marytts.signalproc.effects.ChorusEffectBase Maven / Gradle / Ivy
The newest version!
/**
* Copyright 2007 DFKI GmbH.
* All Rights Reserved. Use is subject to license terms.
*
* This file is part of MARY TTS.
*
* MARY TTS is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*
*/
package marytts.signalproc.effects;
import marytts.signalproc.process.Chorus;
import marytts.signalproc.process.FrameOverlapAddSource;
import marytts.signalproc.window.Window;
import marytts.util.data.BufferedDoubleDataSource;
import marytts.util.data.DoubleDataSource;
import marytts.util.math.MathUtils;
/**
* @author Oytun Türk
*/
public class ChorusEffectBase extends BaseAudioEffect {
int[] delaysInMiliseconds;
double[] amps;
int frameLength;
int maxDelayInMiliseconds;
int maxDelayInSamples;
int numTaps;
public static int MAX_TAPS = 20;
public static int MIN_DELAY = 0;
public static int MAX_DELAY = 5000;
public static double MIN_AMP = -5.0;
public static double MAX_AMP = 5.0;
public ChorusEffectBase() {
this(16000);
}
public ChorusEffectBase(int samplingRate) {
super(samplingRate);
setExampleParameters("delay1" + chParamEquals + "466" + chParamSeparator + " amp1" + chParamEquals + "0.54"
+ chParamSeparator + " delay2" + chParamEquals + "600" + chParamSeparator + " amp2" + chParamEquals + "-0.10"
+ chParamSeparator + " delay3" + chParamEquals + "250" + chParamSeparator + " amp3" + chParamEquals + "0.30");
strHelpText = getHelpText();
}
public void parseChildParameters(String param) {
super.parseParameters(param);
}
public void parseParameters(String param) {
super.parseParameters(param);
int i;
int[] tmpDelays = new int[MAX_TAPS];
double[] tmpAmps = new double[MAX_TAPS];
String strSearch;
numTaps = 0;
for (i = 0; i < MAX_TAPS; i++) {
strSearch = "delay" + String.valueOf(i + 1);
tmpDelays[i] = expectIntParameter(strSearch);
if (tmpDelays[i] > NULL_INT_PARAM) {
numTaps++;
strSearch = "amp" + String.valueOf(i + 1);
tmpAmps[i] = expectDoubleParameter(strSearch);
if (tmpAmps[i] == NULL_DOUBLE_PARAM)
tmpAmps[i] = 0.5;
}
}
if (numTaps > 0) {
delaysInMiliseconds = new int[numTaps];
amps = new double[numTaps];
int tapInd = 0;
for (i = 0; i < MAX_TAPS; i++) {
if (tmpDelays[i] > NULL_INT_PARAM) {
if (tapInd < numTaps) {
delaysInMiliseconds[tapInd] = tmpDelays[i];
amps[tapInd] = tmpAmps[i];
tapInd++;
} else
break;
}
}
} else {
delaysInMiliseconds = null;
amps = null;
}
initialise();
}
public void initialise() {
if (delaysInMiliseconds != null) {
numTaps = delaysInMiliseconds.length;
if (numTaps > 0) {
for (int i = 0; i < numTaps; i++) {
delaysInMiliseconds[i] = MathUtils.CheckLimits(delaysInMiliseconds[i], MIN_DELAY, MAX_DELAY);
amps[i] = MathUtils.CheckLimits(amps[i], MIN_AMP, MAX_AMP);
}
maxDelayInMiliseconds = MathUtils.getMax(delaysInMiliseconds);
maxDelayInSamples = (int) (maxDelayInMiliseconds / 1000.0 * fs);
frameLength = Integer.getInteger("signalproc.lpcanalysissynthesis.framelength", 512).intValue();
if (frameLength < maxDelayInSamples)
frameLength *= 2;
}
}
}
public DoubleDataSource process(DoubleDataSource input) {
Chorus chorus = new Chorus(delaysInMiliseconds, amps, fs);
FrameOverlapAddSource foas = new FrameOverlapAddSource(input, Window.HANNING, true, 1024, fs, chorus);
return new BufferedDoubleDataSource(foas);
}
public String getHelpText() {
String strHelp = "Multi-Tap Chorus Effect:"
+ strLineBreak
+ "Adds chorus effect by summing up the original signal with delayed and amplitude scaled versions."
+ strLineBreak
+ "The parameters should consist of delay and amplitude pairs for each tap."
+ strLineBreak
+ "A variable number of taps (max 20) can be specified by simply defining more delay-amplitude pairs."
+ strLineBreak
+ "Each tap outputs a delayed and gain-scaled version of the original signal."
+ strLineBreak
+ "All tap outputs are summed up with the oiginal signal with appropriate gain normalization."
+ strLineBreak
+ "Parameters:"
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : The amount of delay in miliseconds for tap #1"
+ strLineBreak
+ " Range : [0,5000]"
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : Relative amplitude of the channel gain as compared to original signal gain for tap #1"
+ strLineBreak
+ " Range : [-5.0,5.0]"
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : The amount of delay in miliseconds in delayed channel #2"
+ strLineBreak
+ " Range : [0,5000]"
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : Relative amplitude of the channel gain as compared to original signal gain for delayed channel #2"
+ strLineBreak
+ " Range : [-5.0,5.0]"
+ strLineBreak
+ " ..."
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : The amount of delay in miliseconds in delayed channel #N"
+ strLineBreak
+ " Range : [0,5000]"
+ strLineBreak
+ " "
+ strLineBreak
+ " Definition : Relative amplitude of the channel gain as compared to original signal gain for delayed channel #N"
+ strLineBreak + " Range : [-5.0,5.0]" + strLineBreak
+ " Note: Maximum possible number of taps is N=20. Parameters for more taps will simply be neglected."
+ strLineBreak + "Example: (A three-tap chorus effect)" + strLineBreak + getExampleParameters();
return strHelp;
}
public String getName() {
return "Chorus";
}
public DoubleDataSource apply(BufferedDoubleDataSource input) {
Chorus c = new Chorus(delaysInMiliseconds, amps, fs);
FrameOverlapAddSource foas = new FrameOverlapAddSource(input, Window.HANNING, true, frameLength, fs, c);
return (DoubleDataSource) (new BufferedDoubleDataSource(foas));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy