com.aliasi.matrix.EuclideanDistance Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aliasi-lingpipe Show documentation
Show all versions of aliasi-lingpipe Show documentation
This is the original Lingpipe:
http://alias-i.com/lingpipe/web/download.html
There were not made any changes to the source code.
/*
* LingPipe v. 4.1.0
* Copyright (C) 2003-2011 Alias-i
*
* This program is licensed under the Alias-i Royalty Free License
* Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Alias-i
* Royalty Free License Version 1 for more details.
*
* You should have received a copy of the Alias-i Royalty Free License
* Version 1 along with this program; if not, visit
* http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact
* Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211,
* +1 (718) 290-9170.
*/
package com.aliasi.matrix;
import com.aliasi.util.Distance;
import java.io.Serializable;
/**
* The EuclideanDistance
class implements standard
* Euclidean distance between vectors. Euclidean distance forms a
* metric. Euclidean distance is often called the
* L2
distance, because it is 2-norm Minkowski
* distance.
*
* The definition of Euclidean distance over vectors
* v1
and v2
is:
*
*
* distance(v1,v2) = sqrt(Σi (v1[i] - v2[i])2 )
*
*
* with v1[i]
standing for the method call
* v1.value(i)
and i
ranging over the
* dimensions of the vectors, which must be the same.
*
* Note that the Euclidean distance is equivalent to the
* Minkowski distance metric of order 2. See the class
* documentation for {@link MinkowskiDistance} for more information.
*
*
An understandable explanation of Euclidean and related
* distances may be found at:
*
*
*
* @author Bob Carpenter
* @version 3.1
* @since LingPipe3.1
*/
public class EuclideanDistance
implements Distance,
Serializable {
static final long serialVersionUID = -7331942504500606550L;
/**
* The Euclidean distance. All instances of Euclidean distance
* perform the same function. Because the distance function is
* thread safe, this instance may be used wherever Euclidean
* distance is needed.
*/
public static final EuclideanDistance DISTANCE
= new EuclideanDistance();
/**
* Construct a new Euclidean distance.
*/
public EuclideanDistance() { /* empty constructor */
}
/**
* Returns the Euclidean distance between the specified pair
* of vectors.
*
* @param v1 First vector.
* @param v2 Second vector.
* @return The distance between the vectors.
* @throws IllegalArgumentException If the vectors are not of the
* same dimensionality.
*/
public double distance(Vector v1, Vector v2) {
if (v1.numDimensions() != v2.numDimensions()) {
String msg = "Vectors must have same dimensions."
+ " v1.numDimensions()=" + v1.numDimensions()
+ " v2.numDimensions()=" + v2.numDimensions();
throw new IllegalArgumentException(msg);
}
if (v1 instanceof SparseFloatVector && v2 instanceof SparseFloatVector)
return sparseDistance((SparseFloatVector)v1,
(SparseFloatVector)v2);
double sum = 0.0;
for (int i = v1.numDimensions(); --i >= 0; ) {
double diff = v1.value(i) - v2.value(i);
sum += diff * diff;
}
return Math.sqrt(sum);
}
static double sparseDistance(SparseFloatVector v1,
SparseFloatVector v2) {
double sum = 0.0;
int index1 = 0;
int index2 = 0;
int[] keys1 = v1.mKeys;
int[] keys2 = v2.mKeys;
float[] vals1 = v1.mValues;
float[] vals2 = v2.mValues;
while (index1 < keys1.length && index2 < keys2.length) {
int comp = keys1[index1] - keys2[index2];
double diff
= (comp == 0)
? (vals1[index1++] - vals2[index2++])
: ( (comp < 0)
? vals1[index1++]
: vals2[index2++]);
sum += diff * diff;
}
for ( ; index1 < keys1.length; ++index1)
sum += vals1[index1] * vals1[index1];
for ( ; index2 < keys2.length; ++index2)
sum += vals2[index2] * vals2[index2];
return Math.sqrt(sum);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy