All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliasi.hmm.HmmDecoder Maven / Gradle / Ivy

Go to download

This is the original Lingpipe: http://alias-i.com/lingpipe/web/download.html There were not made any changes to the source code.

There is a newer version: 4.1.2-JL1.0
Show newest version
/*
 * LingPipe v. 4.1.0
 * Copyright (C) 2003-2011 Alias-i
 *
 * This program is licensed under the Alias-i Royalty Free License
 * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i
 * Royalty Free License Version 1 for more details.
 *
 * You should have received a copy of the Alias-i Royalty Free License
 * Version 1 along with this program; if not, visit
 * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact
 * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211,
 * +1 (718) 290-9170.
 */

package com.aliasi.hmm;

import com.aliasi.symbol.SymbolTable;

import com.aliasi.tag.Tagger;
import com.aliasi.tag.NBestTagger;
import com.aliasi.tag.TagLattice;
import com.aliasi.tag.MarginalTagger;
import com.aliasi.tag.ScoredTagging;
import com.aliasi.tag.Tagging;

import com.aliasi.util.BoundedPriorityQueue;
import com.aliasi.util.Iterators;
import com.aliasi.util.Scored;
import com.aliasi.util.ScoredObject;
import com.aliasi.util.Strings;

import java.util.Arrays;
import java.util.Map;
import java.util.Iterator;
import java.util.List;

/**
 * An HmmDecoder provides implementations of first-best,
 * n-best and marginal taggers for hidden Markov models (HMMs).  A
 * decoder is constructed from a hidden Markov model.
 *
 * 

First-best Output

* * HMM decoders implement the interface {@link Tagger}, which * specifies a first-best tagging method {@link #tag(List)}. * This method provides the likely (first best) path of HMM states * (tags) given a sequence of string emissions (outputs). First-best * decoding is implemented using Viterbi's dynamic programming * algorithm. * *

N-best Output

* *

HMM decoders also implement the interface {@code NBestTagger}, * which specifies the method {@link #tagNBest(List,int)} and {@link * #tagNBestConditional(List,int)}. These methods both return an * iterator over scored taggings. N-best decoding is implemented * using the Viterbi algorithm in a forward pass and the A* * algorithm in the backward pass using the Viterbi estimates as exact * completion estimates. The variant conditional method further * normalizes outputs to posterior conditional probabilities, and is * a bit more expensive to compute. * *

Confidence and Lattice Output

* *

HMM decoders also implement the {@link MarginalTagger} * interface, which specifies a method {@link #tagMarginal(List)} for * providing marginal probability estimates for categories for a token * given the input string. Marginal decoding is implemented using the * standard forward-backward algorithm. The lattice is an instance of * {@link TagLattice}, which itself implements {@link TagLattice}; * see that class's documentation for information on how to retrieve * cumulative (total) probabilities for input token sequences and * posterior conditional probabilities (confidence scores) per token. * *

Caching

* *

The decoder is able to cache emission probabilities, the * computation of which is often the bottleneck in decoding. Caches * may be provided in the constructor for both ordinary (linear) * probabilities and log probabilities of emissions. A cache is * simply an instance of {@link Map} from strings to arrays of doubles. * *

The first-best and n-best decoders only uses log probabilities, * whereas the n-best normalized and lattice decoders use linear * probabilities. Only the probabilities computed are cached, so if a * program only does first-best processing, only linear estimates are * cached. * *

Any implementation of Map may be used as a cache, * but particular attention must be paid to thread safety and * scalability. A fully synchronized cache can be created with: * *

 * Map<String,double[]> cache 
 *     = java.util.Collections.synchronizedMap(new HashMap<String,double[]>());
* * LingPipe's map implementation {@link com.aliasi.util.FastCache} is * designed specifically to be used as a cache in settings such as * these. * *

It is often (e.g. on English newsire) easy to get high token * coverage (e.g. 97%) with a rather modestly sized cache (e.g. 100K * tokens). Other corpora and languages may vary and we encourage * experimentation with efficiency versus memory for caching. Note * that run times will speed up as more and more estimates are returned * from the cache rather than being computed directly. * *

Synchrnonization and Thread Safety

* *

This class does not perform any underlying sychronization. If * the hidden Markov model is not thread safe, then it must be * synchronized. Similarly for the caches. Note that {@link * com.aliasi.util.FastCache}, while not synchronized, is thread safe. * Similarly, the compilation of an HMM trained with {@link * HmmCharLmEstimator} is thread safe, in fact allowing safe * concurrent access because it is immutable. * *

Beam and Pruning

* *

For first-best and n-best decoding, a beam may be used to prune * unlikely hypotheses. This beam is set during construction or * through the method {@link #setLog2EmissionBeam(double)} (setting * and access must be concurrent read/exclusive write synchronized * from the caller). The beam works token by token. As each token is * considered, any tag whose emission log (base 2) likelihood is more * than the beam less than the bes5t emission estimate is eliminated * from further consideration. * * @author Bob Carpenter * @version 4.0.0 * @since LingPipe2.1 */ public class HmmDecoder implements Tagger, NBestTagger, MarginalTagger { private final HiddenMarkovModel mHmm; private Map mEmissionCache; private Map mEmissionLog2Cache; private double mLog2EmissionBeam; private double mLog2Beam; /** * Construct an HMM decoder from the specified HMM. No caching is * applied to estimates, and the beams are set to positive infinity, * turning off pruning. This constructor is appropriate for * dynamic models with changing probability estimates. * * @param hmm Model to use as basis of decoding. */ public HmmDecoder(HiddenMarkovModel hmm) { this(hmm,null,null); } /** * Construct an HMM decoder from the specified HMM using the * specified caches for linear and log probabilities. The beams * are set to positive infinity, turning off pruning. Either or * both of the caches may be null, in which case the * corresponding values will not be cached. * * @param hmm Model to use for decoding. * @param emissionCache Map to use for emission caching. * @param emissionLog2Cache Map to use for log emission caching. */ public HmmDecoder(HiddenMarkovModel hmm, Map emissionCache, Map emissionLog2Cache) { this(hmm,emissionCache,emissionLog2Cache, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); } /** * Construct an HMM decoder from the specified HMM using the * specified caches for linear and log probabilities, with the * specified beam width for emission estimates. Either or both of * the caches may be null, in which case the * corresponding values will not be cached. * * @param hmm Model to use for decoding. * @param emissionCache Map to use for emission caching. * @param emissionLog2Cache Map to use for log emission caching. * @param log2Beam The log (base 2) beam for pruning full hypotheses. * @param log2EmissionBeam The log (base 2) beam for pruning emission hypotheses. * @throws IllegalArgumentException If either beam is not a * non-negative number. */ public HmmDecoder(HiddenMarkovModel hmm, Map emissionCache, Map emissionLog2Cache, double log2Beam, double log2EmissionBeam) { mHmm = hmm; mEmissionCache = emissionCache; mEmissionLog2Cache = emissionLog2Cache; setLog2Beam(log2Beam); setLog2EmissionBeam(log2EmissionBeam); } /** * Returns the hidden Markov model underlying this decoder. * The returned value is the actual HMM used by this decoder, * so changes to it will affect this decoder. * * @return The HMM for this decoder. */ public HiddenMarkovModel getHmm() { return mHmm; } /** * Returns the mapping used to cache emission probabilities, or * null if not caching. This is the actual mapping, * so changes to it will affect this decoder. * * @return The emission probability cache. */ public Map emissionCache() { return mEmissionCache; } /** * Returns the mapping used to cache log (base 2) emission * probabilities, or null if not caching. This is * the actual mapping, so changes to it will affect this decoder. * * @return The emission probability cache. */ public Map emissionLog2Cache() { return mEmissionLog2Cache; } /** * Sets the emission cache to the specified value. * *

Warning: This method should not be executed * concurrently with any calls to decoding, as it may produce an * inconsistent result. The typical application will be to set a * cache before using a decoder. * * @param cache Cache for linear emission estimates. */ public void setEmissionCache(Map cache) { mEmissionCache = cache; } /** * Sets the log (base 2) emission beam width. Any tag with * a log (base 2) emission probability more than the beam width * less than the best hypothesis is discarded. Setting the beam * width to zero results in pruning to category with the best emission. * Setting the beam width to positive infinity effectively turns * off the beam. * * @param log2EmissionBeam Width of beam. * @throws IllegalArgumentException If the beam width is negative. */ public void setLog2EmissionBeam(double log2EmissionBeam) { if (log2EmissionBeam <= 0 || Double.isNaN(log2EmissionBeam)) { String msg = "Beam width must be a positive number." + " Found log2EmissionBeam=" + log2EmissionBeam; throw new IllegalArgumentException(msg); } mLog2EmissionBeam = log2EmissionBeam; } /** * Sets the value of the log2 beam to the specified value. * This beam controls pruning based on full Viterbi values * for a given lattice slice. See the class documentation above * for more details. * * @param log2Beam The log (base 2) Viterbi beam. * @throws IllegalArgumentException If the beam width is negative. */ public void setLog2Beam(double log2Beam) { if (log2Beam <= 0 || Double.isNaN(log2Beam)) { String msg = "Beam width must be a positive number." + " Found log2EmissionBeam=" + log2Beam; throw new IllegalArgumentException(msg); } mLog2Beam = log2Beam; } /** * Sets the log emission cache to the specified value. * *

Warning: This method should not be executed * concurrently with any calls to decoding, as it may produce an * inconsistent result. The typical application will be to set a * cache before using a decoder. * * @param cache Cache for linear emission estimates. */ public void setEmissionLog2Cache(Map cache) { mEmissionLog2Cache = cache; } double[] cachedEmitProbs(String emission) { double[] emitProbs = mEmissionCache.get(emission); if (emitProbs != null) { return emitProbs; } emitProbs = computeEmitProbs(emission); mEmissionCache.put(emission,emitProbs); return emitProbs; } double[] computeEmitProbs(String emission) { int numTags = mHmm.stateSymbolTable().numSymbols(); double[] emitProbs = new double[numTags]; for (int i = 0; i < numTags; ++i) emitProbs[i] = mHmm.emitProb(i,emission); return emitProbs; } double[] emitProbs(String emission) { return (mEmissionCache == null) ? computeEmitProbs(emission) : cachedEmitProbs(emission); } double[] cachedEmitLog2Probs(String emission) { double[] emitLog2Probs = mEmissionLog2Cache.get(emission); if (emitLog2Probs != null) { return emitLog2Probs; } emitLog2Probs = computeEmitLog2Probs(emission); mEmissionLog2Cache.put(emission,emitLog2Probs); return emitLog2Probs; } double[] computeEmitLog2Probs(String emission) { int numTags = mHmm.stateSymbolTable().numSymbols(); double[] emitLog2Probs = new double[numTags]; for (int i = 0; i < numTags; ++i) emitLog2Probs[i] = mHmm.emitLog2Prob(i,emission); additiveBeamPrune(emitLog2Probs,mLog2EmissionBeam); return emitLog2Probs; } static void additiveBeamPrune(double[] emitLog2Probs, double beam) { if (beam == Double.POSITIVE_INFINITY) return; // no pruning double best = emitLog2Probs[0]; for (int i = 1; i < emitLog2Probs.length; ++i) if (emitLog2Probs[i] > best) best = emitLog2Probs[i]; for (int i = 1; i < emitLog2Probs.length; ++i) if (emitLog2Probs[i] + beam < best) emitLog2Probs[i] = Double.NEGATIVE_INFINITY; } double[] emitLog2Probs(String emission) { return (mEmissionLog2Cache == null) ? computeEmitLog2Probs(emission) : cachedEmitLog2Probs(emission); } /** * Return a complete tag-word lattice for the specified array of * string emissions. Lattices provide forward and backward * values. * *

Implementation Note: This method is implemented by * the standard forward-backward dynamic programming algorithm. * The estimates * Pα(n,state) are of * the probability of a derivation starting at the beginning and * arriving at the specified state after the specified number of * tokens. * *

* Pα(0,state) * = Pstart(state) * * Pemit(emissions[0],state) *
*
* Pα(n,state) *
    * = ΣsourceState * Pα(n-1,sourceState) *
                  * * Ptransit(state|sourceState) *
                  * * Pemit(emissions[n]|state) *
* * Note that the forward probabilities up to a token position * include the emission probability for that token. * *

The backward values are defined dually as the probability of * a derivation ending at a specified state being continued to * the end of the analysis. * *

* Pβ(|emissions|-1,state) * = Pend(state) *
* *
* Pβ(n,state) *
    * = ΣtargetState * Pβ(n+1,targetState) *
                  * * Ptransit(targetState|state) *
                  * * Pemit(emissions[n+1]|targetState) *
* * Note that token emission probabilities for a given state are not * included in the backward score; they are computed with target * states in a way that matches the forward algorithm's * definition. This asymmetry is so that the forward-backward * estimates Pγ(n,state) * correspond to the probability of a derivation being in a given * state for a given position given the input: * *
* Pγ(n,state) * = Pα(n,state) * * Pβ(n,state) *
* * These values include the token emission probabilities, * but may be normalized in the usual Bayesian fashion by * dividing by the marginal P(emissions): * *
* P(n,state|emissions) * = Pγ(n,state) / P(emissions) *
* * where the marginal is just the sum of all forward-backward * values for any token position i: * *
* P(emissions) * = Σstate * Pγ(i,state) *
* * Most of the computation is carried out by the (private) * implementation of the tag lattice, which requires the following * start, end and transition arrays: * *
* start(state) = Pstart(0,state) * * Pemit(emissions[0],state) *
* *
* end(state) = Pend(state) *
* *
* transition(i,sourceState,targetState) *
    * = Ptransit(targetState|sourceState) *
      * * Pemit(emissions[i]|targetState) *
* * @param emissions Array of strings emitted. * @return Full tag-word lattice for specified emissions. */ TagWordLattice lattice(String[] emissions) { int numTokens = emissions.length; int numTags = mHmm.stateSymbolTable().numSymbols(); if (numTokens == 0) return new TagWordLattice(emissions,mHmm.stateSymbolTable(), new double[numTags], new double[numTags], new double[0][numTags][numTags]); double[] starts = new double[numTags]; double[] emitProbs = emitProbs(emissions[0]); for (int tagId = 0; tagId < numTags; ++tagId) starts[tagId] = mHmm.startProb(tagId) * emitProbs[tagId]; double[][][] transitions = new double[numTokens][][]; for (int i = 1; i < numTokens; ++i) { double[][] transitionsI = new double[numTags][]; transitions[i] = transitionsI; double[] emitProbs2 = emitProbs(emissions[i]); for (int prevTagId = 0; prevTagId < numTags; ++prevTagId) { double[] transitionsIPrevTag = new double[numTags]; transitions[i][prevTagId] = transitionsIPrevTag; for (int tagId = 0; tagId < numTags; ++tagId) { double transitEstimate = mHmm.transitProb(prevTagId,tagId); transitionsIPrevTag[tagId] = transitEstimate * emitProbs2[tagId]; } } } double[] ends = new double[numTags]; for (int tagId = 0; tagId < numTags; ++tagId) ends[tagId] = mHmm.endProb(tagId); return new TagWordLattice(emissions,mHmm.stateSymbolTable(), starts,ends,transitions); } /** * Returns an array consisting of the states with the highest * likelihood to emit the specifed array of strings. * *

Implementation Note: This method is implemented with * the Viterbi algorithm. The Viterbi algorithm uses dynamic * programming (memoization) to compute the maximum probability of * arriving in a state state after consuming * inputs emissions[0],...,emissions[n-1]: * *

* Pbest(0,state) *
    * = Pstart(state) *
      * * Pemit(emissions[0],state) *
* *
* Pbest(n,state) *
    * = MAXprevState * Pbest(n-1,prevState) *
                  * * Ptransit(state|prevState) *
                  * * Pemit(emissions[n]|state) *
* *
* Pbest(last,state) * *= Pend(state) *
* * Note that the initial condition uses the start probability * rather than the transition times the previous best probability. * The notation in the last line is meant to indicate that * the last index has the probability of a state being the * last state multiplied in. As usual, we use logarithms * and additions rather than multiplication. * *

As usual, the algorithm employs an array of backpointers * from a state at a given input to the last state along * the best path. This is computed by simply recording the * state maximizing the above equation: * *

* backPtr(0,state) = null *
* *
* backPtr(n,state) *
    * = ARGMAXprevState * Pbest(n-1,prevState) *
                *     * * Ptransit(state|prevState) *
                *     * * Pemit(emissions[n]|state) *
* * By tracing the array of backpointers from the best final * state, the best path can be recovered. * * @param emissions Array of strings emitted. * @return Array of states most likely to have emitted the * specified strings. */ String[] firstBest(String[] emissions) { if (emissions.length == 0) return Strings.EMPTY_STRING_ARRAY; return new Viterbi(emissions).bestStates(); } /** * Returns a best-first iterator of {@link ScoredObject} instances * consisting of arrays of tags and log (base 2) joint likelihoods * of the tags and emissions with respect to the underlying HMM. * Only analyses with non-zero probability estimates are returned. * *

Implementation Note: This method is implemented by * doing a Viterbi search to provide exact A* bounds * for a backwards n-best pass using the A* algorithm. * Thus it will be slower than just computing the first best * result using {@link #firstBest(String[])}. The iterator stores * the entire Viterbi lattice as well as a priority queue of * partial states ordered by the A* condition. * * @param emissions String outputs whose tag sequences are returned. * @return Iterator over scored tag sequences in decreasing order * of likelihood. */ Iterator> nBest(String[] emissions) { if (emissions.length == 0) { ScoredObject result = new ScoredObject(Strings.EMPTY_STRING_ARRAY,0.0); return Iterators.>singleton(result); } Viterbi viterbiLattice = new Viterbi(emissions); return new NBestIterator(viterbiLattice,Integer.MAX_VALUE); } /** * Returns a best-first iterator of {@link ScoredObject} instances * consisting of arrays of tags and log (base 2) joint likelihoods * of the tags and emissions with respect to the underlying HMM up * to the specified maximum number of results. * *

Implementation Note: This method is implemented by * doing a Viterbi search to provide exact A* bounds * for a backwards n-best pass using the A* algorithm. * Thus it will be slower than just computing the first best * result using {@link #firstBest(String[])}. The iterator stores * the entire Viterbi lattice as well as a priority queue of * partial states ordered by the A* condition. * * @param emissions String outputs whose tag sequences are returned. * @return Iterator over scored tag sequences in decreasing order * of likelihood. */ Iterator> nBest(String[] emissions, int maxN) { if (emissions.length == 0) { ScoredObject result = new ScoredObject(Strings.EMPTY_STRING_ARRAY,0.0); return Iterators.>singleton(result); } Viterbi viterbiLattice = new Viterbi(emissions); return new NBestIterator(viterbiLattice,maxN); } /** * Returns a best-first iterator of scored objects consisting of * arrays of tags and log (base 2) conditional likelihoods of the * tags given the specified emissions with respect to the * underlying HMM. Only analyses with non-zero probability * estimates are returned. For this method, the sum of all * iterated estimates should be 1.0, plus or minus rounding * errors. * *

Conditional estimates of tags given emissions are derived * from dividing the joint estimates by the marginal likelihood * of the emissions as computed by summing over all joint estimates. * *

Implementation Note: The total log likelihood is * returned by applying {@link TagLattice#logZ()} to the * result of decoding the input with {@link #lattice(String[])}. * The joint estimates are iterated using the iterator returned by * {@link #nBest(String[])} and then modified by subtracting the * emission marginal log likelihood from the joint emission/tags * log likelihood. This method adds the cost of the full lattice * computation to the joint n-best method. The space for the full * lattice is used transiently when this method is called and * may be garbage-collected even before the first element is returned * by the iterator. * * @param emissions String outputs whose tag sequences are returned. * @return Iterator over scored tag sequences in decreasing order * of likelihood. */ Iterator> nBestConditional(String[] emissions) { Iterator> nBestIterator = nBest(emissions); double jointLog2Prob = lattice(emissions).log2Total(); return new JointIterator(nBestIterator,jointLog2Prob); } public Tagging tag(List tokens) { String[] tokenArray = tokens.toArray(Strings.EMPTY_STRING_ARRAY); String[] tags = firstBest(tokenArray); return new Tagging(Arrays.asList(tokenArray), Arrays.asList(tags)); } public Iterator> tagNBest(List tokens, int maxResults) { String[] tokenArray = tokens.toArray(Strings.EMPTY_STRING_ARRAY); Iterator> it = nBest(tokenArray,maxResults); return new TaggingIteratorAdapter(tokens,it,maxResults); } public Iterator> tagNBestConditional(List tokens, int maxResults) { String[] tokenArray = tokens.toArray(Strings.EMPTY_STRING_ARRAY); Iterator> it = nBestConditional(tokenArray); return new TaggingIteratorAdapter(tokens,it,maxResults); } public TagLattice tagMarginal(List tokens) { String[] tokenArray = tokens.toArray(Strings.EMPTY_STRING_ARRAY); return lattice(tokenArray); } static class TaggingIteratorAdapter implements Iterator> { private final Iterator> mIt; private final List mTokens; private final int mMaxResults; private int mResults = 0; TaggingIteratorAdapter(List tokens, Iterator> it, int maxResults) { mTokens = tokens; mIt = it; mMaxResults = maxResults; } public ScoredTagging next() { ScoredObject so = mIt.next(); double score = so.score(); String[] tags = so.getObject(); List tagList = Arrays.asList(tags); ++mResults; return new ScoredTagging(mTokens,tagList,score); } public boolean hasNext() { return (mResults < mMaxResults) && mIt.hasNext(); } public void remove() { mIt.remove(); } } void unprunedSources(double[] sources, int[] survivors, double beam) { double best = sources[0]; for (int i = 0; i < sources.length; ++i) if (sources[i] > best) best = sources[i]; int next = 0; for (int i = 0; i < sources.length; ++i) if (sources[i] + beam >= best) survivors[next++] = i; survivors[next] = -1; } private class Viterbi { private final String[] mEmissions; private final double[][] mLattice; private final int[][] mBackPts; Viterbi(String[] emissions) { mEmissions = emissions; HiddenMarkovModel hmm = mHmm; int numStates = hmm.stateSymbolTable().numSymbols(); int numEmits = emissions.length; double[][] lattice = new double[numEmits][numStates]; mLattice = lattice; int[][] backPts = new int[numEmits][numStates]; mBackPts = backPts; if (emissions.length == 0) { return; } double[] emitLog2Probs = emitLog2Probs(emissions[0]); for (int stateId = 0; stateId < numStates; ++stateId) { lattice[0][stateId] = emitLog2Probs[stateId] + hmm.startLog2Prob(stateId); } int[] unprunedSources = new int[numStates+1]; for (int i = 1; i < numEmits; ++i) { double[] lastSlice = lattice[i-1]; unprunedSources(lastSlice,unprunedSources,mLog2Beam); double[] emitLog2Probs2 = emitLog2Probs(emissions[i]); for (int targetId = 0; targetId < numStates; ++targetId) { if (Double.NEGATIVE_INFINITY != emitLog2Probs2[targetId]) { double best = Double.NEGATIVE_INFINITY; int bk = 0; // default tag for (int next = 0; unprunedSources[next] != -1; ++next) { int sourceId = unprunedSources[next]; double est = lastSlice[sourceId] + hmm.transitLog2Prob(sourceId,targetId); if (est > best) { best = est; bk = sourceId; } } lattice[i][targetId] = best + emitLog2Probs2[targetId]; backPts[i][targetId] = bk; } else { lattice[i][targetId] = Double.NEGATIVE_INFINITY; backPts[i][targetId] = 0; // default tag } } } // handles finals even if only one emission double[] lastColumn = lattice[numEmits-1]; for (int i = 0; i < numStates; ++i) lastColumn[i] += hmm.endLog2Prob(i); } String[] bestStates() { HiddenMarkovModel hmm = mHmm; int numStates = hmm.stateSymbolTable().numSymbols(); int numEmits = mEmissions.length; if (numEmits == 0) return Strings.EMPTY_STRING_ARRAY; int[][] backPts = mBackPts; double[][] lattice = mLattice; int[] bestStateIds = new int[numEmits]; int bestStateId = 0; double[] lastCol = lattice[numEmits-1]; for (int i = 1; i < numStates; ++i) if (lastCol[i] > lastCol[bestStateId]) bestStateId = i; bestStateIds[numEmits-1] = bestStateId; for (int i = numEmits; --i > 0; ) bestStateIds[i-1] = backPts[i][bestStateIds[i]]; String[] bestStates = new String[numEmits]; SymbolTable st = hmm.stateSymbolTable(); for (int i = 0; i < bestStates.length; ++i) bestStates[i] = st.idToSymbol(bestStateIds[i]); return bestStates; } } private class NBestIterator extends Iterators.Buffered> { private final Viterbi mViterbi; private final BoundedPriorityQueue mPQ; NBestIterator(Viterbi vit, int maxSize) { mViterbi = vit; mPQ = new BoundedPriorityQueue(ScoredObject.comparator(), maxSize); String[] emissions = vit.mEmissions; int numStates = mHmm.stateSymbolTable().numSymbols(); int numEmits = emissions.length; int lastEmitIndex = numEmits-1; for (int tagId = 0; tagId < numStates; ++tagId) { double contScore = vit.mLattice[lastEmitIndex][tagId]; if (contScore > Double.NEGATIVE_INFINITY) { double score = 0.0; mPQ.offer(new State(lastEmitIndex,score,contScore, tagId,null)); } } } @Override public ScoredObject bufferNext() { int numTags = mHmm.stateSymbolTable().numSymbols(); int numEmissions = mViterbi.mEmissions.length; int lastEmitIndex = numEmissions-1; while (!mPQ.isEmpty()) { State st = mPQ.poll(); int emitIndex = st.emissionIndex(); if (emitIndex == 0) { mPQ.setMaxSize(mPQ.maxSize()-1); return st.result(numEmissions); } String emission = mViterbi.mEmissions[emitIndex]; int emitTagId = st.mTagId; double score = st.mScore; if (emitIndex == lastEmitIndex) score += mHmm.endLog2Prob(emitTagId); int emitIndexMinus1 = emitIndex-1; // don't compile because only need one tagId double emitLog2Prob = mHmm.emitLog2Prob(emitTagId,emission); for (int tagId = 0; tagId < numTags; ++tagId) { double nextScore = score + mHmm.transitLog2Prob(tagId,emitTagId) + emitLog2Prob; double contScore = mViterbi.mLattice[emitIndexMinus1][tagId]; if (nextScore > Double.NEGATIVE_INFINITY && contScore > Double.NEGATIVE_INFINITY) mPQ.offer(new State(emitIndexMinus1, nextScore, contScore, tagId,st)); } } return null; } } private final class State implements Scored { private final double mScore; private final double mContScore; private final int mTagId; private final State mPreviousState; private final int mEmissionIndex; // used outside State(int emissionIndex, double score, double contScore, int tagId, State previousState) { mEmissionIndex = emissionIndex; mScore = score; mContScore = contScore; mTagId = tagId; mPreviousState = previousState; } public int emissionIndex() { return mEmissionIndex; } public double score() { return mScore + mContScore; } ScoredObject result(int numTags) { return new ScoredObject(tags(numTags),score()); } String[] tags(int numTags) { SymbolTable symTable = mHmm.stateSymbolTable(); String[] tags = new String[numTags]; State state = this; for (int i = 0; i < numTags; ++i) { tags[i] = symTable.idToSymbol(state.mTagId); state = state.mPreviousState; } return tags; } } private static final class JointIterator extends Iterators.Modifier> { final double mLog2TotalProb; JointIterator(Iterator> nBestIterator, double log2TotalProb) { super(nBestIterator); mLog2TotalProb = log2TotalProb; } @Override public ScoredObject modify(ScoredObject jointObj) { String[] tags = jointObj.getObject(); double log2JointProb = jointObj.score(); double log2CondProb = log2JointProb - mLog2TotalProb; return new ScoredObject(tags,log2CondProb); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy