All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliasi.dca.DiscreteObjectChooser Maven / Gradle / Ivy

Go to download

This is the original Lingpipe: http://alias-i.com/lingpipe/web/download.html There were not made any changes to the source code.

There is a newer version: 4.1.2-JL1.0
Show newest version
/*
 * LingPipe v. 4.1.0
 * Copyright (C) 2003-2011 Alias-i
 *
 * This program is licensed under the Alias-i Royalty Free License
 * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i
 * Royalty Free License Version 1 for more details.
 *
 * You should have received a copy of the Alias-i Royalty Free License
 * Version 1 along with this program; if not, visit
 * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact
 * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211,
 * +1 (718) 290-9170.
 */

package com.aliasi.dca;

import com.aliasi.features.Features;

import com.aliasi.io.Reporter;
import com.aliasi.io.Reporters;

import com.aliasi.matrix.Vector;

import com.aliasi.stats.AnnealingSchedule;
import com.aliasi.stats.RegressionPrior;

import com.aliasi.symbol.MapSymbolTable;
import com.aliasi.symbol.SymbolTable;

import com.aliasi.util.AbstractExternalizable;
import com.aliasi.util.FeatureExtractor;
import com.aliasi.util.ObjectToCounterMap;

import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.io.Serializable;

import java.util.List;
import java.util.Map;

/**
 * A {@code DiscreteObjectChooser} provides an implementation of
 * discrete choice analysis (DCA) over arbitrary objects using a
 * feature extractor.
 *
 * 

The feature extractor is used to map objects to feature * maps, and a feature symbol table is used to convert these * feature maps into vectors which may be fed into the contained * discrete chooser. * *

Estimation

* * Estimation is carried out the same way as for basic choosers, with * the intermediate step of feature extraction over the basic * corpus of object choices. * *

Serialization

* * A discrete object chooser may be serialized if its feature * extractor and feature symbol table are serializable. * *

Discrete object choosers created by estimation are * serializable. * * @author Bob Carpenter * @version 3.9.1 * @since LingPipe3.9.1 * @param E Type of objects being chosen. */ public class DiscreteObjectChooser implements Serializable { static final long serialVersionUID = 3178131664571660923L; private final FeatureExtractor mFeatureExtractor; private final SymbolTable mFeatureSymbolTable; private final DiscreteChooser mChooser; /** * Construct a discrete chooser based on the specified feature * extractor, feature symbol table, and base chooser. */ public DiscreteObjectChooser(FeatureExtractor featureExtractor, SymbolTable featureSymbolTable, DiscreteChooser chooser) { mFeatureExtractor = featureExtractor; mFeatureSymbolTable = featureSymbolTable; mChooser = chooser; } /** * Return the feature extractor for this chooser. * * @return This chooser's feature extractor. */ public FeatureExtractor featureExtractor() { return mFeatureExtractor; } /** * Returns an unmodifiable view of the feature symbol * table underlying this chooser. * * @return The feature symbol table for this chooser. */ public SymbolTable featureSymbolTable() { return MapSymbolTable.unmodifiableView(mFeatureSymbolTable); } /** * Returns the discrete chooser on which this object chooser is * based. */ public DiscreteChooser chooser() { return mChooser; } /** * *

Because intercepts are ignored, they are not added to * feature maps and should not be treated as noninformative in the * prior. */ public static DiscreteObjectChooser estimate(FeatureExtractor featureExtractor, List> alternativeObjectss, int[] choices, int minFeatureCount, RegressionPrior prior, int priorBlockSize, AnnealingSchedule annealingSchedule, double minImprovement, int minEpochs, int maxEpochs, Reporter reporter) { if (reporter == null) reporter = Reporters.silent(); ObjectToCounterMap featureCounter = new ObjectToCounterMap(); for (List alternativeObjects : alternativeObjectss) { for (F alternativeObject : alternativeObjects) { Map featureMap = featureExtractor.features(alternativeObject); for (String feature : featureMap.keySet()) featureCounter.increment(feature); } } featureCounter.prune(minFeatureCount); MapSymbolTable featureSymbolTable = new MapSymbolTable(); for (String feature : featureCounter.keySet()) featureSymbolTable.getOrAddSymbol(feature); int numDimensions = featureSymbolTable.numSymbols(); Vector[][] alternativess = new Vector[alternativeObjectss.size()][]; for (int i = 0; i < alternativess.length; ++i) { List alternativeObjects = alternativeObjectss.get(i); alternativess[i] = new Vector[alternativeObjects.size()]; for (int k = 0; k < alternativess[i].length; ++k) { Map featureMap = featureExtractor.features(alternativeObjects.get(k)); alternativess[i][k] = Features.toVectorAddSymbols(featureMap,featureSymbolTable,numDimensions, ADD_INTERCEPT_FALSE); } } DiscreteChooser chooser = DiscreteChooser.estimate(alternativess, choices, prior, priorBlockSize, annealingSchedule, minImprovement, minEpochs, maxEpochs, reporter); return new DiscreteObjectChooser(featureExtractor, featureSymbolTable, chooser); } Object writeReplace() { return new Serializer(this); } static final boolean ADD_INTERCEPT_FALSE = false; static class Serializer extends AbstractExternalizable { static final long serialVersionUID = 4420046415835317661L; final DiscreteObjectChooser mObjectChooser; public Serializer() { this(null); } public Serializer(DiscreteObjectChooser objectChooser) { mObjectChooser = objectChooser; } public void writeExternal(ObjectOutput out) throws IOException { out.writeObject(mObjectChooser.mFeatureExtractor); out.writeObject(mObjectChooser.mFeatureSymbolTable); out.writeObject(mObjectChooser.mChooser); } public Object read(ObjectInput in) throws IOException, ClassNotFoundException { @SuppressWarnings("unchecked") // required for deser FeatureExtractor featureExtractor = (FeatureExtractor) in.readObject(); @SuppressWarnings("unchecked") // required for deser SymbolTable featureSymbolTable = (SymbolTable) in.readObject(); @SuppressWarnings("unchecked") // required for deser DiscreteChooser chooser = (DiscreteChooser) in.readObject(); return new DiscreteObjectChooser(featureExtractor,featureSymbolTable,chooser); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy