All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliasi.matrix.HyperbolicTangentKernel Maven / Gradle / Ivy

Go to download

This is the original Lingpipe: http://alias-i.com/lingpipe/web/download.html There were not made any changes to the source code.

There is a newer version: 4.1.2-JL1.0
Show newest version
/*
 * LingPipe v. 4.1.0
 * Copyright (C) 2003-2011 Alias-i
 *
 * This program is licensed under the Alias-i Royalty Free License
 * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i
 * Royalty Free License Version 1 for more details.
 *
 * You should have received a copy of the Alias-i Royalty Free License
 * Version 1 along with this program; if not, visit
 * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact
 * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211,
 * +1 (718) 290-9170.
 */

package com.aliasi.matrix;

import com.aliasi.util.AbstractExternalizable;

import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.io.Serializable;

/**
 * A HyperbolicTangentKernel provides a kernel based on
 * the hyperbolic tangent of a dot product with fixed linear scaling.
 * Hyperbolic tangent kernels are popular as neural network activation
 * functions.
 *
 * 

The hyperbolic tangent kernel function of with parameters * k0 and k1 is defined between two * vectors v1 and v2 of the same * dimensionality by: * *

 * kernel(v1,v2) = tanh(k1 * v1 * v2 + k0)
* * where v1 * v2 is the usual dot product and * the constant k1 is simply a scalar multiplier. * *

References

* * * * @author Bob Carpenter * @version 3.8 * @since LingPipe3.1 */ public class HyperbolicTangentKernel implements KernelFunction, Serializable { static final long serialVersionUID = -4623910478151947840L; private final double mK0; private final double mK1; /** * Construct a linearly offset hyperbolic tangent kernel * with the specified slope and intercept parameters. * * @param k0 Intercept parameter. * @param k1 Slope parameter. * @throws IllegalArgumentException If either of the parameters * are not finite numbers, or if the k1 parameter is zero. */ public HyperbolicTangentKernel(double k0, double k1) { if (Double.isInfinite(k0) || Double.isNaN(k0)) { String msg = "k0 must be a finite number." + " Found k0=" + k0; throw new IllegalArgumentException(msg); } if (Double.isInfinite(k1) || Double.isNaN(k1) || k1 == 0.0) { String msg = "k1 must be a finite, non-zero number." + " Found k1=" + k1; throw new IllegalArgumentException(msg); } mK0 = k0; mK1 = k1; } /** * Returns the result of applying the hyperbolic tangent kernel * function to to the specified vectors. * * @param v1 First vector. * @param v2 Second vector. * @return Kernel function applied to the two vectors. * @throws IllegalArgumentException If the vectors are not of the * same dimensionality. */ public double proximity(Vector v1, Vector v2) { return Math.tanh(mK1 * v1.dotProduct(v2) + mK0); } /** * Returns a string-based representation of this kernel * function, including the offset and slope parameters. * * @return A string representing this kernel. */ @Override public String toString() { return "HyperbolicTangentKernel(" + mK0 + ", " + mK1 + ")"; } Object writeReplace() { return new Externalizer(mK0,mK1); } static class Externalizer extends AbstractExternalizable { static final long serialVersionUID = 5756879441704225246L; final double mK0; final double mK1; public Externalizer() { this(0.0,0.0); } public Externalizer(double k0, double k1) { mK0 = k0; mK1 = k1; } @Override public void writeExternal(ObjectOutput out) throws IOException { out.writeDouble(mK0); out.writeDouble(mK1); } @Override public Object read(ObjectInput in) throws IOException { double k0 = in.readDouble(); double k1 = in.readDouble(); return new HyperbolicTangentKernel(k0,k1); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy