamAnnotations(predictedSource, MentionAnnotation.class).iterator());
List expected = Lists.newArrayList(d.streamAnnotations(expectedSource, MentionAnnotation.class).iterator());
for(MentionAnnotation exp : expected) {
// was: if(!predicted.contains(exp)) result++;
boolean found = false;
for(MentionAnnotation pred : predicted) {
if(pred.matches(exp, Annotation.Match.STRONG)) {
found = true;
break;
}
}
if(!found) result++;
}
return result;
}
public double precision() {
return getMicroPrecision(test);
}
/**
* This is the CoNLL2003 Precision
* @param data
* @return precision = correctChunk / foundGuessed
*/
private double getMicroPrecision(Dataset data) {
double correct = 0.; // TP
double foundGuessed = 0.; // TP + FP
for(Document d : data.getDocuments()) {
correct += getTP(d);
}
for(Document d : data.getDocuments()) {
foundGuessed += getTP(d) + getFP(d);
}
if(foundGuessed > 0) return correct / foundGuessed;
else return 0;
}
private double getMacroPrecision(Dataset data) {
double prec = 0.;
for(Document d : data.getDocuments()) {
prec += getTP(d) / (getTP(d) + getFP(d)); //d.getAnnotations(test).size();
}
return prec / data.countDocuments();
}
public double recall() {
return getMicroRecall(test);
}
/**
* This is the CoNLL2003 Recall
* @param data
* @return recall = correctChunk / foundCorrect
*/
public double getMicroRecall(Dataset data) {
double correct = 0.; // TP
double foundCorrect = 0.; // TP + FN
for(Document d : data.getDocuments()) {
correct += getTP(d);
}
for(Document d : data.getDocuments()) {
foundCorrect += getTP(d) + getFN(d);
}
if(foundCorrect > 0) return correct / foundCorrect;
else return 0;
}
private double getMacroRecall(Dataset data) {
double prec = 0.;
for(Document d : data.getDocuments()) {
prec += getTP(d) / (getTP(d) + getFN(d));
}
return prec / data.countDocuments();
}
/**
* This is CoNLL2003 Accuracy
* @param data
* @return accuracy = correctTags / tokenCounter
*/
public double getTAccuracy(Dataset data) {
double count = 0, correct = 0;
for(Token t: data.streamTokens().collect(Collectors.toList())) {
if(t.getTag(expectedSource, BIO2Tag.class).get().equals(t.getTag(predictedSource, BIO2Tag.class).get())) correct++;
count++;
}
return correct / count;
}
public double f1() {
return getMicroF1(test);
}
/**
* This is CoNLL2003 NER-style F1
* $FB1 = 2*$precision*$recall/($precision+$recall) if ($precision+$recall > 0);
* @param data
* @return
*/
public double getMicroF1(Dataset data) {
return (2. * getMicroPrecision(data) * getMicroRecall(data))
/ (getMicroPrecision(data) + getMicroRecall(data));
}
private double getMacroF1(Dataset data) {
return (2. * getMacroPrecision(data) * getMacroRecall(data))
/ (getMacroPrecision(data) + getMacroRecall(data));
}
public String printAnnotationStats() {
StringBuilder line = new StringBuilder();
line.append("ANNOTATION [micro-avg]\n")
.append("#Docs\t#Tokns\t#Anns\t#Pred\t#TP\t#FP\t#TN\t#FN\tTAcc\tPrec\tRec\tF1");
line.append("\n");
line.append(fInt(test.countDocuments())).append("\t");
line.append(fInt(test.countTokens())).append("\t");
line.append(fInt(test.countAnnotations(expectedSource))).append("\t");
line.append(fInt(test.countAnnotations(predictedSource))).append("\t");
line.append(fInt(counts.get(TP).totalCount())).append("\t");
line.append(fInt(counts.get(FP).totalCount())).append("\t");
line.append(fInt(counts.get(TN).totalCount())).append("\t");
line.append(fInt(counts.get(FN).totalCount())).append("\t");
line.append(fDbl(getTAccuracy(test))).append("\t");
line.append(fDbl(getMicroPrecision(test))).append("\t");
line.append(fDbl(getMicroRecall(test))).append("\t");
line.append(fDbl(getMicroF1(test))).append("\t");
line.append("\n");
System.out.println(line.toString());
return line.toString();
}
}