All Downloads are FREE. Search and download functionalities are using the official Maven repository.

marytts.htsengine.HTSPStream Maven / Gradle / Ivy

The newest version!
/* ----------------------------------------------------------------- */
/*           The HMM-Based Speech Synthesis Engine "hts_engine API"  */
/*           developed by HTS Working Group                          */
/*           http://hts-engine.sourceforge.net/                      */
/* ----------------------------------------------------------------- */
/*                                                                   */
/*  Copyright (c) 2001-2010  Nagoya Institute of Technology          */
/*                           Department of Computer Science          */
/*                                                                   */
/*                2001-2008  Tokyo Institute of Technology           */
/*                           Interdisciplinary Graduate School of    */
/*                           Science and Engineering                 */
/*                                                                   */
/* All rights reserved.                                              */
/*                                                                   */
/* Redistribution and use in source and binary forms, with or        */
/* without modification, are permitted provided that the following   */
/* conditions are met:                                               */
/*                                                                   */
/* - Redistributions of source code must retain the above copyright  */
/*   notice, this list of conditions and the following disclaimer.   */
/* - Redistributions in binary form must reproduce the above         */
/*   copyright notice, this list of conditions and the following     */
/*   disclaimer in the documentation and/or other materials provided */
/*   with the distribution.                                          */
/* - Neither the name of the HTS working group nor the names of its  */
/*   contributors may be used to endorse or promote products derived */
/*   from this software without specific prior written permission.   */
/*                                                                   */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND            */
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,       */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF          */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE          */
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS */
/* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,          */
/* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED   */
/* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,     */
/* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON */
/* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,   */
/* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY    */
/* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE           */
/* POSSIBILITY OF SUCH DAMAGE.                                       */
/* ----------------------------------------------------------------- */
/**
 * Copyright 2011 DFKI GmbH.
 * All Rights Reserved.  Use is subject to license terms.
 *
 * This file is part of MARY TTS.
 *
 * MARY TTS is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, version 3 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see .
 *
 */

package marytts.htsengine;

import marytts.util.MaryUtils;
import java.util.Arrays;

import org.apache.log4j.Logger;

/**
 * Data type and procedures used in parameter generation. Contains means and variances of a particular model, mcep pdfs for a
 * particular phone for example. It also contains auxiliar matrices used in maximum likelihood parameter generation.
 * 
 * Java port and extension of HTS engine version 2.0 and GV from HTS version 2.1alpha. Extension: mixed excitation
 * 
 * @author Marcela Charfuelan
 */
public class HTSPStream {

	public static final int WLEFT = 0;
	public static final int WRIGHT = 1;
	public static final int NUM = 3;
	/** width of dynamic window */
	/* hard-coded to 3, in the c code is: pst->width = pst->dw.max_L*2+1; */
	/* pst->dw.max_L is hard-code to 1, for all windows */
	private static final int WIDTH = 3;

	/** type of features it contains */
	public final HMMData.FeatureType feaType;
	/** vector size of observation vector (include static and dynamic features) */
	private final int vSize;
	/** vector size of static features */
	private final int order;
	/** length, number of frames in utterance */
	private int nT;

	/** output parameter vector, the size of this parameter is par[nT][vSize] */
	private double par[][];

	/* ____________________Matrices for parameter generation____________________ */
	/** sequence of mean vector */
	private double mseq[][];
	/** sequence of inversed variance vector */
	private double ivseq[][];
	/** for forward substitution */
	private double g[];
	/** W' U^-1 W */
	private double wuw[][];
	/** W' U^-1 mu */
	private double wum[];

	/* ____________________Dynamic window ____________________ */
	// private final HTSDWin dw; /* Windows used to calculate dynamic features, delta and delta-delta */
	/* definitions of the dynamic feature window */
	final static int[] leftWidths = new int[] { 0, -1, -1 };
	final static int[] rightWidths = new int[] { 0, 1, 1 };
	final static double[] xcoefs = new double[] { 0, 1, 0, -0.5, 0, 0.5, 1, -2, 1 };

	public int getDWLeftBoundary(int i) {
		return leftWidths[i];
	}

	public int getDWRightBoundary(int i) {
		return rightWidths[i];
	}

	/* ____________________ GV related variables ____________________ */
	/* GV: Global mean and covariance (diagonal covariance only) */
	/** mean and variance for current utt eqs: (16), (17) */
	private double mean, var;
	/** max iterations in the speech parameter generation considering GV */
	private final int maxGVIter;
	/** convergence factor for GV iteration */
	private final static double GVepsilon = 1.0E-4; // 1.0E-4;
	/** minimum Euclid norm of a gradient vector */
	private final static double minEucNorm = 1.0E-2; // 1.0E-2;
	/** initial step size */
	private final static double stepInit = 0.1;
	/** step size deceralation factor */
	private final static double stepDec = 0.5;
	/** step size acceleration factor */
	private final static double stepInc = 1.2;
	/** weight for HMM output prob. */
	private final static double w1 = 1.0;
	/** weight for GV output prob. */
	private final static double w2 = 1.0;
	/** ~log(0) */
	private final static double lzero = (-1.0e+10);
	private double norm = 0.0;
	private double GVobj = 0.0;
	private double HMMobj = 0.0;
	private double gvmean[];
	private double gvcovInv[];
	/** GV flag sequence, to consider or not the frame in gv */
	private boolean gvSwitch[];
	/** this will be the number of frames for which gv can be calculated */
	private int gvLength;

	private Logger logger = MaryUtils.getLogger("PStream");

	/* Constructor */
	public HTSPStream(int vector_size, int utt_length, HMMData.FeatureType fea_type, int maxIterationsGV) throws Exception {
		/* In the c code for each PStream there is an InitDwin() and an InitPStream() */
		/* - InitDwin reads the window files passed as parameters for example: mcp.win1, mcp.win2, mcp.win3 */
		/* for the moment the dynamic window is the same for all MCP, LF0, STR and MAG */
		/* The initialisation of the dynamic window is done with the constructor. */
		// dw = new HTSDWin();
		feaType = fea_type;
		vSize = vector_size;
		order = vector_size / NUM;
		nT = utt_length;
		maxGVIter = maxIterationsGV;
		par = new double[nT][order];

		/* ___________________________Matrices initialisation___________________ */
		mseq = new double[nT][vSize];
		ivseq = new double[nT][vSize];
		g = new double[nT];
		wuw = new double[nT][WIDTH];
		wum = new double[nT];

		/* GV Switch sequence initialisation */
		gvSwitch = new boolean[nT];
		for (int i = 0; i < nT; i++)
			gvSwitch[i] = true;
		gvLength = nT; /* at initialisation, all the frames can be used for gv */

	}

	public int getVsize() {
		return vSize;
	}

	public int getOrder() {
		return order;
	}

	public void setPar(int i, int j, double val) {
		par[i][j] = val;
	}

	public double getPar(int i, int j) {
		return par[i][j];
	}

	public double[] getParVec(int i) {
		return Arrays.copyOf(par[i], par[i].length);
	}

	public int getT() {
		return nT;
	}

	public void setMseq(int i, int j, double val) {
		mseq[i][j] = val;
	}

	public void setMseq(int i, double[] vec) {
		mseq[i] = vec;
	}

	public void setVseq(int i, double[] vec) {
		assert vec.length == ivseq[i].length;
		for (int j = 0; j < ivseq[i].length; j++) {
			ivseq[i][j] = HTSParameterGeneration.finv(vec[j]);
		}
	}

	public void setIvseq(int i, int j, double val) {
		ivseq[i][j] = val;
	}

	public void setGvMeanVar(double[] mean, double[] ivar) {
		gvmean = mean;
		gvcovInv = ivar;
	}

	public void setGvSwitch(int i, boolean bv) {
		if (bv == false)
			gvLength--;
		gvSwitch[i] = bv;
	}

	/**
	 * dynamic features must be 0.0f for the rightmost (and also leftmost?) parameter prior to optimization
	 */
	public void fixDynFeatOnBoundaries() {
		for (int k = 1; k < vSize; k++) {
			setIvseq(0, k, 0.0);
			setIvseq(nT - 1, k, 0.0); // TODO: this might be an off-by-one error
		}
	}

	private void printWUW(int t) {
		for (int i = 0; i < WIDTH; i++)
			System.out.print("WUW[" + t + "][" + i + "]=" + wuw[t][i] + "  ");
		System.out.println("");
	}

	public void mlpg(HMMData htsData) {
		mlpg(htsData, htsData.getUseGV());
	}

	/*
	 * mlpg: generate sequence of speech parameter vector maximizing its output probability for given pdf sequence
	 */
	public void mlpg(HMMData htsData, boolean useGV) {

		if (htsData.getUseContextDependentGV())
			logger.info("Context-dependent global variance optimization: gvLength = " + gvLength);
		else
			logger.info("Global variance optimization");

		for (int m = 0; m < order; m++) {
			calcWUWandWUM(m);
			double[][] mywuw = new double[nT][];
			for (int x = 0; x < wuw.length; x++) {
				mywuw[x] = Arrays.copyOf(wuw[x], wuw[x].length);
			}
			double[] mywum = Arrays.copyOf(wum, wum.length);
			ldlFactorization(mywuw); /* LDL factorization */
			forwardSubstitution(mywum, mywuw); /* forward substitution in Cholesky decomposition */
			backwardSubstitution(m, mywuw); /* backward substitution in Cholesky decomposition */

			/* Global variance optimisation for MCP and LF0 */
			if (useGV && gvLength > 0) {
				if (htsData.getGvMethodGradient())
					gvParmGenGradient(m, false); // this is the previous method we have in MARY, using the Gradient as in the
													// Paper of Toda et. al. IEICE 2007
													// if using this method the variances have to be inverse (see note in GVModel
													// set: case NEWTON in gv optimization)
													// this method seems to give a better result
				else
					gvParmGenDerivative(m, false); // this is the method in the hts_engine 1.04 the variances are not inverse

			}
		}
	} /* method mlpg */

	/*----------------- HTS parameter generation fuctions  -----------------------------*/

	/*------ HTS parameter generation fuctions                  */
	/* Calc_WUW_and_WUM: calculate W'U^{-1}W and W'U^{-1}M */
	/* W is size W[T][width] , width is width of dynamic window */
	/* for the Cholesky decomposition: A'Ax = A'b */
	/* W'U^{-1}W C = W'U^{-1}M */
	/* A C = B where A = LL' */
	/* Ly = B , solve for y using forward elimination */
	/* L'C = y , solve for C using backward substitution */
	/* So having A and B we can find the parameters C. */
	/* U^{-1} = inverse covariance : inseq[][] */
	private void calcWUWandWUM(int m) {
		/* initialise */
		Arrays.fill(wum, 0, nT, 0.0);
		/* for all frames: */
		for (int t = 0; t < nT; t++) {
			/* initialise */
			Arrays.fill(wuw[t], 0.0);
			/* calc WUW & WUM, U is already inverse */
			for (int i = 0; i < NUM; i++) {
				int dwWidth_iright = rightWidths[i];
				int iorder = i * order + m;
				for (int j = leftWidths[i]; j <= dwWidth_iright; j++) {
					if ((t + j >= 0) && (t + j < nT)) {
						double dwCoef_ij = xcoefs[1 + i * NUM - j];
						if (dwCoef_ij != 0.0) {
							double WU = dwCoef_ij * ivseq[t + j][iorder];

							wum[t] += WU * mseq[t + j][iorder];
							for (int k = 0; (k < WIDTH) && (t + k < nT); k++) {
								if (k - j <= dwWidth_iright) {
									double dwCoef_ikj = xcoefs[1 + i * NUM + k - j];
									if (dwCoef_ikj != 0.0) {
										wuw[t][k] += WU * dwCoef_ikj;
									}
								}
							} /* for k */
						}
					}
				} /* for j */
			} /* for i */
		} /* for t */
		/*
		 * if(debug){ for(int t=0; t= 0); i++)
				mywuw[t][0] -= mywuw[t - i][i] * mywuw[t - i][i] * mywuw[t - i][0];

			for (int i = 2; i <= WIDTH; i++) {
				for (int j = 1; (i + j <= WIDTH) && (t - j >= 0); j++)
					mywuw[t][i - 1] -= mywuw[t - j][j] * mywuw[t - j][i + j - 1] * mywuw[t - j][0];
				mywuw[t][i - 1] /= mywuw[t][0];

			}
			/*
			 * if(debug) { System.out.println("LDL factorization:"); printWUW(t); System.out.println(); }
			 */
		}

	}

	/** forward_Substitution */
	private void forwardSubstitution(double[] mywum, double[][] mywuw) {
		System.arraycopy(mywum, 0, g, 0, mywum.length);
		for (int t = 0; t < nT; t++) {
			for (int i = 1; (i < WIDTH) && (t - i >= 0); i++)
				g[t] -= mywuw[t - i][i] * g[t - i]; /* i as index should be i-1 */
			// System.out.println("  g[" + t + "]=" + g[t]);
		}
		/*
		 * for(t=0; t= 0; t--) {
			par[t][m] = g[t] / mywuw[t][0];
			for (int i = 1; (i < WIDTH) && (t + i < nT); i++) {
				par[t][m] -= mywuw[t][i] * par[t + i][m]; /* i as index should be i-1 */
			}
			// System.out.println("  par[" + t + "]["+ m + "]=" + par[t][m]);
		}

	}

	/*----------------- GV functions  -----------------------------*/
	private void gvParmGenDerivative(int m, boolean debug) {
		int t, iter;
		double step = stepInit;
		double prev = -lzero;
		double obj = 0.0;
		double diag[] = new double[nT];
		double par_ori[] = new double[nT];
		mean = 0.0;
		var = 0.0;
		int numDown = 0;

		/* make a copy in case there is problems during optimisation */
		for (t = 0; t < nT; t++) {
			g[t] = 0.0;
			par_ori[t] = par[t][m];
		}

		/* first convert c (c=par) according to GV pdf and use it as the initial value */
		convGV(m);

		/* recalculate R=WUW and r=WUM */
		calcWUWandWUM(m);

		/* iteratively optimize c */
		for (iter = 1; iter <= maxGVIter; iter++) {
			/* calculate GV objective and its derivative with respect to c */
			obj = calcDerivative(m);

			/* objective function improved -> increase step size */
			if (obj > prev)
				step *= stepDec;

			/* objective function degraded -> go back c and decrese step size */
			if (obj < prev)
				step *= stepInc;

			/* steepest ascent and quasy Newton c(i+1) = c(i) + alpha * grad(c(i)) */
			for (t = 0; t < nT; t++)
				par[t][m] += step * g[t];

			// System.out.format("iter=%d  prev=%f  obj=%f \n", iter, prev, obj);
			prev = obj;
		}
		logger.info("Derivative GV optimization for feature: (" + m + ")  number of iterations=" + (iter - 1));

	}

	private void gvParmGenGradient(int m, boolean debug) {
		int t, iter;
		double step = stepInit;
		double obj = 0.0, prev = 0.0;
		double diag[] = new double[nT];
		double par_ori[] = new double[nT];
		mean = 0.0;
		var = 0.0;
		int numDown = 0;
		int totalNumIter = 0;
		int firstIter = 0;

		/* make a copy in case there is problems during optimisation */
		for (t = 0; t < nT; t++) {
			g[t] = 0.0;
			par_ori[t] = par[t][m];
		}

		/* first convert c (c=par) according to GV pdf and use it as the initial value */
		convGV(m);

		/* recalculate R=WUW and r=WUM */
		calcWUWandWUM(m);

		/* iteratively optimize c */
		for (iter = 1; iter <= maxGVIter; iter++) {
			/* calculate GV objective and its derivative with respect to c */
			obj = calcGradient(m);
			/* accelerate/decelerate step size */
			if (iter > 1) {
				/* objective function improved -> increase step size */
				if (obj > prev) {
					step *= stepInc;
					// logger.info("+++ obj > prev iter=" + iter +"  obj=" + obj + "  > prev=" + prev);
					numDown = 0;
				}
				/* objective function degraded -> go back c and decrese step size */
				if (obj < prev) {
					for (t = 0; t < nT; t++)
						/* go back c=par to that at the previous iteration */
						par[t][m] -= step * diag[t];
					step *= stepDec;
					for (t = 0; t < nT; t++)
						/* gradient c */
						par[t][m] += step * diag[t];
					iter--;
					numDown++;
					// logger.info("--- obj < prev iter=" + iter +"  obj=" + obj + "  < prev=" + prev +"  numDown=" + numDown);
					if (numDown < 100)
						continue;
					else {
						logger.info("  ***Convergence problems....optimization stopped. Number of iterations: " + iter);
						break;
					}
				}
			} else {
				if (debug)
					logger.info("  First iteration:  GVobj=" + obj + " (HMMobj=" + HMMobj + "  GVobj=" + GVobj + ")");
			}
			/* convergence check (Euclid norm, objective function) */
			if (norm < minEucNorm || (iter > 1 && Math.abs(obj - prev) < GVepsilon)) {
				if (debug)
					logger.info("  Number of iterations: [   " + iter + "   ] GVobj=" + obj + " (HMMobj=" + HMMobj + "  GVobj="
							+ GVobj + ")");
				totalNumIter++; // gv.incTotalNumIter(iter);
				if (m == 0)
					firstIter = iter;// gv.setFirstIter(iter);
				if (debug) {
					if (iter > 1)
						logger.info("  Converged (norm=" + norm + ", change=" + Math.abs(obj - prev) + ")");
					else
						logger.info("  Converged (norm=" + norm + ")");
				}
				break;
			}
			/* steepest ascent and quasy Newton c(i+1) = c(i) + alpha * grad(c(i)) */
			for (t = 0; t < nT; t++) {
				par[t][m] += step * g[t];
				diag[t] = g[t];
			}
			prev = obj;
		}
		if (iter > maxGVIter) {
			logger.info("   optimization stopped by reaching max number of iterations (no global variance applied)");

			/* If there it does not converge, the feature parameter is not optimized */
			for (t = 0; t < nT; t++) {
				par[t][m] = par_ori[t];
			}
		}
		totalNumIter = iter;

		logger.info("Gradient GV optimization for feature: (" + m + ")  number of iterations=" + totalNumIter);
	}

	private double calcGradient(int m) {
		int t, i, k;
		double vd;
		double h, aux;
		double w = 1.0 / (NUM * nT);

		/* recalculate GV of the current c = par */
		calcGV(m);

		/* GV objective function and its derivative with respect to c */
		/* -1/2 * v(c)' U^-1 v(c) + v(c)' U^-1 mu + K --> second part of eq (20) in Toda and Tokuda IEICE-2007 paper. */
		GVobj = -0.5 * w2 * (var - gvmean[m]) * gvcovInv[m] * (var - gvmean[m]);
		vd = gvcovInv[m] * (var - gvmean[m]);

		/* calculate g = R*c = WUW*c */
		for (t = 0; t < nT; t++) {
			g[t] = wuw[t][0] * par[t][m];
			for (i = 2; i <= WIDTH; i++) { /* WIDTH goes from 0 to 2 WIDTH=3 */
				if (t + i - 1 < nT)
					g[t] += wuw[t][i - 1] * par[t + i - 1][m]; /* i as index should be i-1 */
				if (t - i + 1 >= 0)
					g[t] += wuw[t - i + 1][i - 1] * par[t - i + 1][m]; /* i as index should be i-1 */
			}
		}

		for (t = 0, HMMobj = 0.0, norm = 0.0; t < nT; t++) {

			HMMobj += -0.5 * w1 * w * par[t][m] * (g[t] - 2.0 * wum[t]);

			/* case STEEPEST: do not use hessian */
			// h = 1.0;
			/* case NEWTON */
			/* only diagonal elements of Hessian matrix are used */
			h = ((nT - 1) * vd + 2.0 * gvcovInv[m] * (par[t][m] - mean) * (par[t][m] - mean));
			h = -w1 * w * wuw[t][1 - 1] - w2 * 2.0 / (nT * nT) * h;

			h = -1.0 / h;

			/* gradient vector */
			if (gvSwitch[t]) {
				aux = (par[t][m] - mean) * vd;
				g[t] = h * (w1 * w * (-g[t] + wum[t]) + w2 * -2.0 / nT * aux);
			} else
				g[t] = h * (w1 * w * (-g[t] + wum[t]));

			/* Euclidian norm of gradient vector */
			norm += g[t] * g[t];

		}

		norm = Math.sqrt(norm);
		// logger.info("HMMobj=" + HMMobj + "  GVobj=" + GVobj + "  norm=" + norm);

		return (HMMobj + GVobj);

	}

	private double calcDerivative(int m) {
		int t, i, k;
		double vd;
		double h, aux;
		double w = 1.0 / (NUM * nT);

		/* recalculate GV of the current c = par */
		calcGV(m);

		/* GV objective function and its derivative with respect to c */
		/* -1/2 * v(c)' U^-1 v(c) + v(c)' U^-1 mu + K --> second part of eq (20) in Toda and Tokuda IEICE-2007 paper. */
		GVobj = -0.5 * w2 * var * gvcovInv[m] * (var - 2.0 * gvmean[m]);
		vd = -2.0 * gvcovInv[m] * (var - gvmean[m]) / nT;
		// System.out.format("GVobj=%f  vd=%f \n", GVobj, vd);

		/* calculate g = R*c = WUW*c */
		for (t = 0; t < nT; t++) {
			g[t] = wuw[t][0] * par[t][m];
			for (i = 2; i <= WIDTH; i++) { /* WIDTH goes from 0 to 2 WIDTH=3 */
				if (t + i - 1 < nT)
					g[t] += wuw[t][i - 1] * par[t + i - 1][m]; /* i as index should be i-1 */
				if (t - i + 1 >= 0)
					g[t] += wuw[t - i + 1][i - 1] * par[t - i + 1][m]; /* i as index should be i-1 */
			}
		}

		for (t = 0, HMMobj = 0.0; t < nT; t++) {

			HMMobj += w1 * w * par[t][m] * (wum[t] - 0.5 * g[t]);

			h = -w1 * w * wuw[t][1 - 1] - w2 * 2.0 / (nT * nT)
					* ((nT - 1) * gvcovInv[m] * (var - gvmean[m]) + 2.0 * gvcovInv[m] * (par[t][m] - mean) * (par[t][m] - mean));

			// System.out.format("HMMobj=%f  h=%f \n", HMMobj, h);
			/* gradient vector */
			if (gvSwitch[t]) {
				g[t] = 1.0 / h * (w1 * w * (-g[t] + wum[t]) + w2 * vd * (par[t][m] - mean));

			} else
				g[t] = 1.0 / h * (w1 * w * (-g[t] + wum[t]));

		}

		return (-(HMMobj + GVobj));

	}

	private void convGV(int m) {
		int t, k;
		double ratio, mixmean;
		/* calculate GV of c */
		calcGV(m);

		ratio = Math.sqrt(gvmean[m] / var);
		// System.out.format("    mean=%f vari=%f ratio=%f \n", mean, var, ratio);

		/* c'[t][d] = ratio * (c[t][d]-mean[d]) + mean[d] eq. (34) in Toda and Tokuda IEICE-2007 paper. */
		for (t = 0; t < nT; t++) {
			if (gvSwitch[t])
				par[t][m] = ratio * (par[t][m] - mean) + mean;
		}

	}

	private void calcGV(int m) {
		int t, i;
		mean = 0.0;
		var = 0.0;

		/* mean */
		for (t = 0; t < nT; t++)
			if (gvSwitch[t]) {
				mean += par[t][m];
				// System.out.format("(%d)%f ", t, par[t][m]);
			}
		mean = mean / gvLength;
		// System.out.format("  --- gvlength=%d  mean=%f\n", gvLength, mean);

		/* variance */
		for (t = 0; t < nT; t++)
			if (gvSwitch[t]) {
				var += (par[t][m] - mean) * (par[t][m] - mean);
				// System.out.format("(%d)%f ", t, var);
			}
		// System.out.format("\n");
		var = var / gvLength;

	}

} /* class PStream */




© 2015 - 2025 Weber Informatics LLC | Privacy Policy