Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package de.gsi.chart.plugins.measurements.utils;
import de.gsi.dataset.DataSet;
/**
* computation of statistical estimates
*
* @author rstein
*/
public final class SimpleDataSetEstimators { // NOPMD name is as is (ie. no Helper/Utils ending
private SimpleDataSetEstimators() {
// this is a static class
}
public static double getValue(final DataSet dataSet, final int indexMin, final boolean isHorizontal) {
return isHorizontal ? dataSet.getX(indexMin) : dataSet.getY(indexMin);
}
public static double getMinimum(final DataSet dataSet, final int indexMin, final int indexMax) {
double val = Double.MAX_VALUE;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
val = Math.min(val, actual);
}
}
return val;
}
public static double getMaximum(final DataSet dataSet, final int indexMin, final int indexMax) {
double val = -1.0 * Double.MAX_VALUE;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
val = Math.max(val, actual);
}
}
return val;
}
public static double getRange(final DataSet dataSet, final int indexMin, final int indexMax) {
double valMin = Double.MAX_VALUE;
double valMax = -1.0 * Double.MAX_VALUE;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
valMax = Math.max(valMax, actual);
valMin = Math.min(valMin, actual);
}
}
return Math.abs(valMax - valMin);
}
public static double getMean(final DataSet dataSet, final int indexMin, final int indexMax) {
double val = 0.0;
int count = 0;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
val += actual;
count++;
}
}
if (count > 0) {
return val / count;
}
return Double.NaN;
}
public static double[] getDoubleArray(final DataSet dataSet, final int indexMin, final int indexMax) {
if (indexMax - indexMin <= 0) {
return new double[0];
}
final double[] ret = new double[indexMax - indexMin];
int count = 0;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
ret[count] = actual;
count++;
}
return ret;
}
public static double getRms(final DataSet dataSet, final int indexMin, final int indexMax) {
final double[] data = SimpleDataSetEstimators.getDoubleArray(dataSet, indexMin, indexMax);
if (data.length == 0) {
return Double.NaN;
}
return SimpleDataSetEstimators.rootMeanSquare(data, data.length);
}
public static double getMedian(final DataSet dataSet, final int indexMin, final int indexMax) {
final double[] data = SimpleDataSetEstimators.getDoubleArray(dataSet, indexMin, indexMax);
if (data.length == 0) {
return Double.NaN;
}
return SimpleDataSetEstimators.median(data, data.length);
}
public static double getIntegral(final DataSet dataSet, final int indexMin, final int indexMax) {
if (Math.abs(indexMax - indexMin) < 0) {
return Double.NaN;
}
double sign = +1.0;
if (indexMin > indexMax) {
sign = -1.0;
}
double integral = 0;
for (int index = Math.min(indexMin, indexMax); index < Math.max(indexMin, indexMax) - 1; index++) {
final double x0 = dataSet.getX(index);
final double x1 = dataSet.getX(index + 1);
final double y0 = dataSet.getY(index);
final double y1 = dataSet.getY(index + 1);
// algorithm here applies trapezoidal rule
final double localIntegral = (x1 - x0) * 0.5 * (y0 + y1);
if (Double.isFinite(localIntegral)) {
integral += localIntegral;
}
}
return sign * integral;
}
public static double getTransmission(final DataSet dataSet, final int indexMin, final int indexMax,
final boolean isAbsoluteTransmission) {
final double valRef = dataSet.getY(indexMin);
final double val = dataSet.getY(indexMax);
return (isAbsoluteTransmission ? val : val - valRef) / valRef * 100.0; // in [%]
}
/**
* @param data the input vector
* @param length <= data.length elements to be used
* @return un-biased r.m.s. of vector elements
*/
private static double rootMeanSquare(final double[] data, final int length) {
if (length <= 0) {
return -1;
}
final double norm = 1.0 / length;
double val1 = 0.0;
double val2 = 0.0;
for (int i = 0; i < length; i++) {
val1 += data[i];
val2 += data[i] * data[i];
}
val1 *= norm;
val2 *= norm;
// un-biased rms!
return Math.sqrt(Math.abs(val2 - val1 * val1));
}
/**
* @param data the input vector
* @param length <= data.length elements to be used
* @return median value of vector element
*/
private static synchronized double median(final double[] data, final int length) {
final double[] temp = SimpleDataSetEstimators.sort(data, length, false);
if (length % 2 == 0) {
return 0.5 * (temp[length / 2] + temp[length / 2 + 1]);
}
return temp[length / 2];
}
/**
* Sorts the input a array
*
* @param a the input array
* @param length <= data.length elements to be used
* @param down true: ascending , false: descending order
* @return the sorted array
*/
private static synchronized double[] sort(final double[] a, final int length, final boolean down) {
if (a == null || a.length <= 0) {
return new double[0];
}
final double[] index = java.util.Arrays.copyOf(a, length);
java.util.Arrays.sort(index);
if (down) {
double temp;
final int nlast = length - 1;
for (int i = 0; i < length / 2; i++) {
// swap values
temp = index[i];
index[i] = index[nlast - i];
index[nlast - i] = temp;
}
}
return index;
}
public static double getDistance(final DataSet dataSet, final int indexMin, final int indexMax,
final boolean isHorizontal) {
return isHorizontal ? dataSet.getX(indexMax) - dataSet.getX(indexMin)
: dataSet.getY(indexMax) - dataSet.getY(indexMin);
}
public static double getEdgeDetect(final DataSet dataSet, final int indexMin, final int indexMax) {
final double minVal = SimpleDataSetEstimators.getMinimum(dataSet, indexMin, indexMax);
final double maxVal = SimpleDataSetEstimators.getMaximum(dataSet, indexMin, indexMax);
final double range = SimpleDataSetEstimators.getMean(dataSet, indexMin, indexMax);
final boolean inverted = dataSet.getY(indexMin) > dataSet.getY(indexMax);
// detect 20% and 80% change
final double startTime = dataSet.getX(indexMin);
double stopTime = dataSet.getX(indexMax);
if (inverted) {
// detect falling edge
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual) && actual < maxVal - 0.5 * range) {
stopTime = dataSet.getX(index);
break;
}
}
} else {
// detect rising edge
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual) && actual > minVal + 0.5 * range) {
stopTime = dataSet.getX(index);
break;
}
}
}
return stopTime - startTime;
}
public static double getSimpleRiseTime(final DataSet dataSet, final int indexMin, final int indexMax) {
return getSimpleRiseTime2080(dataSet, indexMin, indexMax);
}
public static double getSimpleRiseTime1090(final DataSet dataSet, final int indexMin, final int indexMax) {
return getSimpleRiseTime(dataSet, indexMin, indexMax, 0.1, 0.9);
}
public static double getSimpleRiseTime2080(final DataSet dataSet, final int indexMin, final int indexMax) {
return getSimpleRiseTime(dataSet, indexMin, indexMax, 0.2, 0.9);
}
public static double getSimpleRiseTime(final DataSet dataSet, final int indexMin, final int indexMax, final double min, final double max) {
if (!Double.isFinite(min) || min < 0.0 || min >1.0 || !Double.isFinite(max) || max < 0.0 || max >1.0 || max<=min) {
throw new IllegalArgumentException(new StringBuilder().append("[min=").append(min).append(",max=").append(max).append("] must be within [0.0, 1.0]").toString());
}
final double minVal = SimpleDataSetEstimators.getMinimum(dataSet, indexMin, indexMax);
final double maxVal = SimpleDataSetEstimators.getMaximum(dataSet, indexMin, indexMax);
final double range = Math.abs(maxVal - minVal);
final boolean inverted = dataSet.getY(indexMin) > dataSet.getY(indexMax);
// detect 'min' and 'max' level change
double startTime = dataSet.getX(indexMin);
double stopTime = dataSet.getX(indexMax);
boolean foundStartRising = false;
if (inverted) {
// detect falling edge
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
if (!foundStartRising && actual < maxVal - min * range) {
startTime = dataSet.getX(index);
foundStartRising = true;
continue;
}
if (foundStartRising && actual < maxVal - max * range) {
stopTime = dataSet.getX(index);
break;
}
}
}
} else {
// detect rising edge
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
if (!foundStartRising && actual > minVal + min * range) {
startTime = dataSet.getX(index);
foundStartRising = true;
continue;
}
if (foundStartRising && actual > minVal + max * range) {
stopTime = dataSet.getX(index);
break;
}
}
}
}
return stopTime - startTime;
}
public static int getLocationMaximum(final DataSet dataSet, final int indexMin, final int indexMax) {
int locMax = -1;
double maxVal = -Double.MAX_VALUE;
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual) && actual > maxVal) {
maxVal = actual;
locMax = index;
}
}
return locMax;
}
public static double getLocationMaximumGaussInterpolated(final DataSet dataSet, final int indexMin,
final int indexMax) {
final int locationMaximum = SimpleDataSetEstimators.getLocationMaximum(dataSet, indexMin, indexMax);
if (locationMaximum <= indexMin + 1 || locationMaximum >= indexMax - 1) {
return Double.NaN;
}
final double[] data = SimpleDataSetEstimators.getDoubleArray(dataSet, indexMin, indexMax);
if (data.length == 0) {
return Double.NaN;
}
final double refinedValue = indexMin + SimpleDataSetEstimators.interpolateGaussian(data, data.length, locationMaximum - indexMin)
- locationMaximum;
final double valX0 = dataSet.getX(locationMaximum);
final double valX1 = dataSet.getX(locationMaximum + 1);
final double diff = valX1 - valX0;
return valX0 + refinedValue * diff;
}
/**
* interpolation using a Gaussian interpolation
*
* @param data data array
* @param length length of data arrays
* @param index 0< index < data.length
* @return location of the to be interpolated peak [bins]
*/
public static double interpolateGaussian(final double[] data, final int length, final int index) {
if (!(index > 0 && index < length - 1)) {
return index;
}
final double left = Math.pow(data[index - 1], 1);
final double center = Math.pow(data[index - 0], 1);
final double right = Math.pow(data[index + 1], 1);
double val = index;
val += 0.5 * Math.log(right / left) / Math.log(Math.pow(center, 2) / (left * right));
return val;
}
public static double linearInterpolate(final double x0, final double x1, final double y0, final double y1,
final double y) {
return x0 + (y - y0) * (x1 - x0) / (y1 - y0);
}
/**
* compute simple Full-Width-Half-Maximum (no inter-bin interpolation)
*
* @param data data array
* @param length of data array
* @param index 0< index < data.length
* @return FWHM estimate [bins]
*/
public static double computeFWHM(final double[] data, final int length, final int index) {
if (!(index > 0 && index < length - 1)) {
return 1.0f;
}
final double maxHalf = 0.5 * data[index];
int lowerLimit;
int upperLimit;
for (upperLimit = index; upperLimit < length && data[upperLimit] > maxHalf; upperLimit++) {
// computation done in the abort condition
}
for (lowerLimit = index; lowerLimit > 0 && data[lowerLimit] > maxHalf; lowerLimit--) {
// computation done in the abort condition
}
return upperLimit - lowerLimit;
}
/**
* compute interpolated Full-Width-Half-Maximum
*
* @param data data array
* @param length of data array
* @param index 0< index < data.length
* @return FWHM estimate [bins]
*/
public static double computeInterpolatedFWHM(final double[] data, final int length, final int index) {
if (!(index > 0 && index < length - 1)) {
return 1.0f;
}
final double maxHalf = 0.5 * data[index];
int lowerLimit;
int upperLimit;
for (upperLimit = index; upperLimit < length && data[upperLimit] > maxHalf; upperLimit++) {
// computation done in the abort condition
}
for (lowerLimit = index; lowerLimit > 0 && data[lowerLimit] > maxHalf; lowerLimit--) {
// computation done in the abort condition
}
final double lowerLimitRefined = SimpleDataSetEstimators.linearInterpolate(lowerLimit, lowerLimit + 1.0, data[lowerLimit],
data[lowerLimit + 1], maxHalf);
final double upperLimitRefined = SimpleDataSetEstimators.linearInterpolate(upperLimit - 1.0, upperLimit, data[upperLimit - 1],
data[upperLimit], maxHalf);
return upperLimitRefined - lowerLimitRefined;
}
public static double getFullWidthHalfMaximum(final DataSet dataSet, final int indexMin, final int indexMax,
final boolean interpolate) {
final int locationMaximum = SimpleDataSetEstimators.getLocationMaximum(dataSet, indexMin, indexMax);
if (locationMaximum <= indexMin + 1 || locationMaximum >= indexMax - 1) {
return Double.NaN;
}
final double[] data = SimpleDataSetEstimators.getDoubleArray(dataSet, indexMin, indexMax);
if (data.length == 0) {
return Double.NaN;
}
if (interpolate) {
return SimpleDataSetEstimators.computeInterpolatedFWHM(data, data.length, locationMaximum - indexMin);
}
return SimpleDataSetEstimators.computeFWHM(data, data.length, locationMaximum - indexMin);
}
public static double getDutyCycle(final DataSet dataSet, final int indexMin, final int indexMax) {
final double minVal = SimpleDataSetEstimators.getMinimum(dataSet, indexMin, indexMax);
final double maxVal = SimpleDataSetEstimators.getMaximum(dataSet, indexMin, indexMax);
final double range = Math.abs(maxVal - minVal);
int countLow = 0;
int countHigh = 0;
final double thresholdMin = minVal + 0.45 * range; // includes 10% hysteresis
final double thresholdMax = minVal + 0.55 * range; // includes 10% hysteresis
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (Double.isFinite(actual)) {
if (actual < thresholdMin) {
countLow++;
}
if (actual > thresholdMax) {
countHigh++;
}
}
}
if ((countLow + countHigh) == 0) {
return Double.NaN;
}
return (double) countHigh / (double) (countLow + countHigh);
}
public static double getFrequencyEstimate(final DataSet dataSet, final int indexMin, final int indexMax) {
final double minVal = SimpleDataSetEstimators.getMinimum(dataSet, indexMin, indexMax);
final double maxVal = SimpleDataSetEstimators.getMaximum(dataSet, indexMin, indexMax);
final double range = Math.abs(maxVal - minVal);
final double thresholdMin = minVal + 0.45 * range; // includes 10% hysteresis
final double thresholdMax = minVal + 0.55 * range; // includes 10% hysteresis
double startRisingEdge = Double.NaN;
double startFallingEdge = Double.NaN;
double avgPeriod = 0.0;
int avgPeriodCount = 0;
double actualState = 0.0; // low assumes am below zero line
for (int index = indexMin; index < indexMax; index++) {
final double actual = dataSet.getY(index);
if (!Double.isFinite(actual)) {
continue;
}
if (actualState < 0.5) {
// last sample was above zero line
if (actual > thresholdMax) {
// detected rising edge
actualState = 1.0;
final double time = dataSet.getX(index);
if (Double.isFinite(startRisingEdge)) {
final double period = time - startRisingEdge;
startRisingEdge = time;
avgPeriod += period;
avgPeriodCount++;
} else {
startRisingEdge = time;
}
}
} else // last sample was below zero line
if (actual < thresholdMin) {
// detected falling edge
actualState = 0.0;
final double time = dataSet.getX(index);
if (Double.isFinite(startFallingEdge)) {
final double period = time - startFallingEdge;
startFallingEdge = time;
avgPeriod += period;
avgPeriodCount++;
} else {
startFallingEdge = time;
}
}
}
if (avgPeriodCount == 0) {
return Double.NaN;
}
return avgPeriodCount / avgPeriod;
}
}