All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliasi.lm.UniformBoundaryLM Maven / Gradle / Ivy

Go to download

This is the original Lingpipe: http://alias-i.com/lingpipe/web/download.html There were not made any changes to the source code.

There is a newer version: 4.1.2-JL1.0
Show newest version
package com.aliasi.lm;

import com.aliasi.util.AbstractExternalizable;
import com.aliasi.util.Exceptions;
import com.aliasi.util.Strings;

import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

/**
 * A UniformBoundaryLM implements a uniform sequence
 * language model with a specified number of outcomes and the same
 * probability assigned to the end-of-stream marker.  The formula
 * for computing sequence likelihood estimates is:
 *
 * 
* log2Estimate(cSeq) = * = log2 ( (cSeq.length()+1) / (numOutcomes+1) ) *
* * Adding one to the number of outcomes makes the end-of-sequence * just as likely as any other character. Adding one to the * sequence length adds the log likelihood of the end-of-sequence * marker itself. * *

This model is defined as dynamic for convenience. Calls * to the training methods have no effect. * * @author Bob Carpenter * @version 4.1.0 * @since LingPipe2.0 */ public class UniformBoundaryLM implements LanguageModel.Dynamic, LanguageModel.Sequence { private final double mLog2EstimatePerChar; private final int mNumOutcomes; /** * Construct uniform boundary language model with the full set * of characters. */ public UniformBoundaryLM() { this(Character.MAX_VALUE-1); } /** * Construct a uniform boundary language model with the specified * number of outcomes. The estimate will include the * end-of-stream boundary output and thus the per-character * estimate will be 1/(numOutcomes+1). * * @param numOutcomes Number of outcomes. */ public UniformBoundaryLM(int numOutcomes) { UniformProcessLM.validateNumOutcomes(numOutcomes+1); mNumOutcomes = numOutcomes; mLog2EstimatePerChar = -com.aliasi.util.Math.log2(1.0 + (double)numOutcomes); } /** * Create a constant uniform boundary LM with the specified * character cross-entropy rate. Recall that cross-entropy is the * negative character average log probability. Thus the log * estimate returned for a boundary model will include the final * terminator, and yield: * *

* log2 P(cs) * = - crossEntropyRate * (cs.length() + 1) *
* * The number of outcomes is set by rounding down the exponent of * the cross-entropy and subtracting one for the boundary * character: * *
* numOutcomes = (int) 2.0crossEntropyRate - 1 *
* * Even if the above expression evaluates to less than zero, the * number of outcomes will then be rounded up to zero. * * @param crossEntropyRate The cross-entropy rate of the model. * @throws IllegalArgumentException If the cross-entropy rate is * not finite and non-negative. */ public UniformBoundaryLM(double crossEntropyRate) { Exceptions.finiteNonNegative("Cross-entropy rate", crossEntropyRate); mLog2EstimatePerChar = -crossEntropyRate; mNumOutcomes = Math.max(0, (int) (java.lang.Math.pow(2.0,crossEntropyRate) - 1.0)); } private UniformBoundaryLM(int numOutcomes, double log2EstimatePerChar) { mNumOutcomes = numOutcomes; mLog2EstimatePerChar = log2EstimatePerChar; } /** * Returns the number of outcomes for this uniform model. * * @return The number of outcomes for this uniform model. */ public int numOutcomes() { return mNumOutcomes; } /** * This method for training a character sequence is supplied * for compatibility with the dynamic language model interface, * but is implemented to do nothing. * * @param cs Ignored. */ public void handle(CharSequence cs) { /* no op */ } /** * Writes a compiled version of this model to the specified object * output. The object read back in will also be an instance * of {@link UniformBoundaryLM}. * * @param objOut Object output to which this model is written. * @throws IOException If there is an I/O error during the write. */ public void compileTo(ObjectOutput objOut) throws IOException { objOut.writeObject(new Externalizer(this)); } /** * Ignores the training data. * * @param cs Ignored. * @param start Ignored. * @param end Ignored. */ public void train(char[] cs, int start, int end) { // ignore } /** * Ignores the training data. * * @param cs Ignored. * @param start Ignored. * @param end Ignored. * @param count Ignored. */ public void train(char[] cs, int start, int end, int count) { // ignore } /** * Ignores the training data. * * @param cSeq Ignored. */ public void train(CharSequence cSeq) { // ignore } /** * Ignores the training data. * * @param cSeq Ignored. * @param count Ignored. */ public void train(CharSequence cSeq, int count) { // ignore } public double log2Estimate(char[] cs, int start, int end) { Strings.checkArgsStartEnd(cs,start,end); return log2Estimate(end-start); } public double log2Estimate(CharSequence cSeq) { return log2Estimate(cSeq.length()); } private double log2Estimate(int length) { return mLog2EstimatePerChar * (1.0 + (double) length); } private static UniformBoundaryLM createUniformBoundaryLM(int numOutcomes, double log2EstimatePerChar) { return new UniformBoundaryLM(numOutcomes,log2EstimatePerChar); } /** * A constant uniform boundary language model returning * zero log estimates. This is done by setting the number * of characters to zero. * *

This constant is particularly useful for removing the * contribution of whitespace characters to token n-gram language * models. */ public static final UniformBoundaryLM ZERO_LM = new UniformBoundaryLM(0); private static class Externalizer extends AbstractExternalizable { static final long serialVersionUID = -5389627995529538230L; private final UniformBoundaryLM mLM; public Externalizer() { mLM = null; } public Externalizer(UniformBoundaryLM lm) { mLM = lm; } @Override public Object read(ObjectInput objIn) throws IOException { int numOutcomes = objIn.readInt(); double log2EstimatePerChar = objIn.readDouble(); return createUniformBoundaryLM(numOutcomes,log2EstimatePerChar); } @Override public void writeExternal(ObjectOutput objOut) throws IOException { objOut.writeInt(mLM.numOutcomes()); objOut.writeDouble(mLM.mLog2EstimatePerChar); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy